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ABSTRACT:

Visual saliency is defined by regions of the scene that stand out from their neighbors and attract immediate attention. In image pro-
cessing, visual saliency is frequently used to focus local analysis of key features. Though their advantage is largely acknowledged,
little research has been carried concerning 3-D data, and even less in relation to data acquired by laser scanners for mapping. In this
paper, we propose a new saliency measure for laser scanned point-clouds, governed by the neurological concepts of center-surround
and low-level features. Adjusted to large point sets, we propose a fast geometric descriptor, which quantifies the distance of a point
from its surrounding. We show that the proposed model highlights not only salient details in watertight models, but also in air-
borne and terrestrially scanned scenes that may hold subtle entities embedded within the topography. The detection of such regions
paves the way to a myriad of applications, such as feature and pattern extraction, registration, classification, viewpoint selection,

point-cloud simplification, landmark detection, etc.

1. INTRODUCTION

Visual saliency is defined by regions of the scene that stand
out from their neighbors and attract immediate attention. Their
detection is considered a key attentional mechanism that facilit-
ates learning and survival by enabling organisms to focus their
limited perceptual and cognitive resources on the most pertin-
ent subset of the available sensory data (Frintrop et al., 2010).
In image processing, salient regions act as preliminary cues
in various applications, such as shape matching, object recog-
nition, similarity estimation, registration, down-sampling, and
visualization (Achanta et al., 2009; Li et al., 2013; Yuan et al.,
2018; Li et al., 2019). Within 3-D point-clouds, visual attention
can be harnessed to reduce the problem of scene understanding
into rapid series of less demanding computational procedures,
aimed to support localized visual analysis problems, e.g., de-
tection, simplification, registration and others. However, the
varying resolution, occlusions and the absence of topological
information, make the estimation of saliency in this domain a
challenge.

A number of biologically plausible models have been developed
to explain the cognitive visual process of humans and anim-
als, with two main principles at its foundation. The first, a
neuroscience based — follows the observation that neurons in
the retina are sensitive to regions which locally stand out from
their surroundings. The second, an influence principle based
— emerges from the joint impact of both goals (top-down in-
fluences) that animals have, and stimuli (bottom-up influences)
that affect them (Li et al., 2013; Yuan et al., 2018). In com-
puter vision, most saliency detection methods utilize those two
principles in order to detect regions standing out. Itti et al.
(1998) were first to introduce the center-surround concept com-
bined with low-level features (e.g., color, contrast, orientation,
or size). To do so, multi-scale image features were combined
into a single topographical saliency map. van de Weijer et al.
(2006) focused on color distinctness by estimating the probab-
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ility of a color feature vector composed of the RGB channels
and their derivatives to occur. Achanta et al. (2008) extended
the center-surround rational by measuring the distance between
pixel values in sub-regions within the image and in a later work,
presented a frequency-tuned approach, where similar distance
measure was used between smoothed images (Achanta et al.,
2009). Li et al. (2013) and Wu et al. (2013) argued that global
contrast should also be considered when one region is similar
to its surrounds but still distinct in the whole scene. In the
three-dimensional realm, saliency has been treated mostly in
3-D polygonal meshes, and defined as regions that are percep-
tually important. As an example, Lee et al. (2005) extended
the model proposed by Itti et al. (1998) to meshes, but instead
of considering color, intensity, and orientation of regions, the
authors utilized the surface mean curvature as the most import-
ant attribute. Wu et al. (2013) incorporated global rarity into
the model by evaluating the saliency of a cluster of vertices in
meshes.

