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ABSTRACT: 

 

Intelligent remote sensing satellite system is an important direction to solve the problem of intelligent processing on-board. It can 

realize the real-time on-board intelligent processing of important targets. The accuracy of geometric positioning information is the 

basis for subsequent intelligent processing. Therefore, this paper corrects the positioning information by GCPs (Ground Control Points) 

matching on-board. Considering the limited storage and computing performance of satellites, this paper designs a lightweight GCPs 

deep feature extraction convolutional neural network based on MobileNetV2 as feature extraction model, and trains this network with 

an improved triplet loss function. The Songshan calibration field images constructed by Wuhan University was used as the GCPs 

image, and 30,399 image patches were extracted and embedded as GCPs feature library. The size of the GCPs library is a size of 

15.3M, and size of the lightweight depth feature extraction model is 9.83M, which can be pre-stored on the satellite for positioning 

with GCPs matching on-board. In addition, this paper tested feature extraction performance on an embedded device Nvidia Jeston 

Xavier which simulates the performance of the device on the satellite. At Xavier 30W max power consumption model, a single frame 

takes 0.005 seconds, and under Xavier 15W power consumption model, a single frame takes 0.009 seconds. At 10W power 

consumption model, a single frame takes 0.018 seconds, which can meet the performance requirements on the satellite. In addition, 

the experiments in this paper show that the positioning accuracy is within 30 meters. The work done in this paper will be experimented 

on the Luojia-3-01 intelligent remote sensing satellite. 

 

1. INTRODUCTION 

Dramatic increase in satellite data not only provides a rich source 

for subsequent processing and services, but also puts pressure on 

satellite-ground data transmission links and ground processing 

and storage systems. Especially in the field of high-efficiency 

applications, the images taken on-board cannot be provided to 

users in real-time. Intelligent satellites can extract and distribute 

effective information on-board in real-time. Therefore, there is 

an urgent need to research the processing technology on-board. 

Satellite Country Time 
Processing On-

board 
Processor 

EO-1 
United 

States 
2000 Detection Mongoose V 

BIRD Germany 2001 Pre-processing DSP/FPGA 

NEMO 
United 

States 
2003 Compression DSP 

X-SAT Singapore 2006 
Reject invalid 

data 

FPGA/ 

StrongARM 

Pleiades-

1/2 
France 2011/2012 Pre-processing FPGA 

Table 1. Application of processing on-board of remote sensing 

satellites 

Since the 1990s, intelligent remote sensing satellite on-board 

processing technology has been researched by researchers. Table 

1 shows the processing on-board in recent years(Hayden et al., 

2004; Straight et al., 2010). DSP (Digital Signal Processing) and 

FPGA (Field Programmable Gate Array) were the main 

processor in these satellites. However, with the rapid 

development of software and hardware in recent years, the ARM 

+ GPU structure has gradually been tried for processing on-board. 

The upcoming launch of Luojia-3-01 satellite (Wang Mi, 2019), 

jointly designed by DFH Satellite Co. and Wuhan University, 

will support this mode. Compared with FPGA and DPS, ARM + 

GPU mode has better portability and developability. It can easily 

transplant ground processing algorithms to satellite processing. 

                                                                 
*  Corresponding author 

 

However, limitations of storage space and performance are 

always bottleneck of on-board processing. Therefore, remote 

sensing image processing algorithms need to be developed for 

this new architecture. The control point matching, as the basis of 

the subsequent high-processing, needs more in-depth research. 

