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ABSTRACT:

This paper describes an efficient implementation of the semi-global matching (SGM) algorithm on multi-core processors that
allows a nearly arbitrary number of path directions for the cost aggregation stage. The scanlines for each orientation are discretized
iteratively once, and the regular substructures of the obtained template are reused and shifted to concurrently sum up the path cost
in at most two sweeps per direction over the disparity space image. Since path overlaps do not occur at any time, no expensive
thread synchronization will be needed. To further reduce the runtime on high counts of path directions, pixel-wise disparity gating is
applied, and both the cost function and disparity loop of SGM are optimized using current single instruction multiple data (SIMD)
intrinsics for two major CPU architectures. Performance evaluation of the proposed implementation on synthetic ground truth
reveals a reduced height error if the number of aggregation directions is significantly increased or when the paths start with an
angular offset. Overall runtime shows a speedup that is nearly linear to the number of available processors.

1. INTRODUCTION

Solving the correspondence problem is fundamental to pho-
togrammetry as it will allow the reconstruction of 3D points
from 2D bitmaps if the underlying camera geometry is known.
Numerous algorithms have been proposed to find identical pix-
els in two calibrated images among which semi-global match-
ing (SGM) (Hirschmüller, 2008) has been outstandingly suc-
cessful in terms of speed and quality of the resulting disparity
maps (Scharstein et al., 2014). Since the proposal of the classic
algorithm and the availability of its original single-threaded im-
plementation, many contributions have been made to improve
and accelerate SGM, and some of them discharged into scien-
tific and commercial-grade software packages.

Notably, the tSGM algorithm of (Rothermel, 2016) reduces both
the number of calculations and the amount of memory required
for the cost aggregation stage of SGM. This is achieved through
dynamic bounds on the disparity ranges for each image pixel.
The bounds are obtained from matching subsampled copies of
the input stereo pair and propagating the disparity estimates to
higher levels of the image pyramid. In its multithreaded com-
mercial incarnation named SURE, the cost aggregation scheme
of tSGM is identical to classic SGM and relies on a fixed num-
ber of typically 8 or 16 path directions (nFrames GmbH, 2014).
Thus, in practice, homogeneous areas sometimes lack point cov-
erage, and low-amplitude artifacts from the approximate ”semi-
global” minimization of the energy function involved in the
matching process can be observed in the produced disparity
maps. Characteristic quality issues related to SGM are specif-
ically addressed by (Facciolo et al., 2015) in their more global
matching (MGM) approach. In MGM, information is trans-
ferred between adjacent cost aggregation paths of a particular
direction resembling belief propagation in graphs. It is demon-
strated that the technique promotes smoothness and consistency
in the generated disparity maps. However, the introduced data
dependency comes at the price of a speed penalty, and it is likely
that parallelization will be adversely impacted. Other modifica-

tions to SGM target its cost function and smoothness term to
enhance the accuracy and coverage of the resulting depth esti-
mates leaving the actual cost aggregation strategy untouched.
This for instance includes the use of weighted similarity met-
rics (Miclea, Nedevschi, 2017), extended discontinuity penal-
ties (Michael et al., 2013), their automatic adaptation to the im-
age content (Karkalou et al., 2017), and combinations. Lately,
machine learning techniques to predict SGM parameters have
been discussed (Seki, Pollefeys, 2017).

This paper describes an implementation of SGM that supports a
nearly arbitrary positive number of path directions for the cost
aggregation stage. Hence, as a brute-force alternative to MGM,
the user is given full control over the degree of approximation
of the global energy minimization problem to be solved during
stereo matching. In the implementation, for each direction, cost
aggregation is performed along linear paths. The shapes of the
paths are precomputed using an iterative line rasterization al-
gorithm. Path-wise cost summing repeatedly reuses and shifts
the resulting regular substructures, or runs, from the rasterizer,
which happens in at most two partial sweeps per direction over
the entire disparity space image. Since adjacent paths are prop-
erly aligned and sweeps are coordinated, it is guaranteed that
the discrete scanlines do not overlap. Because there is no data
dependency, path-wise multithreading can be applied without
the need for time-consuming synchronization primitives. Com-
putational efficiency is further improved by dynamically gating
the disparities to a small range estimated from subsampled ver-
sions of the input images like in tSGM. On the machine level,
the expensive cost calculation and aggregation stages of the pro-
posed algorithm are parallelized using single instruction multi-
ple data (SIMD) commands for the omnipresent Intel x86-64
and ARM CPU architectures.

