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ABSTRACT:

Motivated by the need to identify erroneous disparity assignments, various approaches for uncertainty and confidence estimation of
dense stereo matching have been presented in recent years. As in many other fields, especially deep learning based methods have
shown convincing results. However, most of these methods only model the uncertainty contained in the data, while ignoring the
uncertainty of the employed dense stereo matching procedure. Additionally modelling the latter, however, is particularly beneficial
if the domain of the training data varies from that of the data to be processed. For this purpose, in the present work the idea of
probabilistic deep learning is applied to the task of dense stereo matching for the first time. Based on the well-known and com-
monly employed GC-Net architecture, a novel probabilistic neural network is presented, for the task of joint depth and uncertainty
estimation from epipolar rectified stereo image pairs. Instead of learning the network parameters directly, the proposed probabilistic
neural network learns a probability distribution from which parameters are sampled for every prediction. The variations between
multiple such predictions on the same image pair allow to approximate the model uncertainty. The quality of the estimated depth
and uncertainty information is assessed in an extensive evaluation on three different datasets.

1. INTRODUCTION

Nowadays, deep learning based algorithms are frequently em-
ployed to process high dimensional data in order to accomplish
a wide range of complex tasks - often with convincing res-
ults. As a consequence, initially the precision of these results
is rarely questioned and the associated uncertainty is equally
rarely determined. However, it is obviously crucial to be able
to assess how trustworthy a result is. This is particularly true
for safety-critical applications. Assigning a high level of uncer-
tainty to erroneous predictions can prevent a system from taking
wrong decisions with potentially fatal consequences.

Consequently, the estimation of uncertainty is the topic of many
recent investigations in the field of computer vision and photo-
grammetry, especially in the context of deep learning. This also
applies to the task of dense stereo matching, in which depth is
determined for every or at least a large majority of pixels within
a stereo image pair. In principle, depth reconstruction from ste-
reo images can be interpreted as inverse operation to a perspect-
ive projection. Since the projection of a 3D scene to a 2D image
plane results in a dimensionality reduction, the inverse opera-
tion does not have a unique solution in general, characterising
it as ill-posed. To determine a solution nevertheless, the identi-
fication of point correspondences within at least two images of
a stereo pair is a prerequisite in general. However, especially
under challenging conditions, depth reconstruction approaches
might not be able to identify the correct correspondences for all
pixels. A measure of uncertainty is therefore important in order
to assess the quality of the reconstructed depth information.

However, the majority of approaches for modelling the uncer-
tainty of dense stereo matching only take into account the un-
certainty contained in the data, called aleatoric uncertainty. The
uncertainty contained in a learned model, called epistemic un-
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Figure 1: Advantages of modelling epistemic uncertainty.
Compared to aleatoric uncertainty alone, the combination of
aleatoric and epistemic uncertainty shows a significantly better
correspondence with the real error distribution.

certainty, is thereby neglected. While aleatoric uncertainty in-
dicates image regions which are in general hard to match, such
as repetitive patterns or texture-less surfaces, it does not react
on samples which are hard to match, since they are too different
to the data used for training the network. Epistemic uncertainty
on the other hand, is able to indicate patches which are out-
side of the learned distribution, which is especially valuable if
the training and the test domain are different or if the training
data does not cover all possible variations of the test domain.
The latter is, for example, the case for real-world applications
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where the test domain is too complex to be covered completely
within the training data.

In order to model both, aleatoric and epistemic uncertainty, in
the present work a novel probabilistic neural network is presen-
ted. While depth and aleatoric uncertainty are directly predicted
by the network, for the purpose of epistemic uncertainty estima-
tion, the proposed probabilistic neural network learns a probab-
ility distribution from which parameters are sampled for every
prediction, instead of learning the network parameters directly.
Based on the variations between multiple such predictions, the
epistemic uncertainty is approximated. The evaluation of the
proposed network is two-folded: On the one hand, the qual-
ity of the estimated uncertainty is assessed. On the other hand,
the impact on the accuracy of the depth predictions is evaluated
and compared against a deterministic baseline. Thus, the main
contributions of this work are:

• A neural network architecture allowing to jointly estimate
dense depth and uncertainty from epipolar rectified stereo
image pairs, based on probabilistic deep learning.

• An investigation of the effects of probabilistic deep learn-
ing on an end-to-end learned network trained for the task
of dense stereo matching.

