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ABSTRACT:

The stereo matching algorithm is commonly used in dealing with disparity discontinuous areas. However, the algorithm may have
higher computational complexity and lack of well-aligned input images. To improve that, this paper presents an improved energy
segmentation based stereo matching algorithm. The proposed algorithm incorporates gradient information of each segmented
region into the energy function according to the facts that gradients inside the same segmentation should be closer than those from
different segmentation. The invalid matching pixels are interpolated with vertical-horizontal nearest neighboring pixels to keep the
consistency of stereo image pairs in the initial disparity map. Thus, the proposed method can reduce the deviations and the number
of executions of the Random Sample Consensus (RANSAC) which arises from misalignment of input image pairs. Experiments
results demonstrate that the proposed algorithm has a better disparity result while the running time is decreased by about 20%.

1. INTRODUCTION

The stereo vision techniques obtain the depth information from
the 3D scene by simulating the human vision system, thus can
be widely applied in the fields of robotic vision, intelligent driv-
ing, outer space exploration and military application.

Currently, there are two main directions in stereo vision re-
search: One is the improvement to the traditional methods, which
has been commonly applied for image processing (Poggi et
al., 2019) (Sanchez-Rodriguez and Aceves-Lopez, 2018). The
other is to obtain the depth information by training a convolu-
tional neural network. Jure Zbontar (Zbontar and LeCun, 2016)
firstly addressed the problem of the matching cost computation
by learning a similarity measure on small image patches using a
convolutional neural network (CNN). The output of the CNN is
used to initialize the stereo matching cost. Although CNN has
a higher matching precision (Kendall, 2018), it requires power-
ful equipment and longtime of training, thus is not fit for real-
time applications, besides, the disparity results depend heavily
on the training image set. Compared with the method based
on deep learning (Yin et al., 2019), the stereo matching based
on the segmentation still has extraordinary performance on the
disparity results and has a large room for improvements (Liu et
al., 2016). Consequently, we choose to improve the traditional
methods based on energy segmentation.

The traditional stereo matching methods can be divided into
three categories (Bebeselea-Sterp et al., 2017): local stereo
matching, global stereo matching and semi-global stereo match-
ing. The local matching method aggregates the matching cost
by summing or averaging over a supported region centered at
the main pixel. Combining the cost computation and aggrega-
tion approach with WTA (winner-take-all) strategy, Zhang et al.
(Zhang et al., 2012) designed a new local stereo method called
binary stereo matching. The algorithm mainly includes binary
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and integer computations; thus, it is fast and fits for embed-
ded or mobile devices. The local methods (Hernandez-Beltran
et al., 2018) compute the similarity between pixels by compar-
ing windows around the pixels of interest. Thus, the results
are highly dependent on the cost functions and window sizes.
Besides, the results are not so good in the regions with weak
texture and occlusion.

The global algorithms (Yang et al., 2019), on the other hand,
make explicit smoothness assumptions and then solve the global
optimization problem. These algorithms usually do not per-
form aggregation, but seek a disparity assignment which can
minimize a global cost function for all the pixels. A Bayesian
approach for stereo matching was proposed by (Geiger et al.,
2011), which is able to compute accurate disparity maps of high
resolution images at a speed close to the real-time frame rate.
However, almost all the global methods have a common draw-
back of lower speed and higher memory consumption, which
often does not scale well with image size.

In 2008, a method named Semi-Global Matching (SGM) was
proposed by Hirschmiiller (Hirschmuller, 2008), which calcu-
lates the matching cost hierarchically applying the mutual in-
formation. Inspired by the SGM aggregation scheme, (Schon-
berger et al., 2018) proposed SGM-Forest, a new learning-based
method that fuses disparity proposals estimated using scanline
optimization.

To solve the problems of stripes and mismatching, Yamaguchi
etal. (Yamaguchi et al., 2014) proposed a slanted plane smooth-
ing (SPS) model for jointly recovering an image segmentation,
a dense depth estimate and the boundary labels from a static
scene form two frames of a stereo image pair. The approach
first computes a semi-dense SGM depth map and then the SGM
depth undergoes an effective slanted plane method. This can
estimate dense stereo fields after considering the impact of seg-
mentation, occlusion and outliers. The SPS method obtains a
more accurate dense depth map while properly processing with
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occlusions. Even so, the approach still has the problems of over-
smoothing and too long running time.

