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ABSTRACT:

This paper deals with the distributed computation of Delaunay triangulations of massive point sets, mainly motivated by the needs
of a scalable out-of-core surface reconstruction workflow from massive urban LIDAR datasets. Such a data often corresponds to a
huge point cloud represented through a set of tiles of relatively homogeneous point sizes. This will be the input of our algorithm
which will naturally partition this data across multiple processing elements. The distributed computation and communication
between processing elements is orchestrated efficiently through an uncentralized model to represent, manage and locally construct
the triangulation corresponding to each tile. Initially inspired by the star splaying approach, we review the Tile& Merge algorithm
for computing Distributed Delaunay Triangulations on the cloud, provide a theoretical proof of correctness of this algorithm, and
analyse the performance of our Spark implementation in terms of speedup and strong scaling in both synthetic and real use case
datasets. A HPC implementation (e.g. using MPI), left for future work, would benefit from its more efficient message passing
paradigm but lose the robustness and failure resilience of our Spark approach.

Figure 1. Target application: 3D surface reconstruction based on
the proposed out-of-core Delaunay algorithm on 54 million

points. Triangles of the resulting mesh are colored according to
the tile that contains one of their vertices.

1. INTRODUCTION

Delaunay triangulation is arguably known as the most com-
mon discrete representation tool for complex 3D shape mod-
els. The problem of computing the Delaunay Triangulation
(DT) of large point sets has been considered in different sci-
entific and engineering fields from computer graphics [Fuetter-
ling et al., 2014], scientific visualization [Antaki et al., 2000],
fluid simulation [Ando et al., 2013], computer vision [Hiep et
al., 2009], multimedia [Tekalp, Ostermann, 2000], pattern re-
cognition [Xiao, Yan, 2003], to geology [Kaufmann, Martin,
2009,Wang et al., 2017] and astrophysics [Sousbie, 2011] [Star-
inshak et al., 2014] [Zhao et al., 2016].

A DT is a well-defined topological object in any dimension.
∗ Corresponding author

Among all possible triangulations of a given point cloud, the
DT is the unique triangulation that has optimal simplices (i.e.
triangles in 2D and tetrahedra in 3D) in the following sense : the
interior of the sphere (circle in 2D) circumscribing each sim-
plex is empty of other points [Boissonnat, Yvinec, 1998]. This
empty sphere property ensures some compactness on the sim-
plices, which is a must in numerical computation (although it is
not sufficient to eliminate elongated tetrahedra, called Slivers).
Now that research and industry are commonly facing massive
point clouds, far beyond the available memory of existing com-
puters, there is a pressing demand for scaling out the compu-
tation of the Delaunay Triangulation using out-of-core, stream-
ing, parallel or distributed approaches.

In this project, the initial motivation of this distributed compu-
tational problem was from the Geospatial and photogrammet-
ric viewpoint, where we were looking for both efficiency and
theoretical guarantees on the robustness of computation, un-
der the technical constraint of using the Spark Big Data frame-
work [Zaharia et al., 2016] to implement the scheduling and
communication of the computation.

The robustness of DT computation is required for further ap-
plications in 3D reconstructions. Thus, in this framework, given
that recent LiDAR sensors are routinely acquiring massive 3D
point clouds, the computation of a 3D DT is a challenging pre-
processing step for higher level workflows such as surface re-
construction [Labatut et al., 2009, Caraffa et al., 2016].
Moreover, with the explosion of deep learning and graph neural
networks [Wu et al., 2019], the need for large scale DT al-
gorithm combined with efficient data storage becomes crucial.

Figure 1 shows a surface reconstruction based on a distributed
3D DT : each tetrahedron of the DT is assigned a boolean oc-
cupation value and the surface is reconstructed as the set of
3D triangles between tetrahedra with differing occupation val-
ues. This approach ensures watertightness of the surface on the
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whole scene thanks to the global DT that guarantees the con-
sistency across tiles, without any cracks at tile boundaries. This
watertightness property is obviously primordial for flood simu-
lation or visualization.

: Local vertices, : Foreign vertices, : Redundant foreign vertices,
: Local cells, : Mixed cells, : Foreign cells.

Figure 2. The first two rows show the principle of the algorithm,
that iteratively exchange points between tiles. The green and red
triangulations exchange points of Delaunay neighbor candidates
until convergence. The last row shows the triangulation of the
bottom left tile before (left) and after (right) simplification.

1.1 Related Work

Given the ever-increasing data resolution in various application
fields, computational problems related to Delaunay triangula-
tions, as a common mesh-based representation tool, are more
and more challenging and have been tackled in different con-
texts such as scientific data visualization, surface construction,
finite element analysis, train modeling or abstract data-mining.