The performance regarding both the runtime and disparity map
quality of the new SGM implementation is evaluated on a syn-
thetic 3D scene which gets rendered into error-free oriented pin-
hole camera images and depth ground truth. Following stereo
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matching, the reconstructed points are compared to the known
scene geometry. The influence of high path direction counts and
asymmetry on the height error and point coverage is examined
for detailed scene elements and critical low-texture objects. Ex-
tensive optimization of the SGM penalty functions or dispar-
ity map refinement techniques remain unconsidered, however,
these may complement the proposed aggregation scheme.

2. REVIEW OF THE BASELINE SGM ALGORITHM

The classic SGM algorithm comprises four basic processing
stages. Assuming two oriented rectified images with parallel
epipolar lines on the same vertical coordinate (Fusiello et al.,
2000), the matching cost is initially computed for each pixel p
at position (x, y) and disparity value dwithin the allowed range
for the stereo shift. The cost calculation stage yields a disparity
space image (DSI) which actually is a three-dimensional box-
like volume C(p, d) storing the similarity between potentially
corresponding pixel pairs p(x, y) and p′(x + d, y). A popular
choice for the cost function serving as a similarity measure is
the census transform because it is tolerant to radiometric dif-
ferences between the images and can be efficiently calculated
(Zabih, Woodfill, 1994).

Global stereo matching algorithms now attempt to optimally
fit a 2D surface through the disparity space image minimizing
the total cost, or energy. However, due to ambiguities in the
DSI caused by homogeneous and repetitive areas in the input
bitmaps, the neighborhood of a pixel must be incorporated us-
ing dynamic smoothness terms. This makes finding the desired
surface and thus the corresponding pixels NP-complete and pro-
hibitively time-consuming on current computers, at least when
energy minimization is performed in two or more dimensions
(Boykov et al., 2001). For one-dimensional structures, the opti-
mal solution can be derived efficiently using dynamic program-
ming (Cox et al., 1996) which leads to ”semi-global” matching.

In SGM, the two-dimensional surface is approximated by min-
imizing equation 1 along a set of paths of direction r. Here
the cost Lr of pixel p at disparity d comprises the initial cost
C from the DSI plus the minimum of the costs at the previous
pixel along the path at the same disparity, at the disparity dif-
fering by one and at the disparity differing by more than one.
A disparity change during the transition from p − r to p how-
ever gets penalized by P1 and P2 ≥ P1. This introduces a
smoothness constraint which permits small depth changes and
discourages depth jumps. The last term subtracted in the equa-
tion ensures Lr ≤ Cmax + P2 to avoid numerical overflows
with Cmax denoting the maximum DSI value possible.

Lr(p, d) =C(p, d)

+ min(Lr(p− r, d), Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,min
i
Lr(p− r, i) + P2)

−min
k
Lr(p− r, k)

(1)

The final cost per pixel and disparity is the sum of the Lr over
all path directions

S(p, d) =
∑
r

Lr(p, d) (2)

where the number of directions often is fixed to 8 or 16. In
the first case, only paths running strictly horizontally, vertically

and diagonally must be considered. The next pixel on the line
is computed by simply incrementing either the x or y coordi-
nate, or both simultaneously. For sixteen orientations, two pixel
steps in the major line direction are followed by one pixel step
in the minor line direction. For ndir directions, the maximum
aggregated cost to be kept in memory will be ndir(Cmax+P2)
which becomes relevant when the data type for the S(p, d) is to
be chosen. If equation 1 is implemented reusing the previously
computedLr along the respective path, the time and space com-
plexity of the described cost aggregation step for a DSI of w by
h pixels and d disparities is O(whd) for any constant value
ndir .

In a third stage, to eventually derive the pixel matches, the
stereo shift d′min with the minimum cost is taken from the set
of S(p, d). Subpixel precision can be obtained by for instance
fitting a curve through the costs at the disparities next to d′min

and recalculating the final dmin from the minimum function
value. The last stage comprises the consistency check where er-
roneous stereo shifts due to mismatches or occlusions are elim-
inated. This often is achieved by reversing the role of the input
images, re-matching the bitmaps and testing the new disparities
against their counterparts from forward matching. Optionally,
before being written to a bitmap, the surviving consistent dis-
parity values can be filtered for example with a local median
operator to eliminate outliers.

3. SGM WITH AN ARBITRARY DIRECTION COUNT

To support any positive number of directions in SGM, the sim-
ple discretization scheme for 8 and 16 path orientations must be
abandoned. Instead, Bresenham’s four-connected component
line rasterizer is used to construct the paths for cost aggrega-
tion (Bresenham, 1965). This algorithm, which originates from
computer graphics, supports arbitrary slopes and uses efficient
integer additions and subtractions only. Cost aggregation now
comprises at most two coordinated sweeps over the disparity
space image as shown in figure 1.