To further improve the performance of the SGM method, a ste-
reo matching algorithm based on an improved energy segment-
ation is proposed. The pipeline of the proposed approach is
illustrated in Fig. 1.

Our main contributions are as following:

1) A new function of gradient information is incorporated into
the energy functions in image segmentation to better retain the
edges. The energy functions applied in image segmentation are
modified according to the fact that gradient values inside the
same segmentation should be closer than those from different
segmentations, therefore, the edges are better retained.

2) The interpolation of invalid matching pixels is performed to
remove the mismatch squares in the disparity map after SGM.
The invalid matching pixels are interpolated with vertical-hori-
zontal nearest neighboring pixels to eliminate the square errors
in the disparity image.

3) In addition, the amount of calculations is reduced by sim-
plifying the most time-consuming parts in the slanted plane
smoothing algorithm. The algorithm is speeded up by simplify-
ing and modifying the most time-consuming parts of disparity
slanted plane fitting.

The experimental results show that the proposed method can
obtain superior disparity images and better real-time perform-
ance.

2. SLANTED PLANE SMOOTHING ENERGY FOR
SGM

Slanted Plane Smoothing (Yamaguchi et al., 2014) is an op-
timizing process for SGM . This method works quite well in
the initial SGM disparity map with occlusion, weak texture and
discontinuity areas.

The input image [ is firstly evenly segmented into many re-
gions. In each segment, a slanted disparity plane is constructed,
which preserves an estimated disparity of every single pixel.
Let 0, = (A;, B;, C;) be the disparity plane of segment i. At
each pixel p with coordinates (p, py), the estimated disparity
can be computed as Eq. (1):

d(p,0:) = Aipz + Bipy + C; (1)

According to the difference between the initial disparity value
and estimated value of the pixels in the segment, the pixels can
be divided into outliers and inliers.

The energy of the system is defined to be the sum of energies en-
coding appearance, location, disparity, smoothness and bound-
ary energies as Eq. (2) (Yamaguchi et al., 2014).
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Where p and ¢ indicate the pixels, s, is a line segment con-
taining p, 0; is the disparity plane of segment 4, f is an outlier
flag to each pixel, o is the label of the neighboring segments
i and j. A corresponds to the weight of each energy term.The
calculation method of s, is shown in Eq. (3):

Z Ecol (p, qu )
P
+>\depth Z Edepth(p7 93p7 fp)
p
+)\pos Z Epos (p7 qu) (3)

Sp = argmin
S p
+)\bnu Z Ebou(3p7 Sq)

P

+>\gra Z Egra (p, Gsp)
p

The details of different energy components are as follows:

(1) Color Energy E..;: E..; is the SSD (Sum-of-Squared Dif-
ferences) between the color of boundary pixels p and the aver-
age color of the segment s, while g are the neighboring pixels
of p. This term encourages pixels in the same segment to be
close in color.

(2) Position Energy E,,,.: It denotes the squares of the distance
between coordinate of p and average coordinates of s4, where ¢
are the neighboring pixels of p. This energy term prefers well-
shaped segments. The value of ). is set to half of Apo.,.

(3) Depth Energy Ec;,:,: Depth energy of all inliers is defined
as the SSD between their initial disparities d and estimated dis-
parities d while outliers are defined as constants to avoid abnor-
mal disturbance. This term encourages the plane estimates to
fit the SGM estimates. Usually, Agepen is relatively large.

(4) Smoothness Energy E,,,: This term measures the smooth-
ness between adjacent segments. o0; ; assigns the line label
between segment ,j. If two neighboring segments are co-
planar, the two planes 6;,0; should be merged into one seg-
ment, otherwise, if they form a hinge they should be separated
by a boundary. And if they form an occlusion, the disparity of
the two planes should be a constant value.

(5) Complexity Energy E.on: This term is used to measure
the complexity between two neighboring segments. It encour-
ages two planes to be coplanar where the cost of boundary type
ranked as: Occlusion>Hinge>Coplanar= 0.

