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ABSTRACT:

Spatiotemporal monitoring of water quality parameters such as turbidity in inland waters is desirable to better understand pro-
ductivity and mitigate the negative impacts of pollution induced by increasing anthropogenic activities. However, precise retrieval
of water quality parameters in complex turbid waters from the remote sensing reflectance Rrs, remains a challenging task due
to the varying optical complexity of the water body. In this study, a modified version of the Atmospheric Correction for OLI-lite
(ModACO) scheme for turbid inland waters, which implements a linear extrapolation of NIR aerosol reflectance in the visible bands
instead of a nonlinear function, is presented. The performance of the proposed method and other existing algorithms such as the
Atmospheric Correction for OLI-lite (ACOLITE), Management Unit of the Noth Seas Mathematical Models (MUMM) scheme,
SeaDAS standard processing, and SWIRE were evaluated. The Rrs retrievals from these models were then used as input for tur-
bidity estimation and mapping of Laguna de Bay. Results show lowest Rrs error in all five spectral bands (443, 482, 561, 655, and
865 nm) on ModACO-based retrievals. Relative to the ACOLITE and other atmospheric correction schemes, the proposed method
reduced the Rrs retrieval errors in terms of RMSE and MAPE by more than 50%. Similarly, significant improvements in turbidity
retrievals were achieved from ModACO-based Rrs values, wherein comparable accuracy was observed from red/green ratio and
the single NIR band turbidity models. Turbidity maps of Laguna de Bay show elevated values from the mid of dry season, which
may be associated with point source discharge and wind-induced resuspension of bottom sediments. The lake turbidity then drops
by the end of dry season, which is linked to the absence of prevailing strong winds that may increase in-water mixing. Using the
aforementioned method, accurate monitoring of turbidity can be done to determine and mitigate possible degradation on the water
quality of Laguna de Bay and other productive turbid inland waters.

1. INTRODUCTION

Turbidity, which refers to clarity of water, is one of the water
quality parameters used to evaluate site suitability for aquacul-
tures (Simoes et al., 2008, Tamayo-Zafaralla et al., 2010). It is
a dynamic parameter that influences the concentration of dis-
solved oxygen (DO), chlorophyll-a (chl-a) and surface temper-
ature (ST); parameters that determine the primary productivity
(Brown, 1984, Uncles et al., 2017). In freshwater lakes, exten-
ded period of high turbidity levels may result to reduced growth
and delayed hatching rates among aquatic species (Newcombe
and Jensen, 1996). Moreover, high turbidity also increases the
cost of water treatment from freshwater bodies used for do-
mestic water supply. Hence, it is essential to monitor the tur-
bidity level in productive inland waters.

While regular in situ measurements remains the most accurate
method for monitoring water quality, it is based on point obser-
vations that may be limited to represent complex and dynamic
water systems. Optical satellite remote sensing can provide a
comprehensive assessment on the spatial variability of different
water quality parameters; information often unavailable with
in situ measurements. Optical satellites measure the amount
of light reflected from water surfaces which carries information
about the concentration of different water constituents such as
chl-a, suspended solids and colored dissolved organic matter
(CDOM) (Hestir et al., 2015, Lymburner et al., 2016). This
makes optical remote sensing a valuable tool to measure water
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quality in a large spatial scale. Among available optical satel-
lites, the Operational Land Imager (OLI) onboard the Landsat-
8 has the advantage for coastal and inland water observations
given its wide coverage of ∼185 km and spatial resolution of
30 m that can delineate small inland bodies. Moreover, OLI has
better signal-to-noise ratio (SNR) compared to its predecessors
Thematic Mapper (TM)/Landsat-5 and Enhanced Thematic Map-
per Plus (ETM+)/Landsat-7, which improves the reliability of
sensor measurements (Irons et al., 2012).

Using semi-empirical and semi-analytical approach, various stud-
ies had demonstrated the use of OLI for estimation of different
water quality parameters in coastal and inland waters (Lymburner
et al., 2016, Braga et al., 2016, Dogliotti et al., 2015, Feng et
al., 2012, He and Chen, 2014). The accuracy of these satellite-
derived water quality parameters highly depends not only on
the empirical/semi-analytical model that relates the apparent
optical property (AOP) and concentration of a particular bio-
physical parameter but also to the atmospheric correction tech-
nique implemented to retrieve the AOP often referred as water-
leaving or remote sensing reflectance (Rrs) (Jamet et al., 2011,
Dogliotti et al., 2015).