• An extensive evaluation of the behaviour of the modelled
uncertainty on the training domain as well as on two addi-
tional well established datasets.

2. RELATED WORK

Within this section, first current approaches for obtaining depth
from a stereo image pair are reviewed. This serves as a founda-
tion for the justification for the choice of the network architec-
ture used later. Subsequently, the state of the art in uncertainty
estimation in the context of dense stereo matching is discussed.

2.1 Depth Estimation

Motivated by the superior accuracy compared to classical ap-
proaches, such as Semi-Global Matching (Hirschmuller, 2008)
or ELAS (Geiger et al., 2010), deep learning based methods,
carrying out the task of dense stereo matching, gained popular-
ity in recent years. While some of those methods map single
parts of the dense stereo matching pipeline (Scharstein, Szeliski,
2002) to a neural network, such as matching cost computa-
tion (Zbontar, LeCun, 2016) and disparity optimisation (Seki,
Pollefeys, 2017), others learn the whole process end to end.

In (Mayer et al., 2016), for example, an encode-decoder archi-
tecture is adapted to directly predict a depth map based on a
stereo image pair. To avoid learning the matching task from
scratch, the authors further propose a variation of their basic ar-
chitecture: First, the two images are processed individually in
order to extract features, before a correlation layer is used to
relate these features to find correspondences. The idea of map-
ping the single components of the classical dense stereo match-
ing pipeline to a neural network architecture is further pursued
in (Kendall et al., 2017). After extracting features from the im-
ages individually, these features are used to build a cost volume
which is optimised using 3D convolutions in an encoder de-
coder based structure. The final disparity map is obtained using
a differentiable soft argmin operation. In (Chang, Chen, 2018)
on the other hand, the feature extraction step is extended by us-
ing spatial pyramid pooling. This approach allows to exploit

global context by combining context from multiple scales res-
ulting in more meaningful features.

2.2 Uncertainty Estimation

In the literature, a wide variety of different approaches for un-
certainty estimation in the context of dense stereo matching,
also referred to as confidence estimation, are presented. A ma-
jority of these methods operate based on a disparity map only
(Poggi, Mattoccia, 2017, Tosi et al., 2018) or additionally take
into account the RGB image used to compute the disparity map
in the first place (Fu et al., 2019), considering the algorithm
used to obtain the disparity map as black box. (Veld et al., 2018)
as well as (Mehltretter, Heipke, 2019) on the other hand, estim-
ate the uncertainty using information contained in the 3D cost
volume which is an intermediate representation present in most
dense stereo matching algorithms. Benefiting from the addi-
tional information contained in such cost volumes compared to
disparity maps, these methods allow a more accurate estimation
of the uncertainty.

All the methods mentioned so far, interpret uncertainty estima-
tion as a subsequent task to depth estimation. In consequence,
the obtained uncertainty has no influence on the depth estima-
tion process. Learning to predict depth and uncertainty jointly,
however, allows to use the obtained uncertainty as natural reg-
ularisation for the depth estimation, resulting in an improved
accuracy. Thus, in (Shaked, Wolf, 2017) and (Kim et al., 2019)
neural network architectures are proposed allowing to estimate
depth and uncertainty jointly, based on a previously built cost
volume. In addition, in (Kendall, 2017) a neural network is
trained end-to-end in the sense that it predicts depth and aleat-
oric uncertainty directly based on a stereo image pair.

In all of these methods, only aleatoric uncertainty is taken into
account, while epistemic uncertainty is not considered. How-
ever, the epistemic part is crucial to approximate the true un-
certainty of a depth prediction as good as possible. Further-
more, epistemic uncertainty delivers valuable information re-
garding a learned model being suitable or not to process a spe-
cific set of data, and indicates data samples which are outside
of a learned distribution. Therefore, an increasing number of
approaches is presented recently, based on Bayesian models,
which offer a mathematical framework to reason about model
uncertainty and allow to estimate both, aleatoric and epistemic
uncertainty (Blundell et al., 2015, Gal, Ghahramani, 2016, Wen
et al., 2018). The ability of these methods to provide a good
measure for uncertainty has already been demonstrated on vari-
ous tasks such as monocular depth prediction and semantic seg-
mentation (Kendall, Gal, 2017) as well as classification and re-
gressing optical flow (Gast, Roth, 2018). However, the idea of
estimating epistemic uncertainty via probabilistic deep learning
is not yet applied to the task of dense stereo matching.