3.1 Primary sweep

For the primary sweep performed first, the line shape of direc-
tion r is rasterized by running the Bresenham algorithm exactly
once over the full horizontal or vertical extent of the xy plane
of the DSI depending on the slope. Thus, path sampling must
begin in one of the DSI corners at the minimum disparity, i.e. at
(p0, d0). As a result, the longest sequence of linear segments,
or runs, in which the horizontal or vertical coordinate remains
constant is obtained for r (figure 2). The runs in general have a
variable length and characterize the fast-changing major direc-
tion of the line to be discretized.

To sum up the cost along a particular SGM path, the run se-
quence archetype is followed starting at the DSI boundary at
position (p, d) = (p0, d0) according to the sweep scheme. For
each run pixel, the cost Lr as of equation 1 is computed. The
obtained value gets added to cell (p, d) of the aggregation vol-
ume S which has the same dimensions as the disparity space
image. Position p is incremented or decremented by one in the
major path direction. When the current run of the precalculated
sequence is exhausted, the pixel position p will be incremented
or decremented with respect to the minor path direction, and
calculation will continue with the next run. If the DSI is even-
tually left, a new path of direction r next to the current one will
be processed. The position p is reset to the DSI boundary and
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Figure 1. Primary (red) and secondary (black) sweeps over the
disparity space image for paths with an arbitrary slope α

Figure 2. Runs r1, r2, r3 (red) of the rasterized line r with a
length of five, three and four pixels

altered by one pixel in the minor line direction, and the run se-
quence gets rewound to its start.

The primary sweep will be complete as soon as a new path of
direction r begins outside the DSI. When this happens, at least
50% (diagonal path, square image) and at most 100% (horizon-
tal or vertical path) of the matching cost for direction r have
been aggregated. Because adjacent rasterized paths are guar-
anteed to be piece-wisely parallel and tightly aligned when the
same run sequence gets repeatedly replayed as described, each
DSI pixel and its counterpart in the aggregation volume are vis-
ited exactly once during the primary sweep. Therefore, redun-
dant calculations are avoided. More importantly, no cost up-
date will be omitted or performed multiple times for a particu-
lar (p, d). This ensures that the aggregation volume will remain
unbiased when the minimum cost stereo disparities are chosen.

3.2 Secondary sweep

Except for perfectly horizontal and vertical path directions, a
secondary sweep will be needed to aggregate the matching cost
for the DSI pixels not visited during the primary sweep. Like
in the first pass, the run sequence is followed to obtain the DSI

pixel p for the calculation of Lr. However, the start position
of the k-th secondary path along the respective DSI boundary
is computed as the accumulated length of the runs r1, ..., rk of
the rasterized line prototype. Also, the path gets stripped off its
first k runs to be piecewisely adjacent to the paths of the primary
sweep (see figure 3). Overlaps and gaps are avoided during cost
aggregation between scanlines of the secondary sweep. The
sweep scheme prevents collisions with the positions visited in
the first pass over the disparity space image.

Figure 3. Truncation and shifted start of paths of the secondary
sweep (shades of gray) of direction r ensures the proper

alignment to the paths of the primary sweep (red)

4. IMPLEMENTATION AND OPTIMIZATION

As a proof of concept, the SGM algorithm has been reimple-
mented in platform-independent C++ based on run sequences
for the cost aggregation stage. The software prototype takes
two rectified RGB or graylevel TIFF input images with 8 or 16
bits per pixel and performs forward (left to right) and reverse
(right to left) stereo matching. On success, this will generate a
pair of floating-point TIFF bitmaps directly encoding the set of
consistent disparity values. Optionally, the median filter, small
segment removal and interpolation to fill up image areas with
invalid disparities from neighbor pixels can be applied to the
output in a postprocessing step.

Cost calculation utilizes the census function with a kernel of
7x7 pixels. The disparity space image and aggregation volume
are stored as partially consecutive 16 bit unsigned integers. As-
suming a penalty P2 = 100 for depth discontinuities, the maxi-
mum SGM path direction count before an aggregation overflow
occurs is calculated as nmax = b(216 − 1)/(72 + P2)c = 439
as of equation 2. Since in theory the runtime of the algorithm
will increase linearly with the number of SGM path directions,
the code has been applied optimizations to speed up all stages
of the matching process. Aside from pointer arithmetic, this
includes disparity gating, SIMD intrinsics and extensive multi-
threading.