There is a huge corpus of research tackling the scaling of Delaunay
Triangulation computations to point sets of ever increasing sizes.
A first approach is the streaming approach of [Isenburg et al.,
2006] which proposes an out-of-core algorithm with a small
number of passes over the point cloud. This streaming en-
sures that the peak memory usage is limited as the dataset is
loaded and loaded as needed. The first passes analyze the point
cloud distribution and characteristic so that the following passes
may have some guarantees that whole subsets of the input point
cloud are not necessary to compute the Delaunay neighborhood
of currently loaded points. This way, the following pass may
use these guarantees to perform incremental Delaunay inser-
tion considering the loaded points only, and write down tri-
angles and unload (so-called finalized) points, knowing that
subsequent points will not affect them. This approach works
well in practice in 2D but in higher dimensions a much smaller

fraction of the computed simplices may be unloaded early due
to their huge circumsphere, which limits the performance.

Among distributed methods, that leverage multiple Processing
Elements (PE), we can distinguish shared memory and distrib-
uted memory approaches [Peterka et al., 2014], [Funke et al.,
2018], [Chen, Gotsman, 2012], [Si, 2015]. PEs with shared
memory may communicate through a common memory address
space and are thus relatively fast, allowing fine grain parallel-
ization approaches and often relying on synchronization prim-
itives and locks [Kohout et al., 2005, Blandford et al., 2006,
Batista et al., 2010]. A popular framework from HPC com-
puting on high end clusters is MPI, which can take advantage
of low level synchronizations and efficient message passing to
design very efficient algorithms [Remacle et al., 2015], even
reaching the milestone of three billion tetrahedra produced in
a minute on a single (very high end) machine [Marot et al.,
2018]. In contrast, distributed approaches consider separate
memory segments for each PE and thus require explicit com-
munications [Lee, Lam, 2008, Starinshak et al., 2014]. These
approach tend to be less efficient in processing speed but scale
out to larger datasets at reasonnable hardware costs.

It is a common approach to tackle large data structures by op-
erating on a spatial partitioning of them, for instance for com-
binatorial maps [Damiand et al., 2018] or 3D triangular meshes
[Cabiddu, Attene, 2015]. The Tile & Merge approach [Caraffa
et al., 2019] works similarly by decomposing the overall Delaunay
Triangulation into a set of DT local to each input tile. However,
contrary to other approaches, it is not a proper partition as cells
(triangles in 2D) across tile boundaries are replicated in the tri-
angulations of their neighboring tiles and points are replicated
in the tiles of all their Delaunay neighbors.

In this paper, we extend the preliminary work of [Caraffa et
al., 2019] on distributed Delaunay triangulation computation,
by providing a (i) theoretical proof of the consistency for the
resulting Distributed Delaunay Triangulation. In addition, we
also discuss (ii) implementation details on the Spark architec-
ture and propose (iii) a deeper scalability analysis of the overall
algorithm in the results section. After providing an overview
of the method proposed by [Caraffa et al., 2019], we review
their algorithm and propose a theoretical proof of consistency
in section 2. Then, section 3 presents the implementation de-
tails, followed by the evaluation 4. Finally, the results of our
method are shown and discussed in section 5.

1.2 Overview of the Proposed Method

Although the proposed Distributed Delaunay Triangulation com-
putation could be implemented on a HPC cluster (e.g. using
MPI), which would benefit from its more efficient message passing
paradigm, this is left for future work and we implemented the
computation using the Spark big data framework for the schedul-
ing and communication, as it is widely deployed in the targeted
engineering contexts, and offers robustness and failure resili-
ence guarantees.

As the input of our algorithm as well as the computation are dis-
tributed, the output Delaunay triangulation is itself distributed
into tiles efficiently so that the overall triangulation is never
materialized at any single location. This is done through a
method initially inspired by the star playing approach [Shew-
chuk, 2005] where we consider an iterative shuffle of the so-
called star points between tiles until reaching a global consist-
ent DT (the star of a point in a triangulation is the set of all its
neighbors).
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Figure 3. Overview of the distributed Delaunay triangulation workflow in Spark [Caraffa et al., 2019]. The node colors denote the
Spark persistence levels of the various datasets.

Points are provided partitioned into tiles and the point set of
each tile is triangulated in parallel independently. Figure 2
shows the overall principle on a toy example from the point of
view the triangulation of a single tile (in green). This tile sends
one point to its lower neighbor. This point is then inserted in the
red triangulation, local to the lower left tile. This triangulation
then sends back points it thinks should be adjacent to the re-
ceived point. These red points are now received and inserted in
the green triangulation, which discovers their potential neigh-
bors in the green tile. The algorithm exchange points similarly
until convergence.