3. METHODOLOGY

In this section, the previously discussed idea of modelling both,
aleatoric as well as epistemic uncertainty, is applied to the task
of dense stereo matching. For the purpose of joint depth and un-
certainty estimation from epipolar rectified stereo image pairs,
we adapt a common neural network architecture, which is briefly
outlined in Section 3.1. While aleatoric uncertainty is directly
predicted by the network, we infer epistemic uncertainty by
transforming the network architecture into a probabilistic rep-
resentation (c.f. Sec. 3.2).
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Figure 2: Probabilistic GC-Net architecture. Based on the GC-Net architecture (Kendall et al., 2017), the 2D and 3D convolutional
layers have been adapted to sample the corresponding parameters from a probability distribution instead of learning them directly.

3.1 Basic Architecture

As a basis of our subsequently proposed probabilistic neural
network, the GC-Net architecture presented in (Kendall et al.,
2017) is utilised, which consists of four major processing steps:

First, features are extracted from both images of a pair separ-
ately, using two branches of 2D convolutional layers arranged
in residual blocks. In order to force the network to extract sim-
ilar features from both images, the weights from both branches
are shared. In the second step, a cost volume is built by con-
catenating features from the left image with features from the
right image along the corresponding horizontal epipolar line
and for all disparity levels within a specified range. The result-
ing 4D volume is further processed using 3D convolutional and
transposed convolutional layers arranged in an encoder-decoder
structure with skip connections. This allows the network to op-
timise the cost volume on different scales and with a wide field
of view. In the last step, a disparity map is extracted from the
optimised cost volume using a differentiable soft argmin layer.

Following the modifications proposed in (Kendall, 2017), the
network is enabled to also predict aleatoric uncertainty. For this
purpose, the last 3D transposed convolutional layer is modified
to predict two 3D volumes instead of one. The first volume
contains the cost information, the second one the correspond-
ing uncertainties. The aleatoric uncertainty map is obtained by
averaging the uncertainty values along the disparity axis.

The GC-Net architecture demonstrates good accuracy for the
tasks of depth and aleatoric uncertainty estimation, while hav-
ing a relatively low number of parameters (∼2.8 Mio.), mainly
justified by the absence of fully-connected layers. The low
number of parameters is especially important in the context of
our goal to transform the architecture into a probabilistic rep-
resentation, since this procedure may multiply the number of
parameters, depending on the distribution types used.

3.2 Epistemic Uncertainty Estimation

Since the reviewed GC-Net architecture only allows to estim-
ate aleatoric uncertainty, in the present work we transfer this
architecture from a deterministic to a probabilistic represent-
ation (c.f. Fig. 2). Using such a probabilistic representation,
we enable the network to additionally estimate epistemic uncer-
tainty. In more detail, we realise a Bayesian approach, where
the weights W of 2D and 3D convolutional layers are sampled
from a probability distribution qΘ which is optimised during

training, instead of learning the weights directly. Consequently,
for every prediction a different set of weights is sampled, res-
ulting in varying disparity maps for the same image pair. Since
the differences between these disparity maps result from the
model’s uncertainty to assign disparities to certain pixels, these
variations are used to approximate the epistemic uncertainty.

For this purpose, the network predicts a disparity d̂ and a vari-
ance σ̂2 for every pixel i of the left input image. For every
prediction t a set of weights W is sampled from the distribu-
tion qΘ with learned parameters Θ, resulting in a Monte Carlo
sampling approach. To obtain the final disparity estimate d̄, the
prediction is repeated T times and the results are averaged:

d̄i =
1

T

T∑
t=1

d̂i,t . (1)

The final variance which corresponds to a disparity di is ap-
proximated according to (Kendall, Gal, 2017), by simply adding
epistemic and aleatoric uncertainty:

Var(di) ≈
1

T

T∑
t=1

(d̂i,t − d̄i)2 +
1

T

T∑
t=1

σ̂2
i,t , (2)

where the first part, the variance of the predicted disparities,
represents epistemic and the second part, the average of the pre-
dicted variances σ̂2, represents aleatoric uncertainty.