 

2. RELATED WORKS 

Since AlexNet (Krizhevsky et al., 2012) has achieved great 

success in the field of image processing using deep convolutional 

networks, deep learning methods have been widely used in the 

field of image processing. It has also gained better application in 

remote sensing image processing (Ma et al., 2019), such as the 

classification(Cai et al., 2018; Gong et al., 2017; Hamida et al., 

2018), object detection(Dong et al., 2019; Vetrivel et al., 2018; 

Yu et al., 2016) and segmentation(Kemker et al., 2018; Zhang et 

al., 2018). Siamese structure was used for two sets of patches 

matching (Zagoruyko and Komodakis, 2015) by train the 

distance between matched and no-matched pairs respectively, 

which provided a new idea for image matching using deep 

learning. The triplet loss function (Schroff et al., 2015) trains the 

matched and no-matched pairs at once for face recognition. The 

Triplet loss function was improved by studies (Chen et al., 2017; 

Cheng et al., 2016) for better performance, which shows that the 

triplet structure has good scalability. Compare with triplet 

structure, Siamese structure works to a secondary objective: drive 

the distance between matched pair as close to 0 as possible (Vo 

and Hays, 2016). For remote sensing images, images from 

different locations may cover the same area. Such images are 

likely to be considered to come from the same location. The 

second objective will be useful for GCPs matching. Therefore, 

this paper proposes a new improved triplet loss function for 

remote sensing image matching on-board combining the 

advantages of Siamese structure and triplet structure.
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Figure 1. Improved triplet training framework.

In addition, with the deepening of the layers of the deep neural 

network, the space and performance requirements of the model 

have gradually increased, which caused great difficulties for 

embedded devices and mobile devices. For example, devices on 

intelligent satellite cannot meet the needs of most deep networks. 

Therefore, many lightweight networks have been proposed for 

embedded devices with limited performance (Howard et al., 2019; 

Howard et al., 2017; Ma et al., 2018; Sandler et al., 2018; Zhang 

et al., 2017). MobileNet is one of the better performers in 

lightweight deep convolutional networks. 

In summary, it is difficult to store the traditional GCPs library 

and match with complex deep convolutional networks on-board 

due to the limited performance and storage space of equipment 

on-board. Therefore, this paper used a lightweight feature 

extraction model with improved triplet loss function to embed 

GCPs image patches into D-dimensional space as GCPs library 

to store on-board, and extracted feature of image taken on-board 

by this model to match with GCPs library for positioning. The 

work will be experimented on the Luojia-3-01 intelligent remote 

sensing satellite. 

 

3. METHODS 

In this section, the method of this article is introduced. The first 

part is the overall framework, the second part is the lightweight 

feature extraction network, the third part is the improved triplet 

loss function, and the fourth part is the on-board positioning for 

satellite based on GCPs matching.  

 

3.1 The Overall Framework 

As shown in the Figure 1, in general, the image patches were 

transformed into the feature space after being extracted by the 

shared feature extraction model. The feature extraction model 

optimized by the improved triplet loss function. Namely, this 

paper strives for an embedding 𝑓(𝑥), from an image x into a 

feature space ℝ𝑑 , such that the squared distance between all 

GCPs picture and target picture, independent of imaging 

conditions, of same position is small, whereas the squared 

distance between a pair of GCPs images from different position 

is large.  The images were embedded into feature space as the 

GCPs library. 

Ref (reference, GCPs images) and Pos (positive, images from 

different sources at the same location as the GCPs) in image 

space are images of different sources at corresponding positions, 

and Neg (negative, images in different locations) is an image of 

different positions. Ref and Pos form positive pairs. Ref and Neg 

form negative pairs. This paper also defines second negative pairs 

which formed by Pos and Neg. 

The optimization of the traditional triplet loss function is to make 

the feature distance of positive pairs smaller than the feature 

distance of negative pairs. The purpose of the improved triplet 

loss function optimization is to make the feature distance of 

positive pairs approach 0, and make the feature distance of 

negative pairs, second negative pairs larger than the feature 

distance of positive pairs. Because positive pairs are images from 

different sources at the same location, their two features should 

be as similar as possible, and negative pairs belong to different 

locations, their features should be different.  

