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ABSTRACT:

Solar photovoltaic power plants are in rapid expansion throughout the world, with the total area occupied by panels being linked to
the total electrical power produced. This paper considers this case as an instance of the generic problem of estimating the total area
occupied by a class of interest in spaceborne hyperspectral images. As the spatial resolution characterizing these sensors is too coarse,
spectral unmixing techniques identify the contribution of a specific material to the spectrum related to a single image element. Final
results are obtained by summing all contributions in an area of interest, and favourably compared to pixel-based detection, also using
higher resolution Sentinel-2 data. The data used in this paper are acquired by the currently operative DESIS sensor, mounted on the
International Space Station, encouraging the use of spaceborne imaging spectrometers for such applications.

1. INTRODUCTION

An imaging spectrometer, also known as hyperspectral sensor,
quantifies the backscattered solar radiation from a resolution cell
on ground across narrow and often contiguous bands. The result-
ing images usually offer a higher spectral and lower spatial reso-
lution with respect to more traditional multispectral sensors, usu-
ally characterized by fewer, broader bands. Until recently, state-
of-the-art imaging spectrometers have mostly been airborne, with
a number of experimental successful spaceborne missions being
launched in the past 20 years, the most relevant probably being
the Hyperion sensor on board of the Earth Observing-1 (EO-
1) satellite (Khurshid et al., 2006). Recent years are witness-
ing the launch of several new spaceborne sensors, such as the
DLR Earth Sensor Imaging Spectrometer (DESIS) (Alonso et al.,
2019), mounted on board of the International Space Station (ISS),
with new missions being currently under development, such as
EnMAP (Guanter et al., 2015).

Since the early years of hyperspectral imaging exploitation, at-
tention has been given to the added capabilities of this family of
sensors with respect to multispectral ones. On the one hand, hy-
perspectral data excel at identifying materials based on their fine
spectral capabilities, and at retrieving important physical param-
eters observable mainly in narrow bands. This led researchers to
obtain results superior to the ones based on multispectral data,
in several areas of study such as the analysis of vegetation (Lee
et al., 2004), (Asner et al., 2008), (Mariotto et al., 2013), water
(Phinn et al., 2008), soil (Stevens et al., 2012), wetlands (Adam et
al., 2010), and forests (Awad, 2018). On the other hand, classical
applications heavily driven by statistical analysis such as super-
vised classification have witnessed limited increase in the accu-
racy of the results (Xu and Gong, 2007). Among several factors,
this is due to the strong correlation of spectral bands in broad
spectral ranges, causing the real dimensionality of the informa-
tion contained in the data (also known as virtual dimensionality
(Drumetz et al., 2016)) to be much lower than the total num-
ber of bands available; furthermore, the limited signal-to-noise
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Ratio (SNR) inherent to narrow bands analysis pose additional
hindrances; additionally, the large volumes of data introduce the
so-called curse of dimensionality, which requires large amounts
of training data to be collected for accurate results, and are also
difficult to pre-process and explore.

In this paper, we report our first results on a different family of ap-
plications in which spaceborne imaging spectrometers may out-
perform multispectral sensors: the estimation of surfaces covered
by a target of interest mostly present in mixed pixels. A mixed
pixel is defined as an image element in which a target or any
number of classes of interest covers only a fraction of the resolu-
tion cell. In this case, multiplying the area in meters of a single
pixel by the number of pixels detected by any algorithm, even
if detection is very accurate, leads to an overestimation of the
area. Hyperspectral image processing offers efficient methods to
tackle this problem, such as spectral unmixing, which at the same
time recognizes the materials present within a single pixel, repre-
sented by their pure spectra usually known as endmembers, and
also the amount of that pixel covered by each material, known
as fractional abundance (Bioucas-Dias et al., 2012). In order to
perform spectral unmixing successfully and accurately, the num-
ber of available spectral bands in the data must ideally be much
larger than the number of materials present in the scene, making
this technique difficult to apply using multispectral sensors.

We report in this paper the first results of applying surface area
estimation results based on spectral unmixing with DESIS data
on the solar Photovoltaic (PV) power plant of Oldenburg, Ger-
many, for which ground truth is available and sub-meter resolu-
tion would be needed in order to estimate the surface with tradi-
tional detection or classification approaches. We report not only
the accurate results obtained with DESIS, but also how traditional
multispectral sensors such as Sentinel-2 fail for this task. The pa-
per is structured as follows. Section 2. introduces the site of inter-
est and the available data, while Section 3. presents our proposed
surface area estimation based on spectral unmixng, and Section
4. compares results obtained with hyper- and multi-spectral sen-
sors using both pixel-based and unmixing methods. We conclude
in Section 5..
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2. DATASETS

Our study is carried out on a large PV power plant located on the
old airfield in Oldenburg in the northwest of Germany. Imaging
spectrometer data at both high resolution (HySpex, airborne) and
low resolution (DESIS, spaceborne) have been used and are de-
scribed in this section, along with Sentinel-2 multispectral space-
borne data and ground truth in vectorial format for validation.