In this work, we realise qΘ via the combination of normal dis-
tributions. Consequently, for every weight that is sampled from
such a normal distribution instead of being learned directly, a
mean and a variance need to be learned, which doubles the num-
ber of parameters. To keep this number as low as possible, only
2D and 3D convolutions are replaced, 3D transposed convolu-
tions, on the other hand, are retained deterministically. This
procedure allows the feature extraction (2D convolutions) and
multi-scale feature matching (3D convolutions) steps to pro-
duce varying results, while keeping the feature map upscaling
operations (3D transposed convolutions), carried out in the de-
coder part of the cost volume optimisation step, constant.

3.3 Loss Function

The proposed probabilistic neural network is trained end-to-end
in a supervised manner, assuming ground truth disparity to be
known. For this purpose, a two-part loss function is used:

L(d, d̂,Θ) = LReg(d, d̂) + LProb(Θ) , (3)
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where LReg describes the regression task itself, while LProb

regularises the probabilistic components of our neural network
architecture. Moreover, d is the reference disparity, d̂ the estim-
ated disparity and Θ are the parameters of the network. The re-
gression part of the loss function is taken from (Kendall, 2017)
and is defined as:

LReg(d, d̂) =
1

N

N∑
i=1

1

2
exp(−si)||di − d̂i||+

1

2
si , (4)

where the log variance si = log σ̂2
i is predicted instead of re-

gressing the variance σ̂2
i directly. This procedure is numeric-

ally more stable and prevents the loss from being divided by
zero. Furthermore, the predicted aleatoric uncertainty is used
as a weight for the difference between estimated and reference
disparity in order to balance the influence of difficult and simple
samples, respectively. Finally, the loss is averaged over all N
pixels processed in a single forward pass.

The second part of our loss function uses the Kullback-Leibler
divergenceKL (Kullback, Leibler, 1951) as regularisation term:

LProb(Θ) = KL(qΘ||p) , (5)

where p is the real but intractable probability distribution of our
probabilistic model and qΘ is an approximation of the real dis-
tribution, which is described by a set of parameters Θ. During
training, qΘ is optimised using variational inference (Graves,
2011) to minimise the Kullback-Leibler divergence up to a con-
stant, also referred to as negative Evidence Lower Bound.

4. EXPERIMENTAL RESULTS

Within this section, the previously introduced probabilistic deep
learning approach is analysed and evaluated. For this purpose,
the results of three different datasets are assessed, which are in-
troduced in Section 4.1. The estimated depth and uncertainty
values are evaluated and compared against the results of the
original neural network (GC-Net) (Kendall et al., 2017) and a
modified version which additionally estimates aleatoric uncer-
tainty (GC-Net-A) (Kendall, 2017). To allow a direct compar-
ison, both variants are trained following the same strategy used
for training our probabilistic neural network (c.f. Sec. 4.2).

To gain a better understanding of the effects, caused by the pro-
posed transfer of the original neural network into a probabilistic
representation, two different variants of our approach are invest-
igated. Besides the one presented in the previous section, we
additionally trained a variant which does not consider aleatoric
uncertainty, but estimates disparity and epistemic uncertainty
only. While both variants are based on the same network archi-
tecture, for the latter one, the regression part of the loss function
(c.f. Eq. 4) is replaced by a standard L1-loss, as it was used to
train the original GC-Net.

For all experiments, the number of predictions performed to
estimate a disparity and an uncertainty map using our probab-
ilistic neural network is set to T = 50 (c.f. Eq. 1 and Eq. 2).
As can be seen in Figure 3, an increasing number of predic-
tions improves the stability of the estimated disparity maps, in
the sense that the standard deviation of multiple estimates for
the same stereo image pair decreases. At the same time, how-
ever, an increased number of predictions also leads to a higher
computational effort and thus to a longer processing time. In
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Figure 3: Necessary number of predictions during test time.
With increasing number of predictions T used for estimating a
disparity map d̄i (c.f. Eq. 1), the average pixel-wise standard de-
viation of i such estimates decreases and converges against the
epistemic uncertainty. Here this effect is shown for i = 10 on
four different image pairs.

consequence, performing 50 predictions seems to be a reason-
able trade-off, since only minor improvements can be achieved
by running additional predictions.