 

 
Figure 2. The improved triplet loss resembles the image features 

of same location, making the image features of different 

location tend to be different 

 

For feature extraction networks, different deep convolutional 

neural networks can be used. Considering on-board performance 

limitations, this paper used a lightweight deep convolutional 

network MobileNetV2 (Sandler et al., 2018) with Inverted 

Residuals and Depthwise Separable Convolutions structures. 
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In conclusion, as shown in Figure 2, after learning with the 

improved triplet loss function, the image features extracted by the 

shared network at the same location will tend to be similar, and 

the image features at different locations will tend to be different. 

 

3.2 Lightweight Feature Extraction Network 

Traditional FPGA and DSP processing cores are difficult to meet 

the needs of on-board intelligent processing. In recent years, 

embedded devices based on ARM + GPU structures have been 

tried for on-board intelligent processing, such as the upcoming 

launch of Luojia-3-01, which has on-board processing 

capabilities with ARM + GPU structures. Deep convolutional 

networks have proven to be powerful in the field of image 

processing, but they consume too much computing resources. 

There are also rich requirements in the embedded mobile 

terminal, so many lightweight frameworks (Howard et al., 2019; 

Howard et al., 2017; Ma et al., 2018; Sandler et al., 2018; Zhang 

et al., 2017) have been proposed, and MobileNets(Howard et al., 

2019; Howard et al., 2017; Sandler et al., 2018) is one of the best 

networks among them.  

In this paper, MobileNetV2(Sandler et al., 2018) was selected as 

the basic feature extraction network. The key to MobileNetV2 

lightweighting is the depth separable convolution. It is a form of 

factorized convolutions which factorize a standard convolution 

into a depthwise convolution and a 1 * 1 convolution called a 

pointwise convolution (Howard et al., 2017) (feature extraction 

model in Figure 1). In addition, it also adds the idea of Resnet 

residuals(He et al., 2016; Xie et al., 2016), which is called 

inverted residuals (Sandler et al., 2018), to improve accuracy. 

Therefore, it can also ensure that the accuracy can meet the 

requirements in the process of lightweighting.  

In order to prevent overfitting, weaken the unimportant feature 

variables, and extract important feature variables, this paper adds 

the ReLU6 and L2 regularization layers before the output of 

MobileNetV2. 

 

3.3 Improved Triplet Loss Function and Training on 

Ground 

Triplet loss function was proposed in FaceNet (Schroff et al., 

2015) and achieved good results in face recognition. It can also 

be used in image matching (Vo and Hays, 2016). The embedding 

is represented by 𝑓(𝑥) ∈ ℝ𝑑 . It embeds an image x into a d-

dimensional hypersphere Euclidean space. Its expression is as 

follows: 

 

L = ∑ [max⁡(‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
− ‖𝑓(𝑥𝑖

𝑅) − 𝑓(𝑥𝑖
𝑁)‖

2

2
+𝑁

𝑖

𝛼, 0)]  (1) 

 

Where 𝑥𝑖
𝑅  (Ref) is the image of GCPs, 𝑥𝑖

𝑃  (Pos) is the image 

from different sources at the same location as the GCPs, 𝑥𝑖
𝑁 (Neg) 

is image in different locations, 𝛼  is a margin that is enforced 

between positive and negative pairs. 

This will make, 

 

‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
+ 𝛼 < ‖𝑓(𝑥𝑖

𝑅) − 𝑓(𝑥𝑖
𝑁)‖

2

2
      (2) 

 

Here the image 𝑥𝑖
𝑅 is closer to the image 𝑥𝑖

𝑃 from same location 

than any image 𝑥𝑖
𝑁 from different location. 

However, for remote sensing images, images from different 

locations may cover the same area. Such images are likely to be 

considered to come from the same location. Therefore, it is 

necessary to judge the most matching among these images. This 

paper added an item to the Triplet loss function to minimize the 

distance between 𝑥𝑖
𝑅  and 𝑥𝑖

𝑃 , and make it approach 0. Its 

expression will be as follows: 

 

L = ∑ [max⁡(‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
− ‖𝑓(𝑥𝑖

𝑅) − 𝑓(𝑥𝑖
𝑁)‖

2

2
+𝑁

𝑖

𝛼, 0) + 𝛽‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
]   (3) 

 

Where 𝛽 is a margin that to adjust the minimum similarity rate. 