4.1 Disparity gating

Like in tSGM, instead of running the matcher for a fixed pre-
determined range of stereo shifts, disparity gating dynamically
restricts the range for the disparities d per DSI pixel (p, d) de-
pending on the input image content. Therefore, the proposed
SGM algorithm is run on recursively subsampled bitmaps built
from the stereo pair. At the lowest resolution, the full image
width is taken as the range for the disparities d producing a first
estimate for the stereo shifts that occur for the pictured scene.
To accommodate mismatches, as a variation to tSGM, a local
histogram filter with a fixed support of 51x51 pixels is applied
to the disparity maps. It sets the disparity bounds to the lower
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and upper 16th percentile. The histogram can be quickly up-
dated as described in (Faugeras et al., 1993). When the window
is shifted horizontally or vertically over the disparity images,
O(max(fw, fh)) time complexity is achieved for each move
where fw and fh denote the filter dimensions.

The minimum and maximum disparities are subsequently passed
up the matching hierarchy range-gating the stereo shifts for the
image pair of the next higher resolution. Since the estimates
tend to become more precise at upper levels, less disparities
must be considered per pixel during cost aggregation along the
SGM paths compared to a predefined constant interval. Also,
the computed disparity range gets concentrated more accurately
around the true value. This reduces matching ambiguities and
improves the time efficiency of the algorithm. Runtime is fur-
ther optimized with a limit on the number of SGM path orien-
tations for the coarse tiers of the image pyramid while the max-
imum direction count will only be used for the full-resolution
level of detail.

Congruently to the speedup, the amount of storage space for
the DSI and aggregation volume will be greatly reduced when
only the necessary values with respect to the disparity interval
and reduced image dimensions are kept. Therefore, instead of a
three-dimensional memory block accommodating the full reso-
lution, the proposed implementation utilizes a single array of 16
bit unsigned integers sized to the sum over all per-pixel dispar-
ity ranges of the current SGM hierarchy level. Access to indi-
vidual matching cost values is facilitated indirectly through an
index structure. For each pixel p, the index holds the minimum
disparity considered d0, the disparity count and the address of
the first cost value assigned to p, i.e. the offset to (p, d0). Since
the array is consecutive in memory, pointer arithmetic can be
used to efficiently navigate adjacently stored costs, and a suit-
able alignment prepares the storage for vector instructions.

4.2 Multithreading

On a more technical level, the SGM implementation utilizes
multiple execution threads for its submodules based on OpenMP
(OpenMP Architecture Review Board, 2015). This will ideally
lead to a speedup that is directly proportional to the number of
available processor cores. For the cost computation, histogram
filter, minimum disparity calculation and postprocessing stages,
the involved local operators are run concurrently for each hori-
zontal image scanline with static scheduling.

The cost aggregation loop over the set of paths of direction
r along which the values Lr(p, d) are summed up is multi-
threaded using dynamic scheduling. In contrast to the default
scheduling policy of OpenMP using a fixed number of paths
per thread, dynamic scheduling effectively assigns each path its
own thread and starts processing a new scanline as soon as an-
other path has been entirely covered. Thus, with the lines of
varying length in the secondary SGM sweep, all CPU cores re-
main fully loaded for a maximum of efficiency. Because there
are no overlaps between the paths, there will be no race condi-
tion when the costsLr are stored concurrently to the cells (p, d)
of the aggregation volume. Therefore, time-consuming thread
synchronization to ensure exclusive data writes becomes un-
necessary, and the absence of any memory locks will positively
contribute to the scalability of the SGM implementation to a
high CPU core count. As a drawback, the use of multithreading
introduces duplicate data structures and hence a small memory
overhead. For example, the current and previously aggregated
matching costs along the path Lr(p, d) and Lr(p − r, d) now
must be kept and updated separately for each thread.

4.3 SIMD instructions

On the hardware level, census calculation and cost aggregation
of the SGM implementation are further parallelized using vec-
tor or SIMD (single instruction multiple data) commands sup-
ported by current processors. In these stages, instead of looping
over single data elements, blocks of input image pixels and con-
secutive cells of the DSI and aggregation volume are uniformly
processed by a single instruction in few clock cycles. The block
size which affects the achievable speedup depends on the actual
CPU architecture. For the dominating Intel and ARM proces-
sors, 8 (Intel SSE2/3/4, ARM NEON), 16 (Intel AVX/AVX2)
or 32 (Intel AVX512BW) unsigned integers of 16 bits as stored
by both three-dimensional data structures can be processed at
once (Intel Corporation, 2019)(ARM Limited, 2019).