Little research has been carried out concerning point-cloud
data (Shtrom et al., 2013; Wang et al., 2015; Kobyshev et
al., 2016; Guo et al., 2018; Ding et al., 2019). In general,
point-clouds do not hold any topological information on which
most mesh-based methods rely on in the evaluation of sali-
ency, and they suffer from inherited data acquisition charac-
teristics such as noise, occlusions and varying point densities
across the data. Most approaches proposed to use the direc-
tional changes between a point and its neighbors, described by
fast point feature histogram (FPFH; Rusu et al., 2009) as the
main contributor to saliency. This is achieved by a hierarch-
ical model that measures the similarity and dissimilarity by the
distances between the points’ FPFH (Shtrom et al., 2013; Tasse
et al., 2015; Kobyshev et al., 2016; Ding et al., 2019). While
Shtrom et al. (2013) and Kobyshev et al. (2016) proposed to
measure the dissimilarity between each point in the cloud, Tasse
et al. (2015) accelerated the process by considering dissimilarit-
ies between clusters of points. Only recently, Ding et al. (2019)
combined the cluster- and point-level saliencies proposed in
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Tasse et al. (2015) and Shtrom et al. (2013), respectively, to ac-
commodate for the global rarity. This also improved the robust-
ness of the approach to noise, and has led to better focused res-
ults. Wang et al. (2015) used a top-down influences (via goals)
and relied heavily on the fact that within a mobile scan of a road
and its surrounding inventories, salient features are geometric-
ally different from the main road. Guo et al. (2018) defined the
point descriptor based on principal component analysis (PCA).
The descriptor was composed of sigma-sets, extracted from the
covariance matrix of each point’s normal and curvature. Non-
etheless, with descriptor-based estimation the computation has
exponential runtime and memory complexity in terms of the
quantity of the low-level features. Notably, most methods were
tested on watertight 3-D point-clouds, which were acquired by
table scanners in a controlled environment (e.g., Tasse et al.,
2015; Guo et al., 2018; Ding et al., 2019).

This paper studies the detection of salient regions in open en-
vironments, scanned by airborne and terrestrial laser scanners.
Such regions, conspicuous within their surroundings, will fa-
cilitate focused detection of embedded entities within natural
environs. There, entities may be small in size, subtle in ap-
pearance and may wear a variety of forms. In such cases, the
object-to-background transition is usually smooth, while sur-
face roughness and measurement noise may obscure their trans-
ition. Therefore, distinctness is neither expressed in the unique-
ness of the normal, as in urban environments (Shtrom et al.,
2013; Kobyshev et al., 2016) nor in their difference from the
dominant plane (Wang et al., 2015), but rather in the variation
of the surface itself. To identify distinctness, we propose a
new saliency measure which is adapted to open scenes and is
governed by surface geometry, while maintaining the neurolo-
gical concepts of center-surround and low-level features. Ad-
justed to large 3-D point-clouds, we aspire for a simple geo-
metric descriptor, which enables to estimate the distinctness of
each point from its surrounding, at low computational overhead,
while being attuned to surface variations of relatively smooth
scenes. We evaluate the proposed method against state-of-the-
art approaches applied on models that are frequently used in
such studies, and on complex airborne and terrestrially scanned
point-clouds. The new saliency can be further integrated as pre-
liminary step for local analysis of key entities for object extrac-
tion, classification, registration, smart down-sampling, etc.

2. METHODOLOGY

We define salient surface elements using geometrical proper-
ties that relate to perceptually dominant features. These may be
bends within the topography, subtle elements inlaid within it,
or distinctive topographic features (e.g., peaks, pits, ridges, val-
leys or saddle points). As the object-to-background transition
is reflected by surface geometry, we focus on means to quantify
the variations within it. Operating on a set of points, we develop
discrete approximation for surface parameters and elaborate on
the definition of points’ neighborhood, with an analysis of its
ensuing impact.

2.1 Point neighborhood

We consider two neighborhood classes: i) k-nearest neighbors
based (k-nn) — where the set is composed of a predefined &
number of the nearest neighbors; and ii) a radius based (r-nn) —
where all points within a specific radius (or window) are con-
sidered as neighbors. The first ensures that the same number

of points composes the neighborhood, but incorporates no spa-
tial or distribution related consideration. The latter values same
sized regions as the defining criterion and is more likely to en-
sure symmetric distribution of neighbors.

When point density is known, it is customary to use the k-nn
approach as it is likely to yield a computationally manageable
number of neighbors (e.g., Weinmann et al., 2017). When
densities vary between sets, size considerations become the
preferable choice among the two categories.

For the extraction itself, speedup of the performance, which is
key for implementation aspects, promotes compromise in ac-
curacy of the results (e.g., Arya et al., 1998). Our experiments
show that the approach implemented in the fast library for
approximate nearest neighbors (FLANN; Muja, Lowe, 2009)
yields the best performance among the other alternatives, even
though our data is of lower dimension (three) compared to what
the FLANN was intended to, and is the approach adopted here.