At the same time, in order to make the 𝑥𝑖
𝑁 father away from the 

𝑥𝑖
𝑅 and 𝑥𝑖

𝑃, this paper also added an item in the formula to make 

the distance between the 𝑥𝑖
𝑃  and 𝑥𝑖

𝑁  lager than the distance 

between the 𝑥𝑖
𝑅 and 𝑥𝑖

𝑁. This is visualized in Figure 2. Finally, 

the improved triplet loss function will look like the follows: 

 

L = ∑ [max (‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
− ‖𝑓(𝑥𝑖

𝑅) − 𝑓(𝑥𝑖
𝑁)‖

2

2
+𝑁

𝑖

𝛼, 0) + max (‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
− ‖𝑓(𝑥𝑖

𝑃) − 𝑓(𝑥𝑖
𝑁)‖

2

2
+

𝛼, 0) + 𝛽‖𝑓(𝑥𝑖
𝑅) − 𝑓(𝑥𝑖

𝑃)‖
2

2
]   (4) 

 

In this paper, 𝛼 = 0.5, and β = 0.4. 

 

3.4 On-board Positioning Based on GCPs Matching 

The GCPs image patches can be embedded into a d-dimensional 

hypersphere Euclidean space as GCPs library, which can save a 

lot of hard disk space on the satellite. The d-dimensional depth 

GCPs library and lightweight feature extraction model will be 

stored on the satellite. For the image to be matched, the depth 

features of the region need to be extracted and compared with the 

GCPs to match. The specific calculation flowchart is shown in 

Figure 3. Where 𝐶𝑃(𝑥𝜏 , 𝑦𝜏) are all GCPs in the image area and 

𝑆𝑛 is the step for different epochs. 

Input: image to be 

positioning

Find control points 

CP(xτ ,yτ) in the image range

Determine the initial position CP(xi ,yi) 

Initial position CP(xi ,yi) as the center, Rm 

as the radius, and Sn as the step to 

virtualize the position P(x + (R-m : 

Rm)*Sn ,y +(R-m : Rm)*Sn ) image patch

Embedded image patch to d-dimensional 

space

Search for the P(x + Rmatched *Sn ,y + 

Rmatched*Sn ) which is most similar to 

CP(xi ,yi) 

    

Candidate point 

pairs

Is refined?

Correct point pairs

Is less than the 

threshold?
Rejection

Ransac mismatch 

rejection

Determine the initial position CP(xi ,yi) 

Initial position CP(xi ,yi) as the center, Rm 

as the radius, and Sn as the step to 

virtualize the position P(x + (R-m : 

Rm)*Sn ,y +(R-m : Rm)*Sn ) image patch

Embedded image patch to d-dimensional 

space

Search for the P(x + Rmatched *Sn ,y + 

Rmatched*Sn ) which is most similar to 

CP(xi ,yi) 

Is less than the 

threshold?
Rejection

No No

Yes Yes

Yes Yes

No

 
Figure 3. The calculation flowchart of on-board positioning 

based on GCPs matching. 

We also describe the specific algorithm with the pseudo code in 

Table 2. Where ℝsearch  is the group of searched range for 

different epochs and 𝑃(𝑥, 𝑦) is the image patch with in ℝsearch. 

The forth step in the Table 2 is to normalize the direction and 

scale to the GCPs image patch. In order to balance search range 

and search accuracy, multiple epochs can be performed at 
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different steps and search ranges. And, 𝑆𝑛 = max(ℝn+1) ⁡∗
⁡𝑆𝑛+1. For example, a total of three epochs are calculated in this 

paper. First epoch, ℝ1 ∈ {−4: 4} , 𝑆1 = 50𝑚 ; second epoch, 

ℝ2 ∈ {−5: 5} , 𝑆2 = 10𝑚 ; third epoch, ℝ3 ∈ {−10: 10} , 𝑆3 =
1𝑚. 