2.1 HySpex

High resolution imaging spectrometer data are provided by a flight
campaign carried out in July 2018 covering Oldenburg with the
HySpex system, composed by two cameras covering the spec-
tral ranges of visible near infrared (VNIR) and short-wave in-
frared (SWIR) region. The VNIR sensor has a spectral range
from 416 to 992 nm with 160 channels at a Ground Sampling
Distance (GSD) of 0.6 m, while the SWIR has 256 channels in
the 1000-2500 nm range, with a GSD of 1.2 m. The VNIR and
SWIR images were co-registered (Schwind et al., 2014) and re-
sampled to a GSD of 1.2 m. Data have been converted to surface
reflectance using the ATCOR4 atmospheric correction software
(Richter et al., 2010) as described in (Köhler, 2016). A true color
composite for a subset of the HySpex dataset is reported in Fig.
1, with overlaid areas containing PV panels in vectorial format.

2.2 DESIS

The DESIS spectrometer acquires 235 bands in the spectral range
400-1000 nm, with a fine spectral resolution of 2.35 nm, and a
GSD of 30 m (Alonso et al., 2019). As DESIS is mounted on
the ISS, it has a nearly circular orbit with an average altitude of
400 kilometres, with extremely high latitudes excluded from its
acquisition capabilities.

The DESIS sensor has been tasked to acquire data on the Olden-
burg power plant, and an image with clear conditions was suc-
cessfully archived on the 9th of October 2021. In spite of the
temporal gap with the HySpex and Sentinel-2 data, the targets of
interest have not undergone major changes and the image can be
employed for a results comparison. The image has been atmo-
spherically corrected using the Python-based Atmospheric Cor-
rection (PACO) software (de los Reyes et al., 2020, Alonso et al.,
2019). A true color RGB composition is reported for the subset
of interest in Fig. 2.

2.3 Sentinel-2

We employed a clear image in surface reflectance (Level 2A) ac-
quired by the Sentinel-2A sensor on the 27th of July 2018. As
Sentinel-2 features spectral bands at different GSD, two different
stacks were created to be later analysed by different algorithms:

1. A stack containing a total of 8 spectral bands: the 4 orig-
inally at 10 m GSD (2, 3, 4, and 8), plus the bands at 20
m which overlap DESIS spectral range (bands 5, 6, 7, and
8A). The stack has been resampled to 20 m GSD. There-
fore, bands 11 and 12 which fall outside of DESIS spectral
range have not been considered, along with bands at 60 m
GSD. This was done in order to focus the comparison on the
tradeoff between spatial and spectral resolution keeping the
spectral range unaltered.

2. In order to exploit the higher spatial resolution of bands at
10 m GSD, a second stack was used containing only bands
2, 3, 4, and 8.

2.4 Validation data

The ground truth initially comes from official register data. As
some panels annotations were including areas of future expan-
sion, these have been manually removed beforehand using the
high resolution HySpex image as reference, without altering the
size and shape of the remaining panels. An overlay of the refer-
ence data on a HySpex true color composite subset is reported in
Fig. 1. The figure shows how panels in the west side of the solar
garden present larger gaps among them with respect to the pan-
els to the east, which are deployed in a denser arrangement. This
aspect is important as we expect a change in the pixel percentage
occupied by the panels in low resolution data.

3. SURFACE ESTIMATION VIA SPECTRAL
UNMIXING

The process of spectral unmixing (SU) decomposes the spectrum
associated to a pixel in signals typically belonging to macroscop-
ically pure materials, or endmembers. The contribution of a given
material to the spectrum of an image element is a fractional quan-
tity, usually named abundance. The unmixing process provides
accurate information at sub-pixel level on a hyperspectral scene,
and is widely used in several application ranging from classifica-
tion and target detection to denoising and image fusion (Bioucas-
Dias et al., 2012, Cerra et al., 2014, Roessner et al., 2001). Usu-
ally, the full process of spectral unmixing includes the estimation
of the number of materials present in the scene, the selection of
their related spectra (endmember extraction), and the estimation
of the fractional coverage of each pixel in terms of the pure ma-
terials present in a resolution cell (abundance estimation).