Different atmospheric correction schemes ranging from full phys-
ics - based radiative transfer approach to semi-analytical models
have been previously used for complex turbid waters such as the
SeaDAS standard processing, Atmospheric Correction for OLI-
lite (ACOLITE), ShortWave Infrared Extrapolation (SWIRE),
and Management Unit of the North Seas Mathematical Models
(MUMM) algorithm (Franz et al., 2015, He and Chen, 2014,
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Vanhellemont and Ruddick, 2014, Vanhellemont and Ruddick,
2015, Jamet et al., 2011). The SeaDAS standard processing im-
plements the black pixel approximation which assumes a neg-
ligible water-leaving reflectance on the NIR and SWIR bands.
The spectral ratio of two NIR or SWIR bands is used to de-
termine the appropriate model for extrapolation of aerosol re-
flectance in the visible bands. Lastly, an iterative model was
employed to reduce the error in the calculated spectral ratio
due to non-zero water-leaving NIR reflectance in turbid wa-
ters. The MUMM algorithm is mainly based on two assump-
tions. First, the ratio of two NIR or red water-leaving reflect-
ance is assumed to be constant. Second, the spatial distribution
of atmospheric aerosol in the area of interest is considered ho-
mogeneous. The ACOLITE and SWIRE algorithm utilize the
SWIR bands, wherein the water-leaving reflectance is consid-
erably negligible, for aerosol estimation. The ACOLITE al-
gorithm uses a power function to extrapolate the aerosol contri-
bution in the visible bands, whereas, the SWIRE technique em-
ploys an exponential model. The efficacy of these algorithms
have been proven in previous studies, however, the respective
accuracy of these models largely varies in complex turbid in-
land waters due to several factors such as high aerosol optical
depth (AOD), high backscattering from total suspended solids
(TSS) and high concentration of colored dissolved organic mat-
ter (CDOM) (Feng et al., 2012).

The main objective of this study is to reduce the errors asso-
ciated with Rrs retrieval in complex and turbid inland waters,
consequently improving the accuracy of derived water quality
parameters such as turbidity. This is demonstrated by introdu-
cing some modifications in the ACOLITE algorithm. By using
an empirically-derived function to estimate the NIR aerosol re-
flectance along with a linear extrapolation in the visible bands,
improvement in the accuracy Rrs retrieval is achieved. Along
with the other atmospheric correction schemes, the accuracy of
the modified ACOLITE (ModACO) algorithm was evaluated
for Rrs and turbidity retrieval in the complex waters of Laguna
de Bay.

2. DATA

2.1 Study Site and Field Data Collection

Laguna de Bay is the largest lake in the Philippines with a total
area of ∼900 km2. It is a eutrophic and shallow lake with an
average depth of ∼ 2.8 m. The lake has been widely used
for fish production, irrigation and domestic water supply (Bar-
ril and Tumlos, 2002). Due to the rapid growth in population
and industrial activities, the lake becomes more vulnerable to
water pollution. From 1986 to 1995, a decreasing trend in wa-
ter clarity was observed, which may be an indicator of water
quality degradation (Barril and Tumlos, 2002). If not addressed
accordingly, this may cause water-related health problems on
nearby communities and significant loss in fish production.

Optical measurements were conducted at a total of 45 sites
within Laguna de Bay. These data were acquired from April
23-24, 2018, April 4-7 and April 19-20 2017. The location
of sampling sites are shown in Figure 1. Turbidity and spec-
tral measurements were taken using the Horiba multiparameter
water quality sensor and ASD FieldSpec 4 spectroradiometer,
respectively. The Rrs was computed using equation 1,

Rrs(λ) =
Lsw(λ)− [rsky · Lsky(λ)]

Ed(λ)
(1)

where Lsw denotes the upwelling radiance above the water sur-
face, Ed is the downwelling irradiance just above the water sur-
face, Lsky is the sky radiance and rsky is the Fresnel reflectance
of skylight at air-water boundary set at 0.022 (Dorji and Fearns,
2017). The value of rsky can range from 0.022 to 0.027 depend-
ing on the wind speed. To remove residual reflectance possibly
due to glint, the mean reflectance from 1200-1250 nm was sub-
tracted to equation 1.