(6) Boundary Energy E,,,: This term encourages segments to
be regular and prefers straight boundaries. Let p be a boundary
pixel and ¢ is the set of 8-neighboring pixels of p. If ¢ does not
belong to segment s, , boundary energy will accumulate. The
value of Apo, 18 a little smaller than Ageptn.

Note that not all these terms are used in every step. So the value
of \ sometimes can be set to zero. According to the definition
of energy function for the slanted plane smoothing, we can de-
scribe the whole process as follows.

Firstly, we evenly segment the input image into several parts,
and then we adjust the segmentation according to the idea of
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Figure 1. The flow chart of the proposed stereo matching algorithm.

minimizing the functions of color energy, position energy and
boundary energy. After that, the initial disparity plane is fitted
based on the SGM results taking the adjusted segmentations as a
unit. The fitting is done by RANSAC algorithm combined with
the least squares method. Secondly, we adjust the initial fitting
plane according to the depth energy function, and then we will
get a new set of boundary pixels. All the boundary pixels will
be classified into three types: coplanar, hinge and occlusion by
minimizing the complexity energy. Finally, we minimize the
smoothness energy of the fitting plane according to the bound-
ary labels and get the final dense and smooth disparity map.
The details are introduced in the next section.

3. THE IMPROVED ENERGY SEGMENTATION
ALGORITHM

The slanted plane smoothing energy will be used to perform
disparity plane fitting separately for occlusion regions. There-
fore, the whole process is computationally expensive and the
image segmentation is not quite complete. Furthermore, if the
input stereo image pairs are misaligned in rows, the initial dis-
parity plane fitting applying SGM will result in some small mis-
matched squares. The left image in Fig. 2 is an outdoor scene
captured by our own camera. Due to the effect of illumination
and the camera, the rectified images could not be well aligned
in rows. Thus, SGM differences can form a large number of
blocks, indicating that the match is invalid.

To solve these problems, we propose a series of improvements.
Firstly, in order to better retain the edge, a novel function of
gradient information is incorporated into the energy functions
in image segmentation processing. Then, the interpolation of
invalid matching pixels is performed to eliminate the mismatch
squares in the disparity map obtained by applying the SGM
method. In addition, the computational complexity is reduced
by simplifying the initial and final disparity plane fitting, which
are the most time-consuming parts in the slanted plane smooth-
ing algorithm. The flowchart of the proposed stereo matching
algorithm based on the improved energy segmentation is shown
in Fig. 1, where the improvements are marked with blue boxes.

The steps of our proposed method can be described as follows.

(1) Prepare the input stereo image pairs, in which the left one is
a reference image and the right one is a matching image.

(2) Get an initial disparity map applying the SGM method.

(3) Segment the left image to a regular grid and achieve the first
adjustment. Adjust the segment to get the smallest segmenta-
tion energy, including color energy, position energy, boundary
energy and gradient energy to generate a more accurate seg-
mentation.

(4) After interpolating the invalid pixels in the initial SGM map,
the disparity plane of each segment is fitted applying RANSAC
and the least squares method by minimizing the depth energy,
where the calculation is optimized to speeding the processing.

(5) The second adjustment to the segmentation. Adjust the
segmentation to get the minimal segmentation energy after in-
corporating the newly obtained depth energy. Then divide the
boundary pixels into three types: occlusion, hinge and coplanar
by minimizing the complexity energy.

(6) The final smoothing operation. The smoothness energy is
calculated according to the boundary types so that the dispar-
ity plane is re-fitted with the least squares method by minim-
izing the smoothness energy. Then the final disparity map is
obtained. By improving the iteration step in the final fitting
process, the over-smoothing can be suppressed and less time
consuming.

3.1 Energy Refinement with Gradient Information

In order to effectively segment the contours of different targets,
we supplement the energy function defined in Eq. (2) with the
gradient information, which will lead to a more reasonable seg-
mentation.