Linear spectral unmixing (LSU) is the most widely adopted model
for these methods, and assumes that the contribution of an end-
member to a given pixel’s spectrum is proportional to the rela-
tive fractional abundance. LSU models the spectrum of a pixel
p with m bands as a linear combination of n reference spectra
S = [s1, s2, . . . , sn], weighted by their n scalar fractional abun-
dances x = [x1, x2, . . . , xn]

T , plus a residual vector r contain-
ing noise and the portion of the signal which cannot be repre-
sented in terms of the basis vectors of choice:

p =

n∑
i=1

xisi + r = Sx+ r (1)

LSU has been applied for target detection in (Manolakis et al.,
2001), and we apply it to the problem of area estimation as fol-
lows. Given a spectral library S containing the material of interest
k with associated spectrum sk, the total area Ak occupied by k
in an image with a total number of pixels numel is estimated as
the sum of the abundances of sk in each pixel:

Ak =

numel∑
i=1

xk (2)

In order to mitigate the impact of noise and avoid considering
non-relevant entries, abundances xk < 0.15 are set to 0. In order
to derive abundance maps quantifying the fraction of each image
element covered by the class of interest, it is needed to have a
representative spectral library for the scene, containing all end-
members related to the materials present in the image. Automatic
endmembers extraction methods exist and are widely used with
varying degree of success, according to the scene type, data qual-
ity, spatial and spectral resolution, and scale of the materials of
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Figure 1: Detail of ground truth in vectorial format for solar panels (red), overlaid on HySpex true color composite.

Figure 2: DESIS true color composite: bands 94 (640 nm), 59
(550 nm), 24 (470 nm).

Figure 3: Sentinel-2 true color composite (bands 4, 3, 2).

interest (Bioucas-Dias et al., 2012). These methods usually need
the number of materials in the scene, which can also be estimated
using algorithms such as HySime (Drumetz et al., 2016).

In order to estimate the abundances, we apply Non-negative Least
Squares (NNLS) to the input image and the described spectral li-
brary. The code is a modified faster version of the implementa-
tion contained in the Matlab Hyperspectral Toolbox (Isaac, 2022)
and is available on demand. The LSU problem in eq. 2 becomes
then its constrained version with xk ≥ 0,∀k. NNLS exhibits the
best performance among commonly used optimization methods
for this problem (Cerra et al., 2021) and yields a solution which
is naturally sparse in the abundance vector, limiting estimation er-
rors introduced by noise or enforcing the sum-to-one constraint in
presence of materials not present in the spectral library (Iordache
et al., 2011).

The output is a fraction of each pixel which is covered by each
material, and can be multiplied by the size in m2 of an image
element in order to estimate the total surface.

3.1 Pixel-based techniques

We consider algorithms with binary outputs operating pixelwise,
in order to compare the spectral unmixing surface estimation to

pixel-based approaches, selecting both a traditional and a recent
approach, which was developed ad hoc for PV detection. For the
following algorithms, the total area Ak for a material k is just
computed as Ak = Ap × Nk, where Ap is the area in meters of
a single image element and Nk the number of pixels assigned to
material k.

3.1.1 Maximum Likelihood Maximum Likelihood (ML) has
been used for decades in supervised remote sensing classification
(Strahler, 1980), mostly with multispectral data. In order to de-
tect a specific class, ML assumes probability distributions of the
pixel values of a specific class to have Gaussian distributions, and
computes the probability that the values of a specific pixel have
been generated by those distributions.

3.1.2 Spectral Features A recent approach was developed to
detect PV specifically from high-resolution imaging spectrometer
data, which was validated on a large database in (Ji et al., 2021).
Due to spectral range limitations, only three of the six spectral
indices were used in this study, namely average reflectance in
the VNIR (aVNIR), PolyEthylene Peak (PEP), and PolyEthy-
lene Peak in the visible range (VPEP). We refer to this method
as ”Spectral Features”, as it relies on a combination of spectral
indices designed to further separate PV modules from spectrally
similar targets such as hydrocarbon roof materials.

4. RESULTS

After checking the validation data (ref. Section 2.) the total area
occupied by solar panels in the area was derived based on the
vectorial data attributes as 22.64 hectares (ha).

4.1 Pixel-based methods

The total area estimated as being covered by a specific class of in-
terest for the different kinds of sensors and GSDs has been com-
puted.