For the census matching cost, the crucial part is to derive a bit-
mask that indicates which elements of the neighborhood have
an intensity greater or equal to the input image pixel under the
filter mask center. Using SSE2 instructions and retaining a sym-
metric kernel, the comparison can be performed simultaneously
for a row of seven pixels as shown in figure 4, and consequently,
the filter size is set to 7x7. In the C++ code, the SIMD instruc-
tions are prefixed with mm and take either 128 bit SSE regis-
ters or memory pointers aligned to 16 bytes as arguments.

Figure 4. C++ code with SSE2 intrinsics for the census bitmask

For SGM cost aggregation, the loop over the disparities con-
tained in equation 1 is rewritten. Here blocks of consecutive
stereo shifts dn, ..., dn+b−1 with b being the SIMD block size
are simultaneously processed. In the sample code for the SSE2
instruction set, the calculation of the Lr(p, d) comprises mul-
tiple vector additions, the subtraction of the mink Lr(p− r, k)
kept in a local variable and the 4-minimum operator (figure 5).
This operator, which is not directly available, must be emulated
with three calls to the binary minimum intrinsic.

5. PERFORMANCE ANALYSIS

Performance analysis of the proposed algorithm focuses on the
influence of the number of path directions on the quality of the
resulting disparity maps and the scalability of lock-free path-
wise multithreading on modern multi-core processors. For this
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Figure 5. C++ snippet with SSE2 intrinsics for cost aggregation

purpose, the optimized SGM implementation is passed a set of
RGB stereo images of a synthetic 3D scene (Frommholz, 2019).
The input bitmaps are 8192 by 6144 pixels (50.3 megapixels)
each with 8 bits per color channel. They cover an area of roughly
500 by 375 length units at a ground sampling distance (GSD)
of about 0.07 length units. The images have been rendered by
a raytracing software where the virtual pinhole cameras satisfy
the stereo normal case. Except for inherent aliasing artifacts
suppressed by excessive oversampling with 81 rays per pixel,
the bitmaps are free of distortions and noise. Congruently to the
stereo pair, the raytracer also provides depth ground truth that
comprises the z coordinates of the intersections when the emit-
ted rays hit the scene objects. If the disparity maps of SGM are
triangulated keeping only the z coordinates, both the actual and
ground truth z images will become directly comparable, and as
long as the z axis and viewing vector approximately coincide,
matching errors will get reflected adequately. Also, by work-
ing on the z coordinates instead of raw stereo shifts, there will
be an immediate connection to the height values of the pictured
synthetic 3D geometry which simplifies manual point sampling.
Figure 6 depicts the reference data set.

5.1 Matching quality

For the matching quality, the SGM implementation is run on
the synthetic input images with a steadily increasing number of
path directions ndir . Aggregation for most passes is carried out
symmetrically along the k = 0, ..., ndir − 1 lines with inclina-
tions of k · 360◦/ndir . However, the initial path angle of runs
8/11 and 16/7 is 11◦ and 7◦ respectively. The prime offsets
have been chosen to reduce the chance of a correlation between
the direction of the scanlines and the predominant orientation
of the imaged scene objects. Penalties remain fixed at P1 = 90

(a) (b)

(c) (d)

Figure 6. Synthetic reference data (a) left image, (b) right image,
(c) left z bitmap, (d) right z bitmap

and P2 = 100 for slowly and rapidly changing depths. The
lower and upper disparity bounds estimated on all levels of the
matching pyramid are widened by 20 pixels to absorb errors.
Output stereo shifts for the left-to-right and right-to-left SGM
passes are checked for consistency and filtered allowing a max-
imum deviation of one pixel. Any other postprocessing or in-
terpolation remains disabled. The produced disparity maps are
transformed into z images of which the left-to-right bitmap is
compared to the ground truth pixel by pixel. Statistics are com-
piled for the entire scene and two subsets comprising detailed
objects (i.e. Sierpinsky tetrahedra of 4, 5 and 6 iterations) and
a homogeneously textured cube. These special cases tend to be
prone to matching errors in practice and hence are of particular
interest.