2.2 Derivation of Turbidity Models

To match and validate the Rrs values retrieved from OLI, band
averaging of ground hyperspectral data was carried out. The
band-weighted Rrs values were calculated using equation 2,

< Rrs(λ) >=

∫
Rrs(λ) ·RSRF (λ) · dλ∫

RSRF (λ) · dλ
(2)

where RSRF denotes the relative spectral response function
of OLI at different bands and < Rrs > is the band-averaged
reflectance. From here on, < Rrs > will be referred as Rrs

for brevity. Turbidity models were then derived via correlation
analysis of turbidity and Rrs at specific bands. The green (band
3), red (band 4), NIR (band 5) channel of OLI and correspond-
ing band ratios were used to estimate the turbidity in Laguna de
Bay. The number of turbidity models were then filtered based
on the resulting coefficient of determination (R2) from the cor-
relation analysis. Turbidity models with (R2 > 0.9) are only
considered as shown in equations 3-5,

T = [21252 ·Rrs(865)] + 4.08 , R2 = 0.94 (3)

ln(T ) =

[
3.7003· ln

(
Rrs(655)

Rrs(561)

)]
+5.47 , R2 = 0.97 (4)

ln(T ) =

[
1.307 · ln

(
Rrs(865)

Rrs(655)

)]
+6.68 , R2 = 0.92 (5)

where T denotes the turbidity value in nephelometric turbidity
unit (NTU ). The sample size n used in the correlation analysis
is 22. Note that different datasets were used in the calibration
and validation of turbidity models.

3. METHODS

3.1 Atmospheric Correction using the ModACO Algorithm

3.1.1 Calculation of the Top-of-Atmosphere TOA reflect-
ance ρTOA from OLI Images //

OLI images of Laguna de Bay acquired from March to May
2017 and April 23, 2018 were used in this study. These images
were downloaded from the United States Geological Survey
Earth Explorer website https : //earthexplorer.usgs.gov/
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Figure 1. Map of the Philippines (right) and the distribution of sampling sites across the South, West and Central Bay of Laguna de
Bay (left).

. The downloaded datasets include orthorectified images in Di-
gital Number (DN) and a supporting metadata file. The im-
ages in Digital Number (DN) were then converted to top-of-
atmosphere radiance LTOA using equation 6,

LTOA = (ML ·DNTOA) +AL (6)

where DNTOA is the pixel value in DN, ML and AL is the
multiplicative and additive factor, respectively. The ML and
AL are both provided in the metadata file. Note that LTOA is
wavelength dependent. The symbol λ was omitted for brev-
ity. The TOA radiance was then converted to reflectance using
equation 7,

ρTOA =
π · d2 · LTOA

ESI · cosθ0
(7)

where d is the sun-earth distance correction factor, ESI is the
band-averaged extraterrestrial solar irradiance and θ0 is the solar
zenith angle.

The TOA reflectance can then be decomposed to several com-
ponents as given by equation 8,

ρTOA = ρRay + ρa + ρr−a + Tρg + t(ρw + ρwc) (8)

where ρw is the the water-leaving reflectance, ρRay is the con-
tribution from Rayleigh scattering, ρa is the aerosol scattering,
ρr−a is the interaction between aerosol and Rayleigh scatter-
ing, ρg is the specular reflectance of sunlight from the air-water
interface and ρwc is the reflectance from whitecaps (Franz et
al., 2015, Pahlevan et al., 2017a). The symbols t and T denotes
the two-way diffuse and direct transmittance, respectively. The
aim of atmospheric correction is to retrieve the water-leaving
reflectance and effectively Rrs defined by equation 9.

Rrs = ρw/π (9)

Similar to the ACOLITE algorithm, the ModACO implements
the single scattering approximation wherein ρr−a is assumed
to be included in the calculation of ρa (Dash et al., 2012, Van-
hellemont and Ruddick, 2014). Also, the contribution from ρwc

is assumed to be negligible and largely compensated in the ρa
computation. At conditions where the solar zenith angle θ0 is
much larger than the sensor zenith angle θv , the contribution
from ρg can be ignored. Hence, equation 8 is reduced to equa-
tion 10.