4.1 Datasets

For the experiments carried out in the context of this work, three
datasets are used, which all consist of stereo image pairs with
known reference depth: Sceneflow FlyingThings3D (Mayer et
al., 2016), KITTI 2015 (Menze, Geiger, 2015) and Middlebury
v3 (Scharstein et al., 2014). The Sceneflow dataset contains
more than 25k synthetic stereo image pairs showing a high di-
versity of different scenes. For all images, sub-pixel accurate
dense reference disparity maps are available. On the other hand,
the KITTI dataset contains real image pairs, which were cap-
tured using vehicle mounted stereo camera set-ups and provides
LIDAR based ground truth disparity maps with disparities for
30 % of the pixels. Containing various street scenes from urban
as well as rural environments, this dataset still poses a challenge
to dense stereo matching algorithms. Finally, the Middlebury
dataset contains 15 image pairs showing various indoor scenes
captured with a static stereo set-up and providing dense ground
truth disparity maps based on structured light. Due to hardware
limitations, the images of the Middlebury dataset are processed
at one quarter of the original resolution, within this evaluation.

4.2 Training Procedure

To train the proposed probabilistic neural network, the stereo
image pairs contained in the Sceneflow dataset are used. From
these image pairs, random extracts of size 256×128 are cropped
and fed to the network during training. Using a batch size of
1 the network is trained for 12 epochs, in the sense that one
extract from every image pair is seen per epoch. While the
parameters of the probabilistic 2D and 3D convolutional lay-
ers are updated via variational inference using Flipout (Wen et
al., 2018), for the 3D transposed convolutional layers Glorot
initialisation (Glorot, Bengio, 2010) is used. Finally, RMSProb
with a learning rate of 1× 10−3 is employed for optimisation.

4.3 Depth Evaluation

In the first part of the evaluation, the accuracy of the dispar-
ity maps estimated by the proposed probabilistic neural net-
work is assessed and compared to the results of the original
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Error Uncertainty
> 1 px[%] > 3 px[%] > 5 px[%] MAE [px] RMSE [px] Aleatoric [px] Epistemic [px]

Sceneflow (Mayer et al., 2016)
GC-Net 13.9 8.0 6.5 10.15 14.99 - -
+ Aleatoric Uncertainty 15.8 10.1 8.5 9.98 18.32 2.95 -
+ Epistemic Uncertainty (ours) 15.4 8.8 7.1 9.08 14.18 - 3.60
+ Alea. and Epis. Unc. (ours) 15.2 9.3 7.6 9.47 14.88 2.10 2.65

KITTI 2015 (Menze, Geiger, 2015)
GC-Net 57.9 25.9 16.4 4.34 11.62 - -
+ Aleatoric Uncertainty 86.7 69.9 62.1 47.27 75.43 6.57 -
+ Epistemic Uncertainty (ours) 57.8 26.1 16.1 3.34 8.00 - 9.41
+ Alea. and Epis. Unc. (ours) 83.5 62.4 52.7 22.29 39.72 4.61 11.56

Middlebury v3 (Scharstein et al., 2014)
GC-Net 30.4 15.5 11.3 4.10 10.33 - -
+ Aleatoric Uncertainty 40.5 25.7 21.2 9.94 25.36 3.71 -
+ Epistemic Uncertainty (ours) 32.8 17.9 12.9 3.85 9.37 - 5.12
+ Alea. and Epis. Unc. (ours) 34.5 19.8 15.0 4.38 10.48 3.08 3.85

Table 1: Quantitative results on the three evaluated datasets. From the Sceneflow and the KITTI dataset, 100 random image pairs
and from the Middlebury dataset, all 15 training pairs are used for evaluation. The results are compared against the original GC-Net
architecture (Kendall et al., 2017) and a modified variant which allows to estimate aleatoric uncertainty (Kendall, 2017).

GC-Net (Kendall et al., 2017) and a variant which additionally
estimates aleatoric uncertainty (Kendall, 2017). Analysing the
results presented in Table 1, it can be seen that both variants
of our probabilistic approach, with and without the additional
estimation of aleatoric uncertainty, predict disparity maps for
the Sceneflow dataset with an accuracy comparable to the one
of the original approach. While the percentages of ”bad” pixels
(deviation of the estimated from the reference disparity is larger
than a specified threshold) are slightly higher for the probabil-
istic approach, the mean average error (MAE) as well as the root
mean square error (RMSE) are a bit lower. A similar behaviour
can be observed on the Middlebury dataset.