In the end, each tile has a Delaunay triangulation of (i) its own
points and (ii) the minimal set of points from other tiles (so-
called foreign points) so that each local point has the same
Delaunay neighborhood in the local triangulation of the tile than
in the theoretical overall DT of all points. The last row shows
in color a classification of the final DT of the lower left tile.
Blue triangles are local to the tile, orange triangles are mixed,
or shared (and represented in the different tiles of their points)
and the pink triangles are foreign cells which are not part of the
overall DT but present in local DTs to ensure that the convex
hull of all local and received points are triangulated. Foreign
points adjacent to foreign triangles only may be deleted without
modifying the Delaunay neighborhood of local points.

2. DISTRIBUTED DELAUNAY TRIANGULATION

2.1 Definitions

Let us recall some main notions and terminologies introduced
in the context of Tile and Merge algorithm. If P is a point
set, PI = (Pi)i∈I will be its partition into |I| disjoint sub-
sets Pi, where I is a discrete set of tile indices. A N + 1-
simplex is a set of N + 1 vertices in N dimension (a triangle
in 2D, a tetrahedron in 3D...). A triangulation is then a set
of cells which geometry covers the convex hull of its vertex
points. Delaunay(P ) denotes the DT of the point set P , and
DelaunayIns(P, T ) = Delaunay(P

⋃
c∈T c) the DT of the

union of the points set of T and the point set P .

A tile-triangulation Ti is defined a triangulation of a supset
Qi of the local points Pi. Qi \ Pi are foreign points in Ti.

A collection of tile-triangulations TI = (Ti)i∈I constitutes a
distributed triangulation. We define a simplex as local if all
its points are local, foreign if all its points are foreign and mixed
otherwise (see figure 2). Lastly, the star Star(p, Ti) of point p
is the subcomplex of Ti induced by p ∈ Pi and all its neighbors
in Ti. For brevity, we consider stars as sets of cells and cells as
set of vertices, such that for instance {p}∪Neighbors(p, T ) =⋃

c∈Star(p,T ) c.

Triangulation distribution: The distributed triangulation TI

of a triangulation T = DT (P ) according to a point-partitioning
PI is defined as (DT (Qi))i∈I , with Qi = Pi∪

⋃
p∈Pi

Neigbors(p, T ).
Ti is thus a local view of T , since it contains all its local stars:
Star(p, T ) = Star(p, Ti) if p ∈ Pi. Likewise, the overall tri-
angulation T can be reconstructed from a distributed triangula-
tion TI with a partitioning PI as T =

⋃
i∈I
⋃

p∈Pi
Star(p, Ti)

2.2 Algorithm

Figure 3 and algorithm 1 [Caraffa et al., 2019] describe the Tile
& Merge approach. Pi are point sets available after tiling the
input data. Then each tile computes in parallel the DT T 0

i of
its local points. The extreme points S0

i→all of each tile are then
broadcast, which is a rather limited set of maximum 2N points
per tile in N dimensions (1 per axis direction). Then an iteration
inspired by Star Splaying is performed [Shewchuk, 2005] : each
tile iteratively receives points, insert them to their DT and send
Delaunay neighbor candidate points to their neighboring tiles.

Note that instead of working on the whole point cloud, the ini-
tial tile triangulation step detect which points have already prov-
ably found their Delaunay neighborhood so as to concentrate on
the reduce point set of more problematic points. These initially
finalized cells C0

i are at last merged with a subset C
∞
i of the

distributed triangulation of the reduced point set to produce the
final set of cells of the overall distributed Delaunay triangula-
tion.

A further feature is that tile triangulations are simplified by re-
moving foreign points that are not adjacent to any local points in
order to limit the growth of the tile triangulations resulting from
receiving candidate Delaunay neighbors that are eventually not
Delaunay neighbors of their local point at convergence.
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Algorithm 1: Tile and merge [Caraffa et al., 2019]
Input: Point set P
Output: Distributed DT of P : T∞I = (T∞i )i∈I

// Point cloud tiling
1 for each point p ∈ P do in parallel
2 i← T ileId(p)
3 Pi ← Pi

⋃
{p}

// Local tile triangulations
4 for each tile i ∈ I do in parallel
5 T 0

i ← Delaunay(Pi)

6 C0
i , C

0
i ← Finalize(T 0

i )