ρTOA = ρRay + ρa + tρw (10)

3.1.2 Calculation of the Rayleigh reflectance ρRay //

The Rayleigh reflectance ρRay is given by equation 11,

ρRay =
τr · Pr

4cosθ0 · cosθv
(11)

where τr is Rayleigh optical thickness and the Rayleigh scatter-
ing phase function Pr is defined as,

Pr = Pr(θ−) + Pr(θ+)[r(θv) + r(θ0)] (12)

and Pr(θ±) is given as,

Pr(θ±) = 0.75(1 + cos2θ±) (13)

The subscripts + and − denotes the Rayleigh contribution from
direct scattering and scattered light interacting with air-sea sur-
face. The scattering angles are computed using equation 14,
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cosθ± = ±cosθ0cosθv − sinθ0sinθvcos|∆ϕ| (14)

where ∆ϕ denotes the relative azimuth angle. The Fresnel re-
flection coefficient for unpolarized light r(θ) is given by equa-
tion 15,

r(θi) = 0.5

[
sin2(θi − θj)

sin2(θi − θj)
+

tan2(θi − θj)

tan2(θi − θj)

]
(15)

where θi is equal to θ0 for r(θ0) and θv for r(θv) calculation.
The angle θj is computed using the Snell’s law given by equa-
tion 16,

n = sinθi/sinθj (16)

and n is the refractive index of water taken as 1.333.

The Rayleigh-corrected reflectance ρrc is defined by equation
17

ρrc = ρTOA − ρRay (17)

3.1.3 Estimation of aerosol reflectance ρa and Rrs retrieval
//

The aerosol correction of the ModACO algorithm begins with
the estimation of ρa(865) from the linear extrapolation of Rayle-
-igh-corrected SWIR bands wherein the water-leaving reflect-
ance is considerably negligible. The next step then includes
the extrapolation of the aerosol values from the NIR band to
the visible bands. With the SWIRE and ACOLITE algorithm,
this was done using an exponential and power function based
on Rayleigh -corrected SWIR bands. However, this approach
tends to overestimate the aerosol reflectance in complex inland
waters commonly characterized with high AOD and turbidity
values. In this study, the extrapolation to visible bands (443,
482 and 561 nm) was conducted only after the aerosol reflect-
ance at red band ρa(655) was estimated. The ρa(655) was es-
timated as a function of ρa(865) as given by equation 18

ρa(655) = me(655− 865) + ρa(865) (18)

where me is given by equation 19),

me =
ρa(865)− δ

800
(19)

where the aerosol parameter δ was determined from the Rayleigh
-corrected NIR reflectance ρrc(865) of cloud-free clear water
pixels, where the slope between ρrc(865) and to ρrc(655) is
nearly zero. In this study, the value of δ is found to be approx-
imately equal to 0.043. The aerosol reflectance at green and
blue bands were then extrapolated using equation 20,

ρa(λ) = ρa(865) ·

[
ρa(655)

ρa(865)

]β(λ)

(20)

where β is defined as,

β(λ) =
865− λ

865− 655
(21)

The remote sensing reflectance of visible bands can now be cal-
culated using equations 9 and 10. Lastly, the water-leaving re-
flectance at NIR band ρw(865) was computed using the turbid-
ity models described by equations 3 and 4 wherein ρw(865) can
be calculated as a function of ρw(561) and ρw(655) . The sum-
mary of the ModACO algorithm is as follows:

1. Calculate for the Rayleigh-corrected reflectances ρrc(λ).
2. Calculate ρa(865) from the linear extrapolation of Rayleigh-
corrected SWIR bands.
3. Calculate ρa(655) using equations 18 and 19.
4. Estimate the aerosol reflectance at blue and green bands us-
ing the power function given by equation 20
5. Calculate for the remote sensing reflectance of visible bands
using equations 9 and 10.
6. Finally, calculate Rrs(865) using equations 3 and 4.

3.2 Implementation of Other Atmospheric Correction Al-
gorithms

Atmospheric correction schemes for turbid waters such as the
SeaDAS standard processing, ACOLITE, SWIRE and MUMM
algorithm were also employed and evaluated. The SeaDAS
standard processing utilizes the 865 and 1609 nm band to cal-
culate for the aerosol parameter ϵ which is used to determine
the aerosol model for extrapolation at visible bands. Further-
more, it implements an iterative approach to compensate for
the nonzero ρw at NIR band. The ACOLITE and SWIRE al-
gorithm utilize the SWIR bands to extrapolate the aerosol re-
flectance in visible bands using a power and exponential func-
tion, respectively. The MUMM algorithm is implemented in the
SeaDAS platform wherein the marine reflectance ratio α is set
to 8.702 and the aerosol ratio ϵ and two-way transmittance γ set
to unity. Note that vicarious calibration coefficients were used
in the implementation of all atmospheric algorithms (Pahlevan
et al., 2017b).