Matching quality will be quantified in terms of coverage and
accuracy. For this purpose, the number of successfully recon-
structed points nvalid, the median height deviation from the
ground truth ∆̃h and the aggregated count of pixels with an ab-
solute height error less or equal than 0.2 length units n∆h≤0.2

are determined. The threshold has been empirically chosen as
roughly three times the ground sampling distance. Table 1 lists
the statistics for the whole scene where the row labeled ”gt” has
the reference values. It shows that the number of pixels with
a valid correspondence basically stagnates between 85.5% and
85.95% when the path count increases. The median distance
error to the ground truth first falls quickly, decreases by around
11% from ndir = 8 to ndir = 96 and stabilizes for the upper
zone of directions tested. Similarly, over the medium range of
orientations, the number of accurate pixels with a height devia-
tion below three times the GSD grows by about 2%.

However, for ndir = 4, 8, 12 and 16, spikes occur in the num-
ber of valid pixels. For these cases, the median height error
remains in line, and the values n∆h≤0.2 mostly increase dis-
proportionately compared to the neighboring direction counts.
Hence, the new consistent disparities likely have contributed to
the accurate pixel class, and there must have been a move of
already successfully matched stereo shifts towards smaller dis-
tance deviations. A review of the produced z images for the
respective configurations indicates that the cause for this effect
is local minima in the disparity space image which specifically
occur perpendicularly to the direction of perspective distortions,
e.g. on wall surfaces of high-rise buildings (figure 7). Due to
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their low cost, these regions will be followed by aggregation
paths that have a similar orientation, which is the correct solu-
tion according to equation 1. For dense and accurate surface re-
construction, it may therefore be beneficial to analyze the DSI
three-dimensionally for linear structures and run SGM with a
set of paths coinciding with their orientation.

(a) (b)

Figure 7. Dense reconstruction of wall surfaces with perspective
distortion using SGM with eight orientations (a) RGB image, (b)

height image with streaks of valid pixels

In congruence to this observation, when the direction count re-
mains constant but the start angle of the paths is altered break-
ing the alignment to the DSI minima, the number of valid pix-
els significantly drops. Remarkably, for 8 directions/11◦ and
16 directions/7◦ respectively, using oddly oriented aggregation
scanlines reduces the median distance error to the ground truth
to values obtained for 24 and 32 directions. The number of
accurate pixels also drops by 0.73% (ndir = 8/0◦ to ndir =
8/11◦) and 1.02% (ndir = 16/0◦ to ndir = 16/7◦) which, for
eight directions, is less than the decrease in consistent dispari-
ties. Thus, if the distance error is to be optimized with SGM in
general, it may be advantageous to start cost aggregation with
an angular offset and choose a low direction count for speed.

For the high-detail subset of the synthetic stereo pair, table 2
contains the coverage and accuracies. The number of success-
fully matched pixels is about 3-4% below the values for the full
scene. Except for the settings with an angular offset, it grows
slowly with a rising path direction count by 1% from ndir = 8
to ndir = 256. The median distance deviation to the ground
truth is greater by roughly 0.02 length units. Introducing an-
gular offsets for the paths decreases the number of valid pixels
and lowers the height error to a value that even outperforms
the configuration with 256 directions. Hence, for detailed ob-
jects to be reconstructed, either a substantial number of orienta-
tions or oddly rotated paths is the strategy of choice for SGM.
However, on the examined Sierpinsky tetrahedra, if the number
of directions is increased and the final aggregated cost S(p, d)
stabilizes, the distribution of valid pixels will also change. Iso-
lated disparity pixels and small regions vanish in favor of larger
consolidated segments. This may be disadvantageous for a sub-
sequent interpolation step because supporting points inside the
nodata areas will get lost. Figure 8 illustrates selected results.

For the homogeneously textured cube, the statistics are given
in table 3. Due to the ambiguous input pixels, the number of
points that survived the consistency check of the matcher is only
around two thirds of the reference. It slowly rises by 3% when

ndir nvalid nvalid
(%gt)

∆̃h n∆h≤0.2 n∆h≤0.2
(%gt)

2 41089737 81.64 0.1757 23014714 45.73
3 42929427 85.29 0.1450 28233346 56.09
4 43791793 87.01 0.1272 32563113 64.70
5 42891974 85.22 0.1196 32568512 64.71
7 42895249 85.23 0.1076 34648613 68.84
8 43414535 86.26 0.1069 36053523 71.63

8/11 42755256 84.95 0.0965 35687637 70.90
9 43002263 85.44 0.1016 35683318 70.90

10 43062698 85.56 0.1059 35630609 70.79
11 43034508 85.50 0.0988 36113585 71.75
12 43289729 86.01 0.1030 36715790 72.95
16 43226879 85.88 0.0990 36812149 73.14