 
Algorithm1  On-board positioning based on GCPs matching 

Input: Image to be positioned 

Output: Image was positioned 

1. Find GCPs 𝐶𝑃(𝑥𝜏 , 𝑦𝜏) in the image area 

2. Initialize ℝ𝑠𝑒𝑎𝑟𝑐ℎ as the search range and 𝑆𝑛 as the step 

3. For 𝐶𝑃(𝑥𝑖 , 𝑦𝑖) in 𝐶𝑃(𝑥𝜏 , 𝑦𝜏): 
4. Virtualize the 𝑃(𝑥 + (𝑅𝑗 ⁡𝑖𝑛⁡ℝ𝑠𝑒𝑎𝑟𝑐ℎ) ∗ 𝑆𝑛, 𝑦 + (𝑅𝑗 ⁡𝑖𝑛⁡ℝ𝑠𝑒𝑎𝑟𝑐ℎ) ∗

𝑆𝑛) image patch; 

5. Embedded image patch to d-dimensional space; 

6. Search for minimum Dist(𝑃(𝑥𝑚𝑎𝑡𝑐ℎ𝑒𝑑, 𝑦𝑚𝑎𝑡𝑐ℎ𝑒𝑑), 𝐶𝑃(𝑥𝑖 , 𝑦𝑖)); 
7. If Dist(𝑃(𝑥𝑚𝑎𝑡𝑐ℎ𝑒𝑑, 𝑦𝑚𝑎𝑡𝑐ℎ𝑒𝑑), 𝐶𝑃(𝑥𝑖 , 𝑦𝑖)) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

8. Reject 𝑃(𝑥𝑚𝑎𝑡𝑐ℎ𝑒𝑑, 𝑦𝑚𝑎𝑡𝑐ℎ𝑒𝑑); 
9. Else: 

10. CandidatePointPairs.append(

𝑃(𝑥𝑚𝑎𝑡𝑐ℎ𝑒𝑑, 𝑦𝑚𝑎𝑡𝑐ℎ𝑒𝑑), 𝐶𝑃(𝑥𝑖 , 𝑦𝑖)) 
11. End for 

12. CandidatePointPairs.Ransac() 

13. If IsRefined = = True: 

14. Initialize 𝐶𝑃(𝑥𝜏 , 𝑦𝜏) as CandidatePointPairs.⁡𝐶𝑃(𝑥𝑖 , 𝑦𝑖) 
15. Goto 2. 

16. CorrectPointPairs = CandidatePointPairs 

17. Image positioned by CorrectPointPairs 

Table 2 On-board positioning based on GCPs matching 

 

4. EXPERIMENTS 

4.1 Experiments Data 

The positioning accuracy of GCPs image has an important 

influence on the results of GCPs matching. This paper selects 

China (Songshan) satellite remote sensing calibration field data 

as the GCPs image. This test field was jointly constructed by 

China Resources Satellite Application Center, Wuhan University 

and The PLA Information Engineering University. The area of 

test field is 9000 square kilometres, located between Zhengzhou 

and Luoyang, with an east-west length 105 KM and a north-south 

80 KM. Its high-precision DOM (Digital Orthophoto Map) and 

DEM (Digital Elevation Model) were produced using aerial 

photogrammetry through more than 400 uniformly distributed 

high-precision GCPs. The ground resolution of the DOM is 0.4 

meters, and the ratio of the DEM is 1:5000. The DOM data of the 

Songshan test site is shown in the Figure 4. 

In this paper, Google (https://www.google.com/) and Arcgis 

(https://www.arcgis.com/) images in the same area are used as 

training, testing, and validation data, respectively. In order to 

facilitate on-satellite matching, all images in this paper are 

panchromatic images. 