To balance the accuracy and time consumption, Roberts operat-
ors (Roberts, 1963) are applied to extract gradient information
of the input images. By computing the sum of the squares of the
differences between diagonally adjacent pixels, the Roberts op-
erator approximates the gradient of an image through discrete
differentiation. The results of this operation will highlight the
changes of intensity in a diagonal direction.
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Figure 2. Left: The rectified left image. Right: The disparity map obtained by the SGM method.

In the image segmentation, the gradient information computed
by Roberts operators is used to supplement the segmentation
energy function. Where gradient energy is:

Egra(p,Gs,) = |lp — Gs,|I? 4)

Here, q represents the neighboring pixels of p, G, indicates
the mean gradient of segment s,. Gradient energy is the SSD
between the gradient of boundary pixels p and Gs,,.

map ().

Figure 4. The original disparity map and the improved disparity
map (b).

The performance of the improved SPS is evaluated, as can be
seen in Fig. 3 and Fig. 4. Among which, Fig. 3 shows the fi-
nal disparity maps of the original and improved energy function

on the KITTI2012. It’s apparently that after the refinement, the
black hole besides the telegraph pole is removed. Similarly,
Fig. 4 shows the difference on KITTI2015. On the original dis-
parity map, the car is scratched by a thick line while in the im-
proved disparity map, the car is not scratched.

The verification dataset for adding gradient energy in Table 1
comes from Middlebury (Scharstein, 2017). The most widely
used objective indicator for Middlebury is the bad2.0 (that is,
the percentage of pixels whose disparity error are more than 2
compared to ground truth) for a single image, and the ground
truth is non-occluded mask. Therefore, pl, p2, p3, p4, pS, and
p6 in Table 1 represent 6 pairs of stereo images randomly selec-
ted from Middlebury. As shown in Table 1, the pixel error ratio
can be reduced approximately 0.5% with the refinement.

Table 1. bad2.0 comparisons before and after improved(%)

Inputs pl p2 p3 p4 pS po
Original SPS 7.64 6.07 9.40 1343 12.14 10.24
7.51 5.80 9.40 13.10 11.65 9.42

Proposed

3.2 Speed optimizing of disparity plane fitting

By analyzing the computational complexity of the whole slanted
plane smoothing algorithm, we find that the initial and final dis-
parity plane fitting steps are the most time-consuming parts. To
clarify this, we first introduce the whole process of the slanted
plane smoothing algorithm and then we focus on the initial and
final disparity plane fitting process.

In the initial fitting, the original algorithm is combined with
RANSAC (Xiao et al., 2020) and used to fit the disparity plane
of the initial disparity map. Specifically, the disparity plane is
determined by randomly selecting three different points within
the segmentation, and inliers and outliers are distinguished ac-
cording to their disparity distance between the initial disparity
and the fitting slanted plane. Then, the plane with the most in-
liers are obtained after several iterations. After all the inliers
are determined, the disparity slanted plane is again fitted using
the least squares method. Least squares means that the over-
all solution minimizes the sum of the squares of the residuals
made in the results of each single equation, where the sum S is
expressed as:

n—1

S=> (ami+by; + ¢ — di)* o)

1=0
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So the following equation should be satisfied to get the smallest
S:

oS
e = 0 (6)

thus
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Where n is the number of inliers. d; are the initial disparities
of inliers (z;,y;) in the segmentation. After the coefficients
a™,b*, c* are solved, the initial disparity plane can be denoted
as

d"=a"z+by+c* (8)

Now the computational complexity of the initial disparity fitting
will be analyzed here. Suppose the height and width of an input
image are H and W respectively. The image is segmented into
M segmentations, where every segmentation has N pixels, thus
H-W = M - N. Assume that the computational complexity
needed for removing outliers in the initial disparity plane fit-
ting is 7', needed for formula Eq. (7) is L, then the calculation
amount needed for traversing all pixels within one segmenta-
tion will be T' - N + L. Therefore, the initial fitting calculation
complexity of the entire image is M (T - N + L), which is quite
large. Since those mismatching pixels will be corrected after
SGM by interpolating disparities of their adjacent pixels, there
should be few mismatched pixels left. Thus, it is unnecessary
to iterate the RANSAC process due to much time cost. As a
result, the RANSAC is executed once in the initial disparity fit-
ting. Thus, the calculation complexity of the initial fitting will
not exceed M (N + L).