Firstly, results obtained based on Spectral Features (Ji et al., 2021)
were used to estimate the total area related to detected PV pixels
in the high resolution HySpex image in Fig. 1. The approxima-
tion of such tested pixel-based method at a GSD of 1.2 m results
accurate, with an underestimation of the area of 0.8 ha only (see
Table 1).

Subsequently, both the ML and the Spectral Features approach
have been applied to DESIS and Sentinel-2 data (Table 1). For
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Figure 4: Spectral library from HySpex data resampled to DESIS spectral bands. The unit of measure is reflectance, multiplied by 104.
The solar panels class of interest is reported in red. Spectra in white include 4 vegetation spectra, plus 2 spectra belonging to soil, and
2 to man-made structures.

the latter, the stack of 4 bands at 10 meters has been preferred in
order to exploit the higher GSD of these bands for ML, while the
stack at 20 m was required by the Spectral Features method. At
10 m GSD, results of Sentinel-2 classification using ML (Fig. 6)
already present an overestimation above 100%. The overestima-
tion increases further when switching to the 20 m GSD Sentinel-
2 stack used by the Spectral Features method (Fig. 8), and goes
above 170% when considering ML classification of DESIS data
at 30 m GSD (Fig. 5). On the other hand, the overestimation
introduced by Spectral Features decreases in DESIS, in spite of
the worse spatial resolution (Fig. 7). This suggests that the spec-
tral resolution could be more important for the related spectral
indices, which lose performance when applied to broadband mul-
tispectral data.

4.2 Unmixing-based methods

As described in Section 3., a spectral library containing the spec-
tra of all relevant materials present in a scene should be available,
in order to estimate the total surface covered by a material of
interest. Usually, such spectra are obtained directly from the im-
age by selecting pure pixels acquired over homogeneous areas for
each material, or automatically extracting them with endmember
extraction algorithms. Nevertheless, the GSD of 30 m character-
izing DESIS prevents any pure pixel containing only solar panels
to be present in the scene. As results clear from Fig. 1, all panels
are much smaller in size and between different rows other mate-
rials such as vegetation and soil can be observed, which would be
included in the extracted endmembers, degrading the quality of
the spectral library and in turn of the results. Therefore, we man-
ually selected 9 relevant spectra from the HySpex image at 1.2 m
GSD instead, and resampled their spectra to DESIS bands. Only
one spectrum is selected for PV panels, while the other spectra in-
clude 2 grass, 2 forest, 2 soil, and 2 impervious surfaces. In order
to match HySpex range to DESIS, only the visible near infrared
(VNIR) sensor is considered, as the SWIR falls outside DESIS
spectral range (Fig. 4). The library is also resampled to match
Sentinel-2 broadband spectra, based on central frequencies and
full width half maximum (FWHM) values of each band.

Results obtained on DESIS data reported in Fig. 9 are surpris-
ing, as the real size of the panels is retrieved with an error below
0.05%. It must be specified that this also happens because of
compensation of false alarms outside of the panels area with un-
derestimations on the panels. In order to take this into account,

an additional result is reported (Spectral Unmixing - masked)
in which the area outside of the solar garden was completely
masked out. In this case, results are perfectly equal to the ones
obtained with HySpex, which has a spatial resolution 25 times
larger (meaning that we have 625 HySpex pixels for a single DE-
SIS pixel), with an overall error of 3.66%. In the image, it can
be seen how the abundance of PV panels gets higher in the east-
ern block of the solar garden, where the panels are more densely
deployed. The average values for the abundances in the western
and eastern parts of the image are 0.3 and 0.4, respectively. As
previous experiments were considering a detected pixel as having
abundance 1, we can justify the huge difference in final results. It
must be remarked that it is not possible to compute an Intersection
over Union (IoU) or a more accurate error estimate, as this is not
allowed by DESIS coarse spatial resolution: in laymen’s terms, it
is not possible to locate the portion containing PV panels within
a single DESIS resolution cell.

On the other hand, unmixing experiments using Sentinel-2 data
yield a complete failure. In this setting, the same spectral library
resampled to the spectral characteristics of the image is used, and
results are reported in Fig. 10. Noise is evident in the results, and
the main sealed road connecting the area horizontally is misde-
tected as PV panels. As the number of endmembers in the library
(9) is larger than the number of Sentinel-2 bands employed (8),
the inversion problem is mathematically unstable. Furthermore,
the relevant spectral features may not be resolved in Sentinel-2
broadbands.

5. CONCLUSIONS

In this paper we assessed the potential of spaceborne imaging
spectrometer such as DESIS to estimate the surface covered by a
material of interest in a mixed pixel environment. The surface is
estimated as the pixel-wise sum of all fractional abundances for
the endmember linked to the target material. The abundances are
derived by spectral unmixing methods, and yield estimates very
close to the real size of the solar panels considered in our test area
in Oldenburg, Germany.