The qualitative results shown in Figure 6 illustrate that the ori-
ginal GC-Net is superior in estimating the correct disparity for
fine structures, while our probabilistic approach tends to over-
smooth such details. For large low-textured areas, on the other
hand, our method is able to estimate the correct disparity for
a majority of the pixels, while the predictions of the original
network often contain artefacts, visible in all three examples.
Since the described effect of over-smoothing fine structures is
also present in the disparity maps of GC-Net-A, the reason may
probably be found in the definition of the loss function. Weight-
ing the disparity difference with the predicted uncertainty min-
imises the influence of challenging samples on the loss func-
tion, such as pixels close to depth discontinuities. Consequently,
the learned model is less accurate for predicting disparities in
such regions. To overcome this limitation, an adjustment of the
loss function may be beneficial, e.g. by introducing gradient
information, as suggested in (Kang et al., 2019).

On the KITTI dataset, the percentage of bad pixels as well as
the MAE and the RMSE increase significantly for all four vari-
ants compared to the Sceneflow dataset. This shows that the
trained models are not able to generalise well from the training
to the test domain, indicating a significant difference in the dis-
tributions of the two datasets. However, the original GC-Net as
well as the probabilistic variant, which does not consider aleat-
oric uncertainty, suffer much less from this effect, compared to
the two others. It is noticeable that our probabilistic approach,
which estimates both kinds of uncertainty, as well as GC-Net-A
have particular difficulties to estimate the correct disparity for
small objects in greater distances and for vegetation, both being
underrepresented in the training samples or not contained at all.
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(b) GC-Net with aleatoric and epistemic uncertainty (ours)

Figure 4: Absolute error uncertainty relation on all images of
the Middlebury dataset. The logarithmic colour scale encodes
the number of pixels having the respective error and estimated
standard deviation σ. In case of optimal uncertainty estimation,
all pixels would be located close to the diagonal, showing an in-
creasing uncertainty with increasing error.

To conclude, these results indicate that the high sensitivity to
the domain gap between the different analysed datasets mainly
originates from the modifications that allows to consider aleat-
oric uncertainty. Especially the regression part of the utilised
loss function (c.f. Eq. 4), seems to facilitate a strong over-fitting
effect on the training domain. While our probabilistic modific-
ations mitigate this effect, it is still visible in the results. In
consequence, further investigations have to be carried out in the
future to analyse this behaviour in more detail.
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Figure 5: Relative error uncertainty relation on all images of
the Middlebury dataset. A curve represents the mean absolute
error as a function of the percentage of pixels sampled from a
disparity map in order of increasing uncertainty. In case of an
optimal uncertainty estimation, this procedure would be equal to
sample pixels in the order of increasing error, resulting in a min-
imal area under the curve.

4.4 Uncertainty Evaluation

In the last part of the evaluation, the estimated uncertainty of
the proposed probabilistic approach is assessed and compared
against the results of GC-Net-A (Kendall, 2017). As shown in
Table 1, the individual uncertainties are typically higher if either
aleatoric or epistemic uncertainty is estimated, while the other
one is not considered. The variant that jointly estimates both
kinds of uncertainty, however, results in a higher combined un-
certainty (c.f. Eq. 2) for all three evaluated datasets. This indic-
ates that if only one kind of uncertainty is modelled, the model
tries to compensate effects which originate from the type of un-
certainty not considered. However, modelling both, aleatoric
and epistemic uncertainty, allows a better differentiation of the
effects coming from data and model uncertainty.

Analysing the qualitative results shown in Figure 7, it can be
seen that GC-Net-A often underestimates the real uncertainty.
This behaviour is also visible in Figure 4, which shows the
pixel-wise relation between the absolute disparity error and the
estimated uncertainty. While an optimal uncertainty estimation
procedure would result in points close to the diagonal, GC-Net-
A often assigns a low uncertainty even to pixels with a high er-
ror, which results in a horizontal distribution. Our probabilistic
approach that considers aleatoric and epistemic uncertainty, on
the other hand, approximates the real error distribution much
more accurately.

Estimating epistemic uncertainty has the additional benefit that
it directly indicates how well the trained network is suited to
predict disparity maps for images of a specific test domain.
As can be seen in Table 1, the epistemic uncertainty is relat-
ively small for the Sceneflow dataset, which was also used for
training the network. On the Middlebury dataset the epistemic
uncertainty is a bit higher, indicating that the contained image
pairs show scenes which slightly differ from the training set.
For the KITTI dataset, on the other hand, the epistemic uncer-
tainty is significantly higher, indicating that the characteristics
of this dataset differ greatly from those of the training samples.
While the Sceneflow dataset contains images showing synthetic
scenes, the Middlebury images show indoor environments with
controlled external influences and the KITTI dataset shows road
scenes with varying external influences. Consequently, the ac-

tual differences between the datasets agree with the assump-
tions implied by the estimated epistemic uncertainties.