3.3 Accuracy Assessment

The performance of the propose method is compared with other
existing atmospheric correction algorithms for turbid waters such
as the SeaDAS standard processing, ACOLITE, SWIRE and
MUMM algorithm. The metrics used for accuracy assessment
of satellite-derived Rrs and turbidity include the root mean square
error (RMSE) and mean absolute percent error (MAPE) as given
by equations 22 and 23, respectively

RMSE =

√√√√ 1

n

n∑
i=1

(yi − y′
i)

2 (22)

MAPE =
1

n

n∑
i=1

∣∣∣∣∣yi − y′
i

yi

∣∣∣∣∣ (23)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-67-2022 | © Author(s) 2022. CC BY 4.0 License.

 
70



Figure 2. Correlation plots of in situ and OLI-derived Rrs

values using different atmospheric correction schemes. The
SeaDAS standard processing only yield valid Rrs values on

April 20, 2017 image. The dotted line pertains to the 1:1
correspondence.

where yi and y′
i denotes the in situ and satellite-derived meas-

urement, respectively. Note that 3x3 pixel averaging and a tem-
poral coincidence of ±5 hr was defined for the validation of
OLI-derived measurements.

‘

Figure 3. The accuracy in terms of RMSE and MAPE of
different atmospheric correction schemes at the NIR and visible

bands.

4. RESULTS AND DISCUSSION

4.1 Rrs Retrieval

The correlation plots of in situ and satellite Rrs derived using
different atmospheric correction schemes are shown in Figure 2.
Good correspondence between in situ and ModACO-derived
Rrs values can be observed as evident from clustered scatter
points along the 1:1 line. Contrastingly, overestimated Rrs val-
ues were obtained from MUMM algorithm, which is indicated
by scatter points above the 1:1 line. Closely identical correl-
ation plots characterized by sparsely distributed points along
the 1:1 line can be observed from SWIRE and ACOLITE al-
gorithm. No coincident Rrs values were retrieved from April
04, 2017 and April 23, 2018 OLI images using the standard Sea-
DAS processing, which results to inadequate number of correl-
ation points. Hence, accuracy assessment was conducted only
on ModACO, SWIRE, ACOLITE and MUMM algorithm. The
corresponding accuracy of each algorithm at five spectral bands
is shown in Figure 3. The ModACO and MUMM algorithm
yields the most and least accurate Rrs retrieval in all spectral
bands, respectively. As expected, closely similar accuracies
between SWIRE and ACOLITE were observed. The ModACO
algorithm yields the least errors in the longer wavelengths (561
- 865 nm), which increases on the blue bands (443 and 482 nm).

The success in Rrs retrieval of ModACO in complex turbid in-
land waters is highly dependent on two factors: i) estimation
of NIR aerosol reflectance and ii) its extrapolation on visible
bands. With the use of SWIR bands, a fairly accurate estim-
ate of NIR aerosol reflectance can be achieved. Unlike the
SWIRE and ACOLITE algorithm which employs an exponen-
tial and power function extrapolation to estimate ρa(865), re-
spectively, a linear extrapolation was found to be more suitable.
After ρa(865) was estimated, the appropriate aerosol extrapol-
ation model was determined using equation 19. The determ-
ination of the aerosol model in ModACO is mainly dependent
on the estimated ρa(865) which is direcly related on the AOD.
At high AOD vaues, the slope between ρa(655) and ρa(865)
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Figure 4. Correlation plots of in situ and OLI-derived turbidity
using Rrs values derived from the ModACO scheme. The 1:1

line is denoted by the black dots.

may be nearly zero or even positive. This dynamic change in
aerosol model based on AOD values is accounted in the Mo-
dACO as decribed by equation 19. The ModACO algorithm
yield accurate Rrs retrievals in red to blue bands (482, 561 and
655 nm) with an apparent overestimation in the deep blue band
(443 nm). This indicates that the aerosol model underestimates
in shorter wavelengths where the aerosol scattering is relatively
high. However, it can be observed from Figure 2 that the scat-
ter plot of Rrs(443) has similar slope with the 1:1 line. This
suggests that a bias correction or a scaling factor may be ap-
plied to improve the retrieval in this band. Lastly, ρw(865) was
estimated using an algebraic manipulation of turbidity models
described by equations 3 and 4, rather than directly computing
equation 10 with the initial estimate of ρa(865). This is based
on the fact that the initial estimate of ρa(865) may be influ-
enced by whitecaps, glint and signal from adjacent land pixels,
which has a more significant impact on the calculation of water-
leaving reflectance in NIR compared to visible bands. Further-
more, the use of equations 3 and 4 removes the dependence on
the actual turbidity and predicts ρw(865) only from the spectral
ratio of ρw(561) and ρ(655).