In the final disparity plane fitting step, the smoothing procedure
is iterated to get a dense and smooth disparity map by minim-
izing the smoothness energy function. In the iterative process,
the disparities of the previous fitting are required to adjust the
segmentation to which the boundary pixels belong, thus the cal-
culation complexity is quite large. Therefore, an iteration ter-
mination function is proposed to balance the quality and the
speed of plane fitting as below:

E; — Eitq

i <e &)

where E; and F; 11 denote the bad 2.0 (Scharstein, 2017) (per-
centage of pixels whose disparity error are more than 2 com-
pared to ground truth) of the disparity after the i;, and (i +1)p
iterations, respectively. ¢ is set to 0.01 in the experiment in this

paper.

In the following Fig. 5, the bad 2.0 drops sharply during the first
4 iterations and the error drops very little from 4 iterations to 10
iterations.

We compared the disparity results of different iteration times
in Fig. 6. As the figure shows, the visual quality is almost the
same after 4 iterations. In that case, we can iterate fewer times
to reduce the calculation.

On the other hand, to compensate the possible loss of perform-
ance caused by fewer iteration times, the interpolation for ini-

Error > 2 pizels

1.2 L L L L L L L L
1 2 3 4 3 B 7 3 9 10

iteration times

Figure 5. Bad 2.0 of different iteration times.

Left image

1 iteration

!“ |

4 iterations

7 iterations

10 iterations

Figure 6. The disparity maps in different iteration times.
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Figure 7. Left: the original SPS disparity. Right: the disparity after interpolation.

tial disparity and the gradient energy are utilized. The experi-
mental results demonstrate that the speed and performance are
improved.

Table 2 shows an average time-consuming comparison of the
improved and original SPS algorithms.Five datasets, selected
from KITTI , named d1,d2,d3,d4,d5 respectively, are used to
test. The algorithmic computation time is reduced approxim-
ately 8% in our improved method. All experiments are carried
out on in Windows 7 operation system with Intel core i5 6500
processor.

Table 2. Time-consuming comparison(in seconds)

Datasets d1 d2 d3 d4 ds
Original SPS  3.06 3.08 3.05 3.03 3.10
280 285 276 270 296

Proposed

3.3 Interpolation for initial disparity

In practical, it is difficult to obtain strictly row-aligned stereo
image pairs, which will cause many mismatched points in the
initial disparity map obtained by using the SGM method. After
the left-right consistency checking, those mismatched points
will be forcibly set to 0. (As can be seen from the right image
in Fig. 2). Too much invalid disparity data will have a severe
negative effect on the final fitted disparity plane (Fig. 7(Left)).
Therefore, it is essential to use the disparities of the adjacent
pixels to interpolate these mismatched regions.

The efficient nearest neighbor interpolation method is chosen
to save the run time. The interpolation is implemented both
in the horizontal and vertical direction to avoid the appearance
of streaks in the disparity map. After the interpolation, we can
gain a denser disparity map without blocks as shown in the right
image in Fig. 7.

4. EXPERIMENTS AND RESULTS

The performance of the proposed stereo matching algorithm
is evaluated on the challenging KITTI dataset (Geiger et al.,
2013), which contains KITTI 2012 and KITTI 2015. In 2012,
there are 200 pairs (i.e., 400 images), and in 2015 there are 194
pairs (i.e., 388 images). In order to validate the proposed al-
gorithm, 40 pairs of images randomly selected from these two
datasets are tested, we employ the same paramenters for all ex-
periments, Agr, = 600, other paramenters are set according to

reference (Yamaguchi et al., 2014). The ground truth is semi-
dense covering approximately 30% of the pixels. The object-
ive error comparisons of bad 2,3,4,5, are used here which fully
demonstrates the improvements of our algorithm. The result is
shown in Table 3 and Table 4.