7 P 0
i ←

⋃
c∈C0

i
c

8 S0
i→all ← ExtremePoints(P 0

i )

// Star splaying initialization
9 for each tile i ∈ I do in parallel

10 R1
i ←

⋃
j 6=i S

0
j→all

11 P 1
i ← P 0

i ∪R1
i

12 T 1
i ← Simplify(Delaunay(P 1

i ))

13 (S1
i→j)j 6=i ← StarSplay(R1

i , T
1
i )

// Star splaying iterations
14 n← 2
15 while ∃i, j ∈ I such that Sn

i→j 6= ∅ do
16 for each tile i ∈ I do in parallel
17 Rn

i ←
(⋃

j 6=i S
n−1
j→i

)
\ Pn−1

i

18 Pn
i ← Pn−1

i

⋃
Rn

i

19 Tn
i ← Simplify(DelaunayIns(Rn

i , T
n−1
i ))

20 (Sn
i )j 6=i ← StarSplay(Rn

i , T
n
i )

21 n← n+ 1

22 for each tile i ∈ I do in parallel
23 Cn

i , C
n
i ← Finalize(Tn

i )

24 T∞i = C0
i ∪ C

n
i

25 return T∞I = (T∞i )i∈I

2.3 Theoretical Proof

Star Splaying To prove the correctness of the Tile&Merge al-
gorithm, we cast it as a batch-processing version of the original
star splaying approach [Shewchuk, 2005] and ensure that we
meet the requirements of its theorem 3 on correctness. Namely,
we prove that the distributed triangulation Tn

I = (Tn
i )i∈I con-

verges to the distributed Delaunay triangulation of P 0
I = (P 0

i )i∈I .

Instead of working on a running DT as for incremental Delaunay
insertion approaches, star splaying is an iterative algorithm that
maintains a star for each input point and exchanges points between
stars such that these stars eventually get consistent (i.e. agree
on shared simplices) and converge to the stars of the DT of the
whole point set. The star splaying operator updates the star of
each point p by iteratively performing Delaunay insertions of
each incoming point q and sending p to the star of q, q to the
star of each of its neighbors (except p) in the updated star and
vice-versa the neighbors of both p and q to the star of q.

The Tile&Merge algorithm maintains a distributed triangula-
tion (Ti)i∈I . Thus, it maintains a star Star(p, Ti) for each point
p where p ∈ Pi. By construction, these stars are consistent
within a tile as they are extracted from a common triangulation
Ti, but not necessarily across tiles. The Delaunay insertions of
the incoming points Rn

i into the tile triangulation Tn
i has the

effect of splaying the stars of vertices of Tn
i . The simplification

then Delaunay-removes points outside of the stars Star(p, Tn
i )

of the local points p ∈ P 0
i . StarSplay(Rn

i , T
n
i ) then prepares

points according to the original star splaying algorithm, so that
they can be sent to other tiles to splay the stars of their local
points. Thus, after convergence and for each p ∈ P 0

i , the ini-
tial stars Star(p, T 1

i ) are splayed into stars Star(p, Tn
i ) as if

they were processed by the original sequential star splaying al-
gorithm.

Theorem 3 of [Shewchuk, 2005] states a sufficient condition
on the initial stars to guarantee the consistency and correctness
of the DT resulting from aggregating the iteratively splayed
stars. Namely, the initial (non necessarily Delaunay) star of
each point except the lexicographically minimum point should
contain at least one point that lexicographically precedes it.
Note that, this condition is trivially met if the lexicographically
minimum point of the whole point set is in the initial star of
each point. Since the extreme points are broadcast across tiles,
the star of each point is thus confronted to the lexicographic-
ally minimum point of each tile, so that the correctness theorem
applies: the stars of the local points within the local triangula-
tions Tn

i are indeed equal to the stars of the DT of the initial
point set : at convergence, for each i ∈ I and each p ∈ P 0

i ,
Star(p, Tn

i ) = Star(p,DT (
⋃

i∈I P
0
i ) and Tn

I is indeed the
distributed Delaunay triangulation of P 0

I .

Finalization The cells of the target DT of the whole point set
P =

⋃
i∈I Pi may be divided into two categories: C, the local

cells which circumsphere is fully contained in the bounding box
of its tile and C = DT (P ) \ C, the other cells that may not be
finalized locally. Indeed, cells in C may not be in conflict with
foreign points as long as bounding boxes of the tiles are disjoint,
so that they may be computed independently upfront using the
DT of each point set Pi: C =

⋃
i C

0
i (line 6).