4.2 Feature Extraction Experiment with Improved Triplet 

Loss Function 

Depth feature extraction model is the basis for subsequent 

localization through matching, and its accuracy will directly 

affect the positioning accuracy. The depth feature extraction will 

embed GCPs image patches into the d-dimensional space as 

GCPs library, and the library will be stored on-board to meet the 

storage limit. 

As shown in the Figure 4, this paper extracts evenly distributed 

SIFT feature points on the DOM as GCPs, and takes each GCPs 

as the center, and crops a 255 * 255 image as the GCPs image 

patch. Google images were selected as training images, and 

Arcgis images were used as test and verification images. After 

removing the image patch with obvious changes, 30,399 image 

patches can finally be extracted. The Google image and Arcgis 

image were also extracted as 30,399 image patches in the same 

position, and the orientation and sale of these image patches were 

normalized to GCPs image based on projection information. 

Each GCPs image patch and Google or Arcgis image patch at 

same position was set as a positive pair which their depth feature 

needs to be similar. In contrast, a negative pair consists of a GCPs 

image patch and the least similarity image patch in other position, 

and a second negative pair formed by the image patches from 

positive and negative pair except the GCPs image patch. 

 

 
Figure 4. China (Songshan) satellite remote sensing calibration 

field. The red cross in the picture is the center of the selected 

GCPs image. The light blue box is the matching experiment 

area, which is located in the verification area. 

Among them, the pairs consist of GCPs and Google image patch 

were constituted training data set, GCPs and Arcgis image 

patches are divided into test and verification dataset by 113.08E. 

West 113.08E is the test data set, and east 113.08E is the 

verification data set. The light blue box in the Figure 4 is the 

matching experiment area, which is located in the verification 

area. In this paper, a GCPs image patch was set as 255 * 255, and 

d-dimensional was set as 128-dimensional because of its best 

accuracy and efficiency (Schroff et al., 2015). Therefore, it can 

compress almost 500 times for each GCPs image. 

Dataset was trained on Nvidia RTX 2080TI, and the size of 

feature extraction model is 9.83M. This model was used to 

embedded 30,399 GCPs image patches into 128-dimensional 

feature space as GCPs library with a size of 15.3M. The model 

and GCPs feature space were used in the subsequent experiments 

of on-board positioning by GCPs matching. 

4.3 On-board Positioning Experiment Based on GCPs 

Matching 

The pre-trained feature extraction model and the GCPs feature 

library extracted by the it can be pre-loaded on the satellite before 

launching or transmitted via the satellite-to-ground transmission 

link. The image captured on the satellite will embed into d-

dimensional space through the feature extraction model. The d-

dimensional feature will match in the GCPs feature library. The 

matched point will be used for further positioning. 

The light blue box in Figure 4 is the matching experiment area, 

which is located in the verification area. The Arcgis image in this 

area has neither participated in training nor testing, and can not 

only be used to evaluate the positioning accuracy, but also to 

evaluate the generalization ability of the model.  

The GCPs, Google and Arcgis image have projection information 

because they are both orthoimages. They have accurate positions 

without positioning. Therefore, this paper shifts the Google and 

Arcgis image with a (dx, dy) offset respectively, and then uses 

Algorithm 1 to experimentally match and positioning. 

The experiments on the on-board simulation devices Nvidia 

Xavier, Nvidia RTX 2060 and Nvidia RTX 2080TI. The offsets 
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were set as (163m, 152m), (175m,152m) and (175m,175m). The 

images to be tested were Google and Arcgis experiment area 

images which was shown as the light blue box in Figure 4.  

5. RESULTS AND DISCUSSIONS 

5.1 Accuracy of Feature Extraction with Improved Triplet 

Loss Function 

This section discusses and analyzes the accuracy of training with 

improved triplet loss function. It can be seen from the data in 

Table 3 that the results of test and validation are consistent with 

training results, which shows that the trained model has good 

generalization ability. The image patches for each GCPs are 

trained, although the newly captured image patches are not 

trained, such as the test and validation dataset which have the 

same accuracy. This just like face recognition. If there is no face 

data in the training dataset, then it can never be recognized.  