The method requires a spectral library containing the material of
interest and representative materials in the scene. This must be
available beforehand, if no pure pixels are present in the scene.
Usually, for background materials such as grass, trees, and soil, it
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Figure 5: DESIS Maximum Likelihood results. Solar panels class
is reported in red.

Figure 6: Sentinel-2 Maximum Likelihood results. Solar panels
class is reported in red.

Figure 7: DESIS spectral features. Solar panels class is reported
in red.

Figure 8: Sentinel-2 Spectral Features results. Solar panels class
is reported in red.

Figure 9: DESIS unmixing results. The PV abundance map is
reported in red, while aggregates of other materials appear in blue
and green.

Sensor GSD
(m)

No.
bands

Method Area
(ha)

Error
(%)

HySpex 1.2 158 SF 21.84 -3.66
Sentinel-2 10 4 ML 45.5 +101
Sentinel-2 20 8 SF 55.8 +146

SU 15.06 -33.5
DESIS 30 235 ML 61.3 +171

SF 49.14 +117
SU 22.63 -0.05
SU
(masked)

21.84 -3.66

Ground Truth 22.64

Table 1: Area estimation results for the Oldenburg photovoltaic
panels dataset. Area estimation in hectares and relative error in
percentage are reported according to sensor, Ground Sampling
Distance (GSD), number of spectral bands, and optimal technique
used for the kind of data at hand: Maximum Lilkelihood (ML),
Spectral Features (SF), or Spectral Unmixing (SU). Spectral Un-
mixing (masked) indicates the area estimation after filtering out
false alarms by not considering pixels outside of the solar garden.
Sentinel-2 is used at two different resolutions for different tech-
niques. The last row reports the target area.

Figure 10: Sentinel-2 unmixing results. The PV abundance map
is reported in red, while aggregates of other materials appear in
blue and green.

is possible to identify such pure pixels in the scene also at coarse
resolution. Therefore, the availability of a spectral library related
to the specific kind of PV present in the scene could suffice.

As used abundance estimation algorithms do not ”weight” the
spectral bands, we cannot provide information on the spectral
range which was prominent in identifying the contribution of the
solar panels to each single resolution cell. About this aspect, an
interested reader is remanded to (Ji et al., 2021), investigating the
best narrow bands to classify PVs.

This is a contribution to the long and interesting quest for ap-
plications in which imaging spectrometers may outperform tra-
ditional broadband multispectral sensors. The aim of this work
is to show how data with high spectral and low spatial resolu-
tion may outperform traditional broadband MS sensors for some
specific task. In this sense, results appear very encouraging. On
the one hand, specific sub-pixel analysis (unmixing-based tech-
niques) completely fails when applied to multispectral sensors.
On the other hand, sub-pixel analysis applied to DESIS data out-
performs pixel-based classification or target detection algorithms
carried out at higher spatial resolution, which yield in our exper-
iments an overestimation of the area occupied by the targets of
interest of at least 100%.

In the future, a spectral library of PV panels could be considered
in order to carry out similar experiments on different areas and
types of solar panels, yielding a more meaningful assessment of
the results.
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Köhler, C. H., 2016. Airborne imaging spectrometer hyspex.
Journal of large-scale research facilities JLSRF 2(A93), pp. 1–
6.

Lee, K.-S., Cohen, W. B., Kennedy, R. E., Maiersperger, T. K.
and Gower, S. T., 2004. Hyperspectral versus multispectral data
for estimating leaf area index in four different biomes. Remote
Sensing of Environment 91(3-4), pp. 508–520.

Manolakis, D., Siracusa, C. and Shaw, G., 2001. Hyperspectral
subpixel target detection using the linear mixing model. IEEE
transactions on geoscience and remote sensing 39(7), pp. 1392–
1409.

Mariotto, I., Thenkabail, P. S., Huete, A., Slonecker, E. T. and
Platonov, A., 2013. Hyperspectral versus multispectral crop-
productivity modeling and type discrimination for the hyspiri
mission. Remote Sensing of Environment 139, pp. 291–305.

Phinn, S., Roelfsema, C., Dekker, A., Brando, V. and Anstee,
J., 2008. Mapping seagrass species, cover and biomass in shal-
low waters: An assessment of satellite multi-spectral and airborne
hyper-spectral imaging systems in moreton bay (australia). Re-
mote sensing of Environment 112(8), pp. 3413–3425.
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