4.2 Turbidity Retrieval

The Rrs retrieval failure of the SeaDAS standard processing
on several pixels is attributed to invalid range of calculated ϵ
values used to determine the appropriate aerosol models (Pahl-
evan et al., 2017a). This commonly occurs at turbid waters with
high AOD condition. At such conditions o, the SWIRE and
ACOLITE algorithm was also found to have excessive aero-
sol retrieval resulting to underestimated Rrs values. In general,
the SeaDAS, SWIRE and ACOLITE algorithms only yield re-
latively accurate retrievals on April 20,2017 image, which is
characterized with low turbidity (30 - 120 NTU ) and AOD865

(0 - 0.1). The overestimation of the MUMM algorithm may be
associated with the simplification of the two-way transmittance

Figure 5. The accuracy of turbidity models based on Rrs values
derived different atmospheric correction methods.

γ and aerosol ratio ϵ to unity, which does not account the sun-
sensor orientation and meteorological variation in every scene.

Figure 4 shows the accuracy of two turbidity models based on
ModACO-derived Rrs values. Generally, good turbidity es-
timates were obtained from the models. Both models under-
estimate on April 20, 2017 image, which is characterized with
low turbidity values. On April 04, 2017 image, the NIR/red
model described by equation 5 yields more accurate retrieval
compared to the red/green model which slightly underestimates
the turbidity values. Comparison of turbidity estimates based
on the Rrs values derived from other atmospheric correction
scheme was also conducted as shown in Figure 5. ModACO-
based retrieval yield the most accurate turbidity values regard-
less of the model used. Based on corresponding MAPE, the
NIR/red model achieved better results in in ModACO, whereas,
the red/green model yield more accurate results for the other
remaining atmospheric correction methods. Interestingly, the
MUMM (red/green) turbidity model yield comparable accuracy
with ModACO despite having the highest Rrs retrieval errors.

It is known that the uncertainties in the atmospheric correction
process propagate to higher-level remote sensing products such
as turbidity. However, the impact of Rrs retrieval errors can be
reduced with the use of models based on spectral band ratios,
as evident from the MUMM red/green ratio turbidity model.
Though overestimated Rrs values were generally obtained from
the MUMM algorithm, it was able to retain the spectral rela-
tionship between the red and green band, yielding comparable
accuracy with ModACO-based turbidity models. In fact, the
slope of correlation points from MUMM algorithm in the NIR,
red and green band matches that of the 1:1 line as observed
in Figure 2. This suggests that a bias correction may be im-
plemented on these bands to improve the correspondence with
in situ values. However, this approach warrants more datasets
for calibration and validation. Nonetheless, this result showed
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Figure 6. Turbidity maps of Laguna de Bay during the dry season of 2017. Note that the areas without turbidity retrieval correspond to
cloud-covered pixels.

Figure 7. Temporal variability of turbidity and wind speed in
Laguna de Bay. Wind data were acquired from NOAH-WISE

Weather Research Forecast (WRF) Model and OGIMET
synoptic stations. Note that the wind data from four synoptic

stations that surround Laguna de Bay (Tayabas, Tanay,
Ambulong and NAIA) were averaged, whereas, the data shown

from NOAH-WISE corresponds to the modeled wind at the
central Bay.

the advantage of spectral band ratio for turbidity retrieval.

4.3 Mapping Using ModACO-based Turbidity Model

Using ModACO-based turbidity models, particularly the NIR/red
ratio, monitoring of Laguna de Bay using OLI images may be
conducted. To demonstrate, turbidity maps of Laguna de Bay
from March to May of 2017 were generated. These maps are
shown in Figure 6. It can be seen that the turbidity of the lake
increases from March 3 and peaks at April 4. A significant
drop in turbidity was then observed from April 20 until the end
of the dry season. The increase in lake turbidity from March 3
to April 4 may be attributed to different factors such as lake hy-
drodynamics, effluence from points sources and resuspension
of lake bed sediments (Luettich Jr. et al., 1990, Herrera et al.,
2015).