Dataset Metrics Accuracy 

Train Dist(Ref, Pos) < Dist(Ref, Neg) 0.973 

Dist(Ref, Pos) < 0.7 0.938 

Dist(Ref, Neg) > 0.7 0.900 

Dist(Ref, Pos) < 0.7⁡and⁡Dist(Ref, Neg) > 0.7 0.844 

Mean(Dist(Ref, Pos)) 0.373 

Mean(Dist(Ref, Neg)) 1.262 

Test Dist(Ref, Pos) < Dist(Ref, Neg) 0.971 

Dist(Ref, Pos) < 0.7 0.929 

Dist(Ref, Neg) > 0.7 0.903 

Dist(Ref, Pos) < 0.7⁡and⁡Dist(Ref, Neg) > 0.7 0.839 

Mean(Dist(Ref, Pos)) 0.380 

Mean(Dist(Ref, Neg)) 1.279 

Val Dist(Ref, Pos) < Dist(Ref, Neg) 0.975 

Dist(Ref, Pos) < 0.7 0.947 

Dist(Ref, Neg) > 0.7 0.897 

Dist(Ref, Pos) < 0.7⁡and⁡Dist(Ref, Neg) > 0.7 0.850 

Mean(Dist(Ref, Pos)) 0.367 

Mean(Dist(Ref, Neg)) 1.246 

Table 3. Accuracy of feature extraction 

The threshold between positive pairs and negative pairs is 0.7, 

which can be determined through the density distribution map. 

The correct rate of positive relative less than negative image pair 

is 0.973, the probability of positive relative less than 0.7 is 0.938, 

the probability of negative image pair is greater than 0.7 is 0.900, 

and the probability of satisfying positive relative less than 

threshold 0.7 and negative image pair greater than 0.7 is 0.844. 

These can show that the model has a good ability to distinguish 

positive and negative image pairs. In addition, the average value 

of positive relative is 0.373. It can be obtained from the improved 

triplet loss function that the positive value will be closer to 0, 

indicating that the depth feature values of different image patches 

in the same area tend to be consistent. 

5.2 Accuracy of Positioning 

This section discusses and analyzes the results of on-board 

positioning experiment. It is can be seen in the Figure 5 and 

Figure 6, this paper shifts (163m, 152m) for the Google and 

Arcgis images of the verification area which is shown in Figure 

4, and uses algorithm 1 (Table 2) for GCPs matching, 

respectively. Because the Arcgis image here is not in the train 

and test dataset, it can reflect the generalization ability and 

robustness of the model. Figure 5 and Figure 6 show the results 

of the first epoch of automatic matching when ℝ1 ∈ {−4: 4}, 
𝑆1 = 50𝑚. The algorithm matches the correct points from the 

GCPs library on the images to be matched as basis for subsequent 

positioning. 

It can be seen from the Figure 5 and Figure 6 that the points 

matched can be evenly distributed on the image, and the 

matching accuracy is good visually. For Arcgis images, it does 

not participate in training and testing, but can also accurately 

match GCPs. Therefore, in the feature, new images taken in the 

satellite can also matched on-board with GCPs library for 

positioning. 

What can be seen in Table 5, this paper calculates and analysis 

the positioning accuracy of the three epochs in Algorithm 1. This 

paper also adds experiments with different offsets and adds a 

comparison with the traditional SIFT features. The SIFT 128-

dimensional features extracted from the GCP image were pre-

loaded on-board. The SIFT features extracted from the target 

image achieved on-board were matched with the pre-loaded 

features in the same area, and ransac algorithm were used to 

eliminate the mismatched points. The best results were shown in 

bold in the Table 5. The results show that the positioning 

accuracy of this algorithm is within 30 meters. The accuracy of 

matching in first epoch has a greater impact on the accuracy of 

subsequent matching. However, its ability to match small offsets 

is insufficient. Because it is difficult to distinguish the deep 

features of the micro-offset image from the GCPs, the matching 

ability of the micro-offset image need to be further improved with 

more training dataset. The matching accuracy of conventional 

SIFT algorithm was generally lower than the algorithm in this 

paper. In addition, the SIFT algorithm is difficult to match the 

images with large difference in the control point images, such as 

infrared images. However, the algorithm in this paper provides 

good robustness by increasing the range of the training set. 