16/7 42980344 85.39 0.0954 36301323 72.12
24 43205948 85.84 0.0964 36901649 73.32
32 43210518 85.85 0.0954 36925649 73.36
48 43224382 85.88 0.0948 36928646 73.37
64 43233481 85.90 0.0947 36932487 73.38
96 43244271 85.92 0.0946 36937123 73.39

128 43249586 85.93 0.0945 36940793 73.39
256 43257902 85.95 0.0945 36947720 73.41
384 43260465 85.95 0.0945 36950916 73.41

gt 50331648 100 0 50331648 100

Table 1. Coverage and accuracy for the synthetic stereo pair
processed with different numbers of SGM path directions

ndir nvalid nvalid
(%gt)

∆̃h n∆h≤0.2 n∆h≤0.2
(%gt)

4 1696562 80.79 0.1565 1098606 52.31
8 1715489 81.69 0.1268 1326036 63.14

8/11 1709570 81.41 0.1180 1367170 65.10
16 1727627 82.27 0.1211 1376957 65.57

16/7 1726522 82.22 0.1187 1383644 65.89
24 1731993 82.48 0.1195 1388886 66.14
32 1733444 82.55 0.1192 1389931 66.19
64 1735478 82.64 0.1191 1392539 66.31

128 1736358 82.68 0.1191 1393706 66.37
256 1736889 82.71 0.1191 1394281 66.39

gt 2100000 100 0 2100000 100

Table 2. Coverage and accuracy for a scene subset with detailed
objects processed with different numbers of SGM path directions

the SGM path direction count gets ramped up with slight drops
on the angular offsets. Starting with an initial prime slope does
not reduce the median height error which is approximately 1%
higher than for the detailed objects and basically remains static
beyond ndir = 32. The increasing number of new valid sam-
ples is accompanied by a growth in accurate pixels whose num-
ber rises by roughly 6% over the entire direction range shown
and by nearly 3% from ndir = 8. Hence, although the absolute
distance deviation can hardly be lowered by a vast number of
path directions in semi-global matching, the point density will
benefit when little information is present in the input data. In
addition, when a high orientation count is selected, the charac-
teristic streaking artifacts of SGM that were addressed by the
more global matching approach will diffuse into an undirected
point pattern as depicted in figure 9.

5.2 Runtime and scalability

The impact of a high number of path directions on the runtime
of the optimized SGM implementation is evaluated for both the
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ndir nvalid nvalid
(%gt)

∆̃h n∆h≤0.2 n∆h≤0.2
(%gt)

4 253275 67.54 0.1426 173561 46.28
8 255508 68.14 0.1307 185310 49.42

8/11 247662 66.04 0.1320 176980 47.19
16 258112 68.83 0.1283 189932 50.65

16/7 256933 68.52 0.1295 186812 49.82
24 259935 69.32 0.1277 191561 51.08
32 261237 69.66 0.1278 192638 51.37
64 263520 70.27 0.1276 194786 51.94

128 264350 70.49 0.1275 195643 52.17
256 264812 70.62 0.1274 195909 52.24

gt 375000 100 0 375000 100

Table 3. Coverage and accuracy for a low-texture cube
processed with different numbers of SGM path directions

(a) (b)

(c) (d)

Figure 8. SGM on the detailed scene subset (a) RGB image, (b)
height image for 8 directions, (c) 8 directions offset by 11◦, (d)

256 directions

Intel x86-64 and ARM v7 platforms representing server-class
hardware and mobile devices. For x86-64, the test system is
built around a 2019 AMD EPYC 7402p processor with 24/48
cores running at 2.8 to 3.35 GHz and 256 GiB 8-channel DDR4
RAM. On the ARM side, runtime is measured on a Hardkernel
Odroid-U3 single board computer (SBC) from the year 2014. It
comes with a 32-bit Cortex A9 quad core CPU nominally run-
ning at 1.7 GHz and 2 GiB LP-DDR2 RAM. On both systems,
Linux with 5-series kernels is installed as the operating system.