During the dry season, counter-clockwise circulations that con-
verge on the northwest portion of the lake are prevalent (Cun-
anan and Salvacion, 2016, Herrera et al., 2015). These conver-
ging currents may cause the transport of sediments resulting to
elevated values on the northwest portion of the bay as observed
on April 20, May 6, and May 22 turbidity maps. Discharge
from point sources such as factories, water treatment facilities
and agricultural run-off may also increase the water turbidity
through the addition of colored effluent and suspended solids.
However, the increase in turbidity from point source discharge
is commonly localized and may not account for the elevated
turbidity across the lake on April 4. On the contrary, resus-
pension of bed sediments, depending on the mechanism, may
be observed on a small or larger spatial scale. Bed sediments
may be agitated or stirred up by bottom-feeder/dweller fishes
resulting to localized resuspension (Yahel et al., 2002, Scheffer
et al., 2003). Such phenomenon may have caused the relatively
high turbidity measurements on several fish pens located on the
northern part of West Bay on May 6. This occurrence is highly
probable on similar areas in the lake characterized with shallow
depth and high fish density. On the contrary, wind-induced re-
suspension of bottom sediments may result to elevated turbidity
across the lake. Persisting strong winds generate large surface
waves thereby increasing the effective bed shear stress. When
the critical bed shear stress is exceeded, resuspension of lake
bed sediments occurs (Luettich Jr. et al., 1990, Valipour et al.,
2017). This mechanism may explain the high turbidity values
across the lake on April 4. As shown in Figure 7, the aver-
aged wind speed observed from the WRF model and OGIMET
synoptic stations peaks at April 3 (OGIMET, 2018, Combinido
and Perez, 2014). Strong winds coming from the eastern side
persist on April 4, the same day the lake turbidity reached its
maximum. Moreover, the effect of strong westward winds on
the water movement is evident on the West Bay wherein a gradi-
ent in turbidity can be observed from the east to the west side
of the bay. The gradient in turbidity is related to the increase in
fetch as the wind traverse westward. This results to higher bed
shear stress towards the west side of the lake thereby increasing
the concentration of resuspended bottom sediments.
The decline in turbidity values at the end of dry season may
be associated with the settling of suspended sediments due to
the lack of persisting strong winds that may induce continuous
mixing in the water column. This period coincided with the in-
termonsoon break wherein no prevailing wind is present (Botin
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et al., 2010, Ooi et al., 2017). The lake turbidity may also drop
rapidly at the event of salt water intrusion as salt ions tend to ag-
gregate suspended particles and thereby increasing their settling
velocity (Hakanson, 2006, Santiago, 1991). Such occurrence is
commonly observed at the end of dry season when the the wa-
ter level of the lake dips at minimum. Salt water from Manila
Bay mainly pass through the Pasig river and eventually reach
Laguna de Bay through the Napindan channel (Santiago, 1991).

5. SUMMARY AND CONCLUSION

In this study, an improved atmospheric correction method based
on the ModACO scheme was demonstrated on the turbid wa-
ters of Laguna de Bay. Advantages of the proposed method
include: (1) accurate retrieval at turbid waters with high AOD,
conditions where most algorithms fail or are inaccurate and (2)
relatively simple and adaptive algorithm. However, the model is
expected to have lower accuracies at shorter wavelengths where
the actual spectral aerosol reflectance may deviate significantly.
This may be mitigated using a bias correction or scaling factor
which warrants additional datasets. Furthermore, it will be valu-
able to test the accuracy of ModACO in other complex turbid
waters where the composition of atmospheric aerosol and op-
tically active water constituents may differ from that of Laguna
de Bay.

The accuracy of the ModACO algorithm is reflected on the
turbidity retrieval, wherein ModACO-based turbidity models
yield the least errors among the evaluated atmospheric correc-
tion schemes. The MoDACO NIR/red model was then used to
determine the spatiotemporal changes in turbidity from March
to May 2017 in Laguna de Bay. Results show strong correlation
between turbidity and wind speed, suggesting the occurrence of
wind-induced resuspension of bottom sediments in the lake on
strong wind conditions, e.g., on April 4, 2017. For future stud-
ies, profiling of bathymetry and bed sediment sizes in the lake
is recommended to accurately model the spatiotemporal distri-
bution of turbidity and TSS across the lake at various wind con-
ditions.
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