5.3 Efficiency Analysis 

This paper evaluates the efficiency of the Nvidia Xavier that 

simulates on-board devices. This paper also evaluates the 

efficiency of other devices, such as Nvidia RTX2060 and 

RTX2080ti. Table 2 shows the efficiency of different devices. 

Among them, there are 64 frames in a control point when ℝ1 ∈
{−4: 4}, 100 frames in a control point when ℝ2 ∈ {−5: 5}, 400 

frames in a control point when ℝ3 ∈ {−10: 10}. 

Devices 
ℝ1 ∈

{−4: 4} /s 

ℝ2 ∈
{−5: 5} /s 

ℝ3 ∈
{−10: 10} /s 

single 

frame/s 

Jeston Xavier - 

10W 
1.254 1.873 7.319 0.0189 

Jeston Xavier - 

15W 
0.629 0.942 3.517 0.0094 

Jeston Xavier - 

30W 
0.359 0.534 2.024 0.0053 

RTX2060 0.119 0.180 0.675 0.0018 

RTX2080TI 0.077 0.099 0.364 0.0010 

Table 4 efficiency analysis 

As can be seen in the Table 4, the number of frames to be 

processed was different for different search ranges, but the 

processing time of each frame was the same. And for Xavier, the 

different power modes were also different. However, it can meet 

the efficiency needs of on-board processing within a reasonable 

search range. 

Offset / m Image 
ℝ1 ∈ {−4: 4}, 𝑆1 = 50  ℝ2 ∈ {−5: 5}, 𝑆1 = 10  ℝ3 ∈ {−10: 10}, 𝑆1 = 1  SIFT 

x / m y / m  x / m y / m  x / m y / m  x / m y / m 

(163, 152) Google 16.90 2.15  16.90 7.90  10.92 10.12  23.23 31.10 

Arcgis 16.90 2.15  16.90 11.35  17.11 10.95  16.41 27.56 

(175, 152) Google 32.49 2.15  29.24 11.84  34.11 12.65  141.52 67.55 

Arcgis 32.49 2.15  22.74 12.38  21.44 9.15  6.25 27.03 

(175, 175) Google 32.49 26.43  27.44 19.54  28.60 20.03  57.88 36.50 

Arcgis 32.48 26.92  26.45 15.90  25.50 13.49  5.68 4.93 

Table 5. Positioning accuracy 
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Figure 5. The results of Google image matching. (A) is GCPs image, and (B) is the Google image with (163m, 152m) offset. 

 

 
Figure 6. The results of Arcgis image matching. (A) is the GCPs image, and (B) is the Arcgis image with (163m, 152m) offset.
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6. CONCLUSION 

In this paper, image positioning on-board is achieved through 

GCPs matching on-board. This paper proposes an improve triplet 

loss function and trains a lightweight feature extraction model 

with it. The model embeds GCPs image patches into 128-

dimensional feature space as GCPs library. Size of the extraction 

model and GCPs library are 9.83M and 15.3M respectively, then 

the model and library can be stored on-board for satellite. This 

paper also designed an algorithm for positioning on-board 

through GCPs matching. The images taken on-board will be 

positioned by GCPs matching real-time and the positioning 

accuracy is within 30 meters.  

In subsequent studies, the positioning accuracy will be further 

improved under this framework. And the work done in this paper 

will be experimented on the upcoming Luojia-3-01 intelligent 

remote sensing satellite. 
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