Analysing the qualitative results shown in Figure 7 in more de-
tail, it is noticeable that our approach estimates high uncertainty
in particular close to object borders, and therefore at depth dis-
continuities, and for fine structures. This is in accordance with
the observations that our probabilistic approach tends to over-
smooth estimated disparity maps, as described in Section 4.3.
This indicates that the majority of erroneous disparity predic-
tions concur with high uncertainty estimates and can therefore
be detected as errors by our method. This assumption is suppor-
ted by the results shown in Figure 5, which visualises the mean
absolute error as a function of the percentage of pixels sampled
from a disparity map in order of increasing uncertainty. While
the curve that corresponds to our method increases slowly until
about 95% density, it has a much higher slope afterwards, illus-
trating that the majority of pixels with a high error are sampled
in this segment, which means that these pixels have also been
assigned a high uncertainty. Especially for the KITTI example
this is noteworthy: While the accuracy of the proposed probab-
ilistic method is significantly worse compared to the results of
the original GC-Net, most of the erroneous disparity predictions
can be identified based on the combined uncertainty provided
by our method. This is not the case if only aleatoric uncertainty
is estimated, since many incorrect depth predictions are missed,
especially on the street in the foreground and for the vegetation
in the upper right corner.

5. CONCLUSION

Inspired by the recent progress in the field of probabilistic deep
learning, within the present work, we propose an end-to-end
trained probabilistic neural network to jointly estimate depth
and uncertainty from epipolar rectified stereo image pairs. While
earlier works in this field focused on the estimation of aleat-
oric uncertainty, our approach allows to additionally obtain epi-
stemic uncertainty.

Within an extensive evaluation using three well established and
commonly used datasets we assess the quality of the estimated
depth and uncertainty information. It is shown that in most
of the examples evaluated, the probabilistic modifications only
have a minor influence on the overall accuracy of the estim-
ated disparity maps. However, fine structures are more often
over-smoothed and if also aleatoric uncertainty is considered,
the tendency to over-fit on the training domain is increased.
These limitations are subject to further investigations and may
be mitigated by an adjustment of the loss function, e.g. via the
introduction of gradient information. Furthermore, the use of
other distributions than the normal distribution for sampling the
network weights might be beneficial and will be investigated.

On the other hand, the estimated disparity maps show an im-
proved accuracy in low textured areas, visible by the reduced
amount of noise and artefacts. Furthermore, the estimated un-
certainty information shows superior quality compared to a vari-
ant, which predicts aleatoric uncertainty only, and allows to
identify a large majority of erroneous disparity estimates. At
the same time, the importance of also modelling epistemic un-
certainty is demonstrated: It not only allows a better approxim-
ation of the real error distribution, but provides a direct indic-
ator how well a learned model for depth estimation is suited to
predict disparity maps for images from a specific test domain.
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Figure 6: Qualitative depth evaluation. From left to right, one example from the Sceneflow FlyingThings3D, the Middlebury v3 and
the KITTI 2015 dataset is shown. From top to bottom, the left reference image and the error maps for the original GC-Net (Kendall
et al., 2017), GC-Net with aleatoric uncertainty (Kendall, 2017) and our probabilistic GC-Net, estimating aleatoric and epistemic
uncertainty, are shown. The error maps encode a high error in black and a small one in white, while pixels without ground truth are
displayed in grey. In general, it can seen that the original GC-Net architecture outperforms our probabilistic variant in areas with fine
details, while the probabilistic architecture demonstrates superior performance in low textured areas.

ACKNOWLEDGEMENTS

This work was supported by the German Research Founda-
tion (DFG) as a part of the Research Training Group i.c.sens
[GRK2159], the MOBILISE initiative of the Leibniz Univer-
sity Hannover and TU Braunschweig and by the NVIDIA Cor-
poration with the donation of the Titan V GPU used for this
research.

REFERENCES

Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.,
2015. Weight Uncertainty in Neural Networks. Proceedings
of the International Conference on Machine Learning, 1613–
1622.