2.2 Surface normal computation

It was noted that surface normals are a prime feature to char-
acterize surface variations (Shtrom et al., 2013; Tasse et al.,
2015; Guo et al., 2018). A variety of methods has been pro-
posed for their estimation, including fitting an implicit surface
to the neighborhood and estimating its gradient; finding the tan-
gent plane itself by analyzing the points’ distribution; or using
principal component analysis (Rusu et al., 2009; Sirmacek et
al., 2016). In essence, all approaches are variants of the prin-
cipal component analysis (PCA) of the point distribution, and
this is the approach adopted here. Given a point q and its
k—neighbors, the covariance matrix is computed by:

C_liii;[(pi_Q)'(pi_Q)T}~ )]

and its principal components are given by the eigenvalues and
vectors:

Cv; = \jv;, je€{l1,2,3} 2

where v,and )\ are the eigenvector and values, respectively.
The covariance matrix C is positive semi-definite (0 < A3 <
A2 < A1) and vs, corresponding to Ag, is the approximation
of ng, the surface normal. We take advantage of the fact that
a closed form solution exists to the third degree characteristic
polynomial, and instead of applying a general computation of
the roots, we compute the eigenvalues as follows (Kopp, 2008):

Al =p+2v-cosf
A2 = p+2v - cos (0 + 120°) 3)
A3:3,U,7A17)\2

where: 1
p=gtr (C)

[t [(;rI—C)Q]
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and I is a 3 x 3 identity matrix. As our interest is only in vs,
we compute it directly as the cross-product between two rows
of C — Asl, further reducing the runtime. As ambiguity in the
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Figure 1. Convexity measure: the neighboring points are
projected onto the center point normal direction ng.

normal sign can arise, we orient all normals toward a single
viewpoint, v, such that:

n
— a
n, =
—Ng,

for all points.

ifng-(vp—q) >0
otherwise.

®)

2.3 Non-parametric surface curvature (convexity)

Surface normals may prove useful along building edges or other
breaklines, elements that generate strong discontinuities. As-
piring for cues which are better attuned to entities that are em-
bedded within the topography, we turn to surface curvature that
measures variations in the normal direction.

Three different strategies for curvature estimation were evalu-
ated and tested, including a numerical one, a parametric and
a non-parametric, which we present here. Among the three,
the non-parametric is the simplest, fastest and most importantly
— provided the best characterization. The non-parametric ap-
proach quantifies the convexity/concavity of the surface in each
point by examining the characteristics of the points’ distribu-
tion around it. To do so, we sum the projections of neighboring
points on ng, the normal direction to the center point (Fig. 1).
Convexity is measured by:

Zf:l an -(p; —q)
k

Cq = (6)
where p; is the i-th neighbor of q. In its bare form, effects
of measurement noise and surface roughness would be docu-
mented within the convexity value, as each point contributes
to the computation, leading to wrong estimations. Therefore,
the projection must be dominant enough over the level of back-
ground noise and surface roughness. Assuming that the pro-
jections are part of a Normal distribution N ~ (e, o¢), where
¢ is the surface roughness and o¢ the accuracy of the curvature
estimation. In an attempt to quantify the effect of surface rough-
ness and ranging accuracy, Baruch, Filin, 2011 derived an ac-
curacy measure for the curvature based on the measurement

ranging, mo:
V6

oc = *mo PR @)

and also the effect of surface roughness:

2AZ
E =

= @®)

where AZ the minimal detection level and d half the win-
dow size. Their focus was to test how surface characteristics
and measurement noise affect curvature values. Using our ap-
proach, surface roughness is estimated directly from the vari-
ations in the surface itself, i.e., AZ, while the curvature ac-
curacy is an agglomeration of the measurement and the normal
accuracy. Nonetheless, as the curvature is evaluated along the
vertical component of the normal, only the vertical accuracy
should be considered. Therefore, the curvature accuracy is es-
timated in a much simpler manner, directly from the measure-
ment accuracy, i.e., m¢ = mo. We establish an hypothesis test
Hy : |C| < eand H; : |C| > ¢ as the alternative, to determine
if a projection is noise, namely:

< Zi—g (a =5%) 9)

ac

‘C—e

where Z)_./, the normalized Gaussian distribution and « the
confidence level. Only projections that do not answer the cri-
teria are used.

Non viable points — Estimation of the non-parametric values
depends upon an approximately even distribution around the
queried point. However, this estimation is compromised when
the distribution is uneven, which mostly occur at the scan edges,
or near large areas of occlusions. Such points are discarded or
set with a zero value. Their detection can be readily accom-
modated by projecting the points to the plane orthogonal to the
normal, using the projection matrix:

P,=1-ngn,. (10)

This facilitates the estimation of the center of gravity, and
thereby its deviation from q itself using simple mathematical
operations that hardly affect the overhead.

2.4 Directional saliency

We expect a good model of saliency to highlight interesting
changes within a laser scan of an open environment (be it nat-
ural or urban). Because the analyzed point-cloud is large, and
the saliency itself is a preliminary stage to further processing,
we seek the minimal information required to distinguish one
area from another. Following Itti et al. (1998), we develop a
center-surround operator, according to whom the distinctness
of a point or a region is estimated by measuring the deviations
of a wider surround from a narrower center.

We begin by defining zero-saliency where the surface orienta-
tion changes smoothly. There are two properties that control the
saliency: the normal, which accommodates for the surface ori-
entation, and the normal curvature. The center-surround opera-
tion for each property is defined by using a weighting function
so that points within the immediate surrounding, as well as in
distant areas, are given lower weights, while closer regions are
given higher ones. Borrowing from the notion of a band-pass
filtering, we construct a weighting function that suppresses the
immediate and the distant surroundings, while encouraging a
band at radius p (Fig. 2). For this we define a weighting func-
tion which is based on the Normal distribution whose center is
at p, the distance which gets the highest weight, and the o that
defines the effective distance (i.e., the size of the surrounding):

1 7%<\/m2+y2—ﬂ>2

o

an
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Minimal
distinctness distance

Figure 2. Weighting function for saliency detection: a
center-surround filter that emphasizes regions at a distance p
while suppressing closer and distant features, a 2-D view.

Using this function we estimate:

dn = //5 [[n(zo0,y0) — n(x, y)l| - w(z,y)dzdy (12)
dC::‘/)Q[C(xo,yo)ng(x,y)].w(x7y)dxdy (13)

where (o, yo) the planimetric coordinates of point q. The pro-
posed scheme follows the center-surround principal, by estim-
ating the similarity of the point in reference to the normal and
curvature to its surrounding.

Roughness and noise considerations — Rough texture areas
and noise signals should not be marked, even though the sur-
face changes both in curvature and normal. Therefore, within
the effective distance, the change in either normal or curvature
should be larger than an a priori €, so that it satisfies:

i = {0
dk

Both evaluations are performed by establishing hypothesis
tests. As the variance is being evaluated, the x?-test is used.

(14)

Since the normal and curvature are two different, non-related,
measures, we normalize them so that both elements have equal
contribution to the saliency map. We considered different nor-
malization functions AV, however, a simple linear one proved to
be effective. The saliency measure is given by:

¢ = = (N(dB) + N(dR)) (15)

N | =

Discrete implementation — When applying Eq. (12) to point-
cloud data the saliency maps are estimated by using a discrete
form:

1 K
dl’li = ? leij . (ni — l’lj)
" (16)

1 K
dlinj = ? Zwij . (Iii — Kj)
Jj=1

with K the neighborhood size. The weighting function, w;, is
approximated according to Eq. (11).

3. RESULTS AND ANALYSIS

Application of the proposed method is demonstrated on data-
sets representing a variety of scenarios and data spans. We
compare the performance of our method to state-of-the-art ap-
proaches. Notably, in cases where the reference point-based
saliency measure failed, due to the size of the data or to their
complex nature, we compare our results to image-driven ap-
proaches. Evaluation is performed visually, as is the common
practice in saliency related works, since the objective of visual
saliency is to highlight conspicuous regions.

3.1 Watertight benchmark models

We demonstrate the application of the proposed saliency
method on two of the common benchmark models. One is
the Max Planck bust and the second is the Standford Dragon.
Three approaches are utilized here, Shtrom et al. (2013); Tasse
et al. (2015) and Guo et al. (2018). We evaluate both quality
and runtime. As these datasets are devoid of noise, and their
point density is fixed, we use here a k-nn approach to define the
neighborhoods.

Fig. (3) provides a comparative evaluation of the saliency meth-
ods applied to the benchmark models. It shows that our results
concentrate indeed on the interesting regions, such as the fa-
cial area in the Max Planck bust, while FPFH-based approaches
(Shtrom et al., 2013; Tasse et al., 2015) highlight wider areas. It
also shows that in the dragon model our saliency produces less
noise in the body than other approaches, and that it assigns high
values at the edges of the model. Notably, runtime performance
is better than state-of-the-art (Table 1), when considering also
the programming language by which these measures were im-
plemented.

[ | #points [ Runtime (s) [ Language ]

Shtrom et al. (2013) 437K 5400 Python
Tasse et al. (2015) 437K 250 C++
Guo et al. (2018) 437K 44 C++

Our method 437K 40 Python

Table 1. Runtime comparison of the proposed saliency
estimation with state-of-the-art approaches on the dragon
watertight model.

3.2 Airborne laser scan

Next, we demonstrate the application of the proposed method
on an airborne laser scan of natural surrounding that features
an alluvial fan (31°20'N, 35°25’E; Fig. 4a). The data consists
of gullies and collapse sinkholes (Abelson et al., 2003). The
point-cloud spans an area of 480 x 375 m? with point dens-
ity of ~8 points/m®. Visually, we can identify two gullies and
fifty-eight sinkholes as salient regions. The gullies are at width
of 5 m and 9 m and depth of ~2-6 m, dissecting the scan and
forking towards the west; the sinkholes are at varying diameters
and depths (4-20 m, 0.5-4.5 m, respectively) scattered along the
scan, while some are formed within the gullies, or at their edge.

Comparing saliencies to point-based approaches proposed by
Shtrom et al. (2013), Tasse et al. (2015) or Guo et al. (2018)
was not possible here. The size of the data, which was too large,
and its nature, that spans a wide region at lower resolution than
of a terrestrial or table scanner, made them difficult to apply.
To generate a comparative evaluation set, we examine the ap-
plication of two image-based saliency approaches proposed in
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Figure 3. Comparison with point-based saliency estimations of two watertight benchmark models.
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Figure 4. Airborne laser scan of an alluvial fan (31°20’N,
35°25'E).

Achanta et al. (2008) and Achanta et al. (2009). One is global in
nature, while the second is local. The global approach (Achanta
et al., 2009) is based on estimating the saliency by:

((a,y) = [T — L] (17)

where T, . the mean value of the elevations, before blurring; I T
the smoothed version of I computed by difference of Gaussian
band-pass filter on the elevation values with the ratio of o1 /02
of 1.6. The local approach (Achanta et al., 2008) computes the
saliency by local contrast of sub-regions within the data, i.e.,

Ny No
1 1
wor|(wzr) (mxn)] o

where D is a Euclidean distance function; I, I, are the eleva-
tion values; and N1, N2 are local neighborhoods.

Fig. (5a) shows the saliency results of the first approach
(Achanta et al., 2009) with four levels of blurring, as proposed
by the authors. One can see that the eastern part of the northern
gully is more salient than others, while some of the gullies are
completely ignored (yellow arrows, as an example). As for the
sinkholes, shallow ones have been ignored completely (such as
the upper turquoise arrows), and some have been identified as
one unit of low-saliency region (lower turquoise arrow). This
can be attributed to their depth, as the saliency here is estimated
according to the features elevation with respect to the global
one. Deeper entities appear more salient than others, attracting
the detection towards them. Fig. (5b) shows saliency estima-
tions using Achanta et al. (2008). Here the saliency is estim-
ated locally, and therefore, most of the gullies and sinkholes are
marked as salient. However, clusters of sinkholes are detected
as a low saliency region — as locally they are not as salient (e.g.,
lowest turquoise arrow). Our directional saliency applies a local
concept, only instead of changes in depth, it measures the vari-
ation in both normal direction and curvature. Fig. (5c) depicts
the saliency map according to the convexity measure. Here,
shallow entities are extracted, regardless of their neighboring
features (e.g., yellow arrows), with banks of gullies emphas-
ized. Shallow sinkholes are now highlighted, especially their
rim, and the sinkhole cluster has now been mostly separated
and the sinkholes are identified individually. In reference to

the non-parametric convexity measure, which plays a signific-
ant role in the saliency estimation, Fig. (6) shows the results on
its application on this complex datasets. It clearly reveals all the
entities, while keeping them separated one from the other. The
evaluation shows that the proposed saliency highlights the vari-
ous entities, especially at transition zones, facilitating a higher
detection rate.

Saliency

Figure 5. Saliency estimations of the alluvial fan: a) Global
method (Achanta et al., 2008) with o0 = % at four levels of
blurring; b) Local method (Achanta et al., 2009) with sub-region
size of 5 m; ¢) proposed directional saliency, with o = 0.2 m
(based on empiric tests) and K = 8 m. The arrows mark
examples to shallow gullies (yellow) or sinkholes (turquoise)
that are emphasized by our method.
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Convexity

Figure 6. Convexity estimation at the alluvial fan, using a
neighborhood of radius 4 m, in accordance to the approximate
mean size of the entities.

3.3 Terrestrial laser scan

The last dataset is a terrestrial based scan of an archaeolo-
gical site, The Leopard Temple, located in the *Uvda Valley,
Southern Israel (29°57'N, 34°58’E). The site, dated to 7500 BP
(based on C'* evaluation), is considered to have been in use for
~4000 years (Avner, 2002). East of the main temple, a unique
specimen of 16 animal-like figures, made of small stones af-
fixed to the ground, and arranged along a 15 m stretch (Fig. 7).
The figures were identified as leopards, due to their raised tails
and the dark stones that symbolize their spots. Scans were ac-
quired by the Leica c10 terrestrial laser scanner, with resolu-
tion of 0.1° (Fig. 7b). The smallest stones are 1-3 cm, with
7 cm space between them, while the larger ones are 10-30 cm,
positioned less than 4 cm apart (Fig. 7b). Most stones are no
higher than 2 cm above the ground, ranging up to 10 cm, with
one reaching 20 cm above ground. Here we focus our discus-
sion on a characteristic detail from the entire site, which fea-
tures 3-10 cm long stones, and 1-5 cm high, and one large
30 x 20 x 15 cm stone (Fig. 8a). Notably, the terrain itself,
though flat, is not smooth.

We compare our results to the approach proposed by Shtrom et
al. (2013), as it sets the basis for most of the later works (Tasse
et al., 2015; Kobysheyv et al., 2016; Ding et al., 2019). The au-
thors there propose to measure the global and local difference of
the features based on the uniqueness of the normals in the scan.
When applied, results emphasize the leopards’ wider surround-
ing, in addition to ground related features (Fig. 8b). However,
it does not emphasize details, only a wide region as salient.
Applying our method, we begin with the estimation of the non-
parametric convexity measure. The neighborhood size is set to
the minimal object size (3 cm). However, Fig. (8c) shows that
at this size, the roughness of the surface is modeled as well. Re-
moval of ground texture using Eq. (9) and the application of the
saliency, which also considers normal changes, lead to a cleaner
depiction of the leopard images (Fig. 8d). Note that ground re-
lated regions are suppressed and marked as “non-interesting”.
Minimal distinctness distance was set to 7 cm, in accordance
with the stone spacing, which allows the distinction between
small stones.

In sum, our approach, being center-surround based, has man-
aged to localize on the leopard images, while not over- or un-
dershooting the detection of details.

Elevation [m]
0.15

2m
— : -0.15

Figure 7. The Leopard Temple: a) site map (with permission of
Israel Antiquities Authority®); b) scanned point-cloud

Convexity NI N

Figure 8. The Leopard Temple results: a) detail from Fig. (7); b)
application of the saliency method proposed by Shtrom et al.
(2013); c¢) proposed convexity estimation; d) our saliency
estimation.

4. CONCLUSIONS AND FUTURE WORK

This paper introduced a new saliency measure for 3-D point-
clouds that considers not only the direction of a local surface
compared to the scene, but is also aware of the velocity and
magnitude of the change. This is carried by characterizing the
underlying surface, and quantifying its change with respect to
its close neighborhood. Compared to state-of-the-art applica-
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tions, our method runs faster, and yields comparable, if not bet-
ter results. Within open environments, our approach facilitates
the detection of salient features in both disturbed and smooth
surfaces, where subtle entities are embedded within the topo-
graphy, and where other approaches fail. The proposed saliency
measure can be further applied to object extraction, point-cloud
reduction, registration, classification, and enhanced visualiz-
ation schemes, while improving the computational overhead,
manipulation and analysis of these data.
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