Since the server hardware offers plenty of resources, measure-
ments are on the full-scale synthetic images that were used for
matching quality analysis. The SGM implementation is com-
piled to optimized binaries without platform-specific tuning.
For x86-64, the executables have been built from the platform-
independent C++ code and the C++ code manually enhanced
with SSE2/SSE4.2 and AVX2 intrinsics for the cost calculation
and aggregation steps as outlined previously. The software uti-
lizes 24 threads of execution, i.e. one per physical processor
core. Due to the lack of memory, the ARM SBC is given a re-

(a) (b)

(c) (d)

Figure 9. SGM on a low-texture cube (a) RGB image, (b) height
image for 8 directions, (c) 8 directions offset by 11◦, (d) 256

directions

sampled version of the stereo pair of 2048 by 1536 pixels (3.15
megapixels). Two versions of SGM with and without NEON
SIMD intrinsics have been executed using four threads. Table 4
shows the overall runtime in seconds including image I/O.

ndir x86-64
C++

x86-64
SSE2/4

x86-64
AVX2

ARM
C++

ARM
NEON

1 54 64 73 82 124
2 60 69 79 92 138
4 66 71 81 97 135
8 74 73 83 116 148

16 91 82 92 146 168
24 109 90 100 175 188
32 128 99 109 205 209
64 200 131 144 321 289

128 346 198 214 556 449
256 636 331 351 1023 772
384 925 462 491 1491 1098

Table 4. Runtime in seconds for the SGM implementation on
Intel x86-64 and ARM v7 platforms

In practice, runtime grows nonlinearly with the direction count.
The increase from 8 to 16 orientations is 12% on x86-64 with
SSE intrinsics and 26% on ARM using plain C++ code. Qua-
drupling the number of directions from 8 to 32 extends the run-
time by 36% and 77% respectively. Moreover, processing speed
does not always benefit from SIMD optimization. On both plat-
forms, for low to medium numbers of path directions, the bina-
ries built from plain C++ code outperform their manually vec-
torized counterparts. This indicates that current C++ compil-
ers already generate very efficient machine code. Also, when
a sparse set of aggregation paths predominantly runs through
DSI pixels that have been assigned narrow disparity ranges, the
data transfer overhead from and to the dedicated SIMD registers
may outweigh the efficiency gain from simultaneously process-
ing blocks of stereo shifts. When ndir exceeds 16 (Intel) and 32
(ARM), SIMD becomes clearly faster than unvectorized code.
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On the EPYC CPU, SSE commands beat the wider and more
recent AVX2 instructions. This may be due to limitations of its
floating-point/vector execution pipelines (Fog, 2019).

To assess the scalability of path-wise parallelization for the cost
aggregation stage, the SGM implementation is executed with
a constant number of 16 scanline directions but an increasing
number of processing threads. Table 5 summarizes the runtime
in seconds for the fastest binaries for this configuration.

threads 1 2 4 8 16 24 32 48
x86-64
SSE2/4

997 575 340 199 102 77 71 66

ARM
C++

557 281 143 - - - - -

Table 5. Runtime in seconds for different thread counts

On both platforms, doubling the number of processing threads
lowers the runtime by a factor of 1.69 to 1.98 until the physi-
cal CPU cores are exhausted. Hence, the SGM implementation
with path-wise multithreading almost scales linearly on the test
machines. There is a marginal speedup when the logical cores
are included and competition for memory bandwidth and arith-
metic units of the processor starts.

6. CONCLUSION

This paper has outlined an implementation of semi-global match-
ing that allows an arbitrary number of directions for cost aggre-
gation. For each direction, a template sequence of line runs
is constructed utilizing Bresenham’s rasterizer. The runs are
followed in at most two coordinated sweeps over the image to
update the costs for each pixel and disparity. Since overlaps
cannot occur, each path can be traced in its own thread without
write locks. Runtime is further minimized through disparity
gating and the use of SIMD instructions. Tests on synthetic
stereo images with a high number of aggregation directions
have revealed an improved point coverage and reduced height
error. Future work will explore how the orientation count and
path slopes can be dynamically adjusted to the image content
and initial SGM cost volume in order to minimize the devia-
tion and optimize the data throughput on real-world imagery.
For mobile devices with limited CPU resources, a GPU-based
implementation of the proposed algorithm is to be evaluated.

REFERENCES

ARM Limited, 2019. ARM C language extensions docu-
mentation. https://developer.arm.com/architectures/system-
architectures/software-standards/acle (10 January 2020).

Boykov, Y., Veksler, O., Zabih, R., 2001. Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(11), 1222-1239.

Bresenham, J. E., 1965. Algorithm for computer control of a
digital plotter. IBM Systems Journal, 4(1), 25–30.

Cox, I. J., Hingorani, S. L., Rao, S., Maggs, B. M., 1996. A
maximum likelihood stereo algorithm. Computer Vision and
Image Understanding, 63, 542-567.

Facciolo, G., de Franchis, C., Meinhardt, E., 2015. MGM: A
significantly more global matching for stereovision. Proceed-
ings of the British Machine Vision Conference, BMVA Press,
90.1–90.12.
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