Chang, J.-R., Chen, Y.-S., 2018. Pyramid Stereo Matching Net-
work. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 5410–5418.

Fu, Z., Ardabilian, M., Stern, G., 2019. Stereo Matching Con-
fidence Learning based on Multi-Modal Convolution Neural
Networks. L. Chen, B. Ben Amor, F. Ghorbel (eds), Repres-
entations, Analysis and Recognition of Shape and Motion from
Imaging Data, Springer, 69–81.

Gal, Y., Ghahramani, Z., 2016. Dropout as a Bayesian Ap-
proximation: Representing Model Uncertainty in Deep Learn-
ing. Proceedings of the International Conference on Machine
Learning, 1050–1059.

Gast, J., Roth, S., 2018. Lightweight Probabilistic Deep Net-
works. Proceedings of the IEEE Conference on Computer Vis-
ion and Pattern Recognition, 3369–3378.

Geiger, A., Roser, M., Urtasun, R., 2010. Efficient large-scale
Stereo Matching. Proceedings of the Asian Conference on Com-
puter Vision, Springer, 25–38.

Glorot, X., Bengio, Y., 2010. Understanding the Difficulty of
Training Deep Feedforward Neural Networks. Proceedings of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-161-2020 | © Authors 2020. CC BY 4.0 License.

 
167



Figure 7: Qualitative uncertainty evaluation. From left to right, one example from the Sceneflow FlyingThings3D, the Middlebury v3
and the KITTI 2015 dataset is shown. From top to bottom, the left reference image, the error map of the proposed probabilistic neural
network and the uncertainty maps for aleatoric uncertainty alone and for aleatoric and epistemic uncertainty together are shown. The
error map and the uncertainty maps encode a high value in black and a small one in white, while pixels without ground truth disparity
are displayed in grey. All three examples show that the additional modelling of epistemic uncertainty allows to better approximate the
real error distribution. The example of the KITTI dataset in particular demonstrates that epistemic uncertainty is crucial to identify
samples for which the learned model is unable to make a correct prediction due to a domain gap.

the International Conference on Artificial Intelligence and Stat-
istics, 249–256.

Graves, A., 2011. Practical Variational Inference for Neural
Networks. Advances in Neural Information Processing Sys-
tems, 2348–2356.

Hirschmuller, H., 2008. Stereo Processing by Semiglobal
Matching and Mutual Information. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(2), 328-341.

Kang, J., Chen, L., Deng, F., Heipke, C., 2019. Context Pyr-
amidal Network for Stereo Matching Regularized by Dispar-
ity Gradients. ISPRS Journal of Photogrammetry and Remote
Sensing, 157, 201–215.

Kendall, A. G., 2017. Geometry and Uncertainty in Deep
Learning for Computer Vision. PhD thesis, University of Cam-
bridge, Department of Engineering.

Kendall, A., Gal, Y., 2017. What Uncertainties Do We Need
in Bayesian Deep Learning for Computer Vision? Advances in
Neural Information Processing Systems, 5574–5584.

Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy,
R., Bachrach, A., Bry, A., 2017. End-to-End Learning of Geo-
metry and Context for Deep Stereo Regression. Proceedings of
the IEEE International Conference on Computer Vision, 66–75.

Kim, S., Min, D., Kim, S., Sohn, K., 2019. Unified Confidence
Estimation Networks for Robust Stereo Matching. IEEE Trans-
actions on Image Processing, 28(3), 1299–1313.

Kullback, S., Leibler, R. A., 1951. On Information and Suffi-
ciency. The Annals of Mathematical Statistics, 22(1), 79–86.

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Doso-
vitskiy, A., Brox, T., 2016. A Large Dataset to Train Convo-
lutional Networks for Disparity, Optical Flow, and Scene Flow

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-161-2020 | © Authors 2020. CC BY 4.0 License.

 
168



Estimation. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4040–4048.

Mehltretter, M., Heipke, C., 2019. CNN-based Cost Volume
Analysis as Confidence Measure for Dense Matching. Proceed-
ings of the IEEE International Conference on Computer Vision
Workshops, 2070–2079.

Menze, M., Geiger, A., 2015. Object Scene Flow for Autonom-
ous Vehicles. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 3061–3070.

Poggi, M., Mattoccia, S., 2017. Learning to predict Stereo Reli-
ability enforcing Local Consistency of Confidence Maps. Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2452–2461.

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G.,
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