Conversely, since Tn
I is the distributed triangulation of DT (

⋃
i∈I P

0
i ),

its non-finalized cells
⋃

i∈I C
n
i are also the non-finalized cells

of DT (
⋃

i∈I P
0
i ). By definition of P 0

i , points in Fi = Pi \ P 0
i

are adjacent to finalized cells of T 0
i only and their incident cells

in T 0
i (or, equivalently, in DT (P )) are all local. Thus, they

may be removed from DT (P ) without modifying mixed cells.
This proves that the mixed cells of Tn

i , which are the ones of
DT (

⋃
i∈I P

0
i ), are indeed the mixed cells of DT (P ). The in-

sertion of a local point of Fi in a local cell may only create local
cells. Thus, if it were in conflict with a non-finalized local cells
of Tn

i , its insertion would create at least one non-finalized cell.
This cell being local, it should already be present in T 0

i , where
the point is only adjacent to finalized cells, which is a contra-
diction. Thus non-finalized local cells of Tn

i are not in conflict
with the finalized points, and finally, C =

⋃
i C

n
i .

3. IMPLEMENTATION DETAILS

All the communications between executors are preformed by
a streaming architecture scheduled with Spark. Data sets are
both persisted on memory and disk. Large data sets like input
point clouds and finalized cells are stored only on disk (green
color in figure 3) and lightweight data sets like simplified tri-
angulation during the iterative scheme that are likely to have
multiple I/O are stored both in memory and disk.In this sec-
tion, the implementation choices are detailed. For implement-
ing, both C++ and Spark are used. On a higher level, Spark
provides a fault-tolerant and lazy programming language that
distributes efficiently the operations on the cluster according to
the data location thanks to the use of resilient distributed data
sets (RDD).
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C++ C++ is widely used in computational geometry because
of the low-level architecture that allows high speed computa-
tional time. Each geometric operation is implemented with a
C++ executable leveraging the CGAL library. Once a triangu-
lation is computed, the C++ sets are encoded with the Base64
encoding, consequently, the data integrity is guarantied across
transformations.

Spark The Scala interface of Spark is used for the schedul-
ing process. Each point set PI and triangulation TI are stored
in a RDD of size |I| serialized with a Base64 encoding in a
String. The key/value formalism is used. Each element of the
RDD is represented by a key K and a value V which is a list
of sets (Point Set, local view of a triangulation, etc.). The value
is then V = List[String], finally we have RDD[(K,V )]. To
implement the shuffling Si→j , the GraphX library [Gonzalez et
al., 2014] is used. An exchange is stored as an edge of a graph
with the triplet RDD[(Ki,Kj , V )]) where Ki is the key of the
source and Kj the key of the target. For each RDD transform-
ation that requires geometric processing, the content of a RDD
is encoded in base64 and streamed to a C++ executable by using
the transformation pipe operator for Spark RDD. Since each
serialized value encodes its own key, the C++ thread can inter-
pret and build the local view of the triangulation. The union
operator (∪ in alg:1 and � in figure 3) is a union following by
a ReduceByKey in Spark. As an example, the star splaying step
(lines 13 and 20) can be written as follows:

( RDD[(Ki,Kj , Si→j)].map(e → (e.Kj , e.V )) ∪RDD[(K,Tj)]

).reduceByKey((a, b) → (a ∪ b)).pipe(./StarSplay)

Where ./StarSplay is a C++ executable that takes as input the
union of the previous step triangulation and the received points,
do the insertion, the simplification, extract the stars and produce
as output the new triangulation with the new points to send.
Finally, a filter operator is used to separate the output stream of
each C++ call.

4. EVALUATION

In this section, we provide a deeper analysis of the results of
[Caraffa et al., 2019], which were produced on a Spark cluster
with 28 cores and 100GB memory (to be compared with
Amazon EMR service with e.g. 16 cores for 128GB of RAM
with m5.8xlarge) Two aspects are analyzed here: the strong
scaling that shows how the algorithm scales according to the
cluster configuration (see figure 6) and how one configuration
scales according to an increasing number of points. We use 3
different data sets: points generated from i) a normal distribu-
tion, ii) a uniform distribution and iii) from LiDAR acquisitions
(see figure 5). For these tests, the clock starts when point sets
are generated / loaded from HDFS and stops when all the final-
ized cells of the triangulation are persisted on cluster nodes.

Figures 4 and 5 show qualitatively some example results on
small data sets: figure 4 on 1 million random points generated
with a normal distribution with a 3x3x3 tiling. Figure 5 on a
LiDAR cloud of 3 million points. A cut in the mesh is done for
visibility purpose. The gray cells are the local cells finalized
after the first triangulation step. The black cells with colored
edges