Table 3. Comparison with the mainstream methods on the test
set of KITTI2012

>2 pixels >3 pixels >4 pixels >5 pixels Runtime

Binarystereo 40.93% 36.77% 34.26% 32.01% 137s
Elas 22.72% 21.07% 20.23% 19.66% 1.44s
SGM 6.28% 498% 4.14% 3.57%  1.38s
RWR 19.54% 17.22% 15.38% 14.07% 10.38s
MC-CNN  4.28% 2.63% 202% 1.72% 67s
SPS 486% 3.79% 3.17% 2.76% 4.17s
Proposed  4.56%  3.53% 292% 2.51%  2.85s

Table 4. Comparison with the mainstream methods on the test
set of KITTI2015

>?2 pixels >3 pixels >4 pixels >5 pixels Runtime

Binarystereo 43.16% 39.44% 36.93% 35.01% 140s
Elas 24.09% 1921% 17.59% 16.82% 2.12s
SGM 10.03% 6.93% 547% 4.48%  1.99s
RWR 28.01% 1795% 13.26% 11.04% 12s
MC-CNN  638% 327% 237% 197% 67s
SPS 7.15%  458% 3.46% 2.93% s
Proposed  7.17% 4.51% 3.44% 2.81% 5.74s

In the experiments, the proposed approach are compared with
several other methods, including the Binary stereo matching
method (Binarystereo (Zhang et al., 2012)), the Efficient large-
scale stereo matching method (Elas (Geiger et al., 2011)), the
Semiglobal Matching method (SGM (Hirschmuller, 2008)), the
Random walk with restart algorithm (RWR (Lee et al., 2015)),
the Matching cost with convolutional neural network (MC-CNN
(Zbontar and LeCun, 2016)), and the Slanted plane smoothing
(SPS (Yamaguchi et al., 2014)).

Table 3 and Table 4 show the error which is measured as the
percentage of pixels whose true and predicted disparities dif-
fer more than 2, 3, 4, or 5 pixels. For example, in terms of the
> 2 pixels metric on KITTI2012, the proposed algorithm yields
4.56%, while the best performing method MC-CNN (Zbontar
and LeCun, 2016) provides 4.28%. In general, the proposed
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Figure 8. Qualitative results of our improved slanted plane
model. (a) Left image; (b) Segments and boundaries; (c)
Disparity map; (d) Ground truth; (e) Error graph

method performs better both on subjective and objective indic-
ators in most cases. Although the deep learning method MC-
CNN (Zbontar and LeCun, 2016) has the best results compared
with all the methods in the table, it costs considerable amount
of time.

Fig 8 and Fig 9 illustrate the qualitative results on dataset KITTI
2012 and KITTI2015. Among them, the error graph refers to
the differences between the ground truth and the disparity map.
As can be seen from the disparity map, the proposed algorithm
can obtain smooth and dense disparity and retain the edge and
texture mostly. And it is worth pointing out that the proposed
algorithm is able to estimate the hinge or occlusion boundaries
accurately. Like the cars, the trunks and the poles in Fig 8 and
Fig 9. Totally speaking, the proposed matching algorithm is
promising.

5. CONCLUSION

In this work, an improved energy segmentation algorithm is
proposed for efficient stereo matching. In this paper, the SGM
is applied to get an initial disparity map, and then those mis-
matched pixels are interpolated with vertical-horizontal nearest
neighboring pixels. In the first step of disparity plane fitting, the
number of iterations is reduced by executing the RANSAC just
once and setting an iteration termination function to accelerate
the process. Besides, it is essential to incorporate the gradient
information into the energy definition to better retain the edges.
Therefore, the disparity is refined by energy functions incorpor-
ating the gradient information. After the refinement of energy

(a) : e

e L W S

e S

(b)

(e)

(d)

(e)

Figure 9. Qualitative results of our improved slanted plane
model. (a) Left image; (b) Segments and boundaries; (c)
Disparity map; (d) Ground truth; (e) Error graph

function definition, the disparity results improve a lot. Exper-
imental results demonstrated that the proposed algorithm out-
performs the conventional stereo methods significantly. How-
ever, the algorithm in this paper still cannot get the best results
in terms of accuracy, so the follow-up work may focus on im-
proving the accuracy as much as possible while ensuring the
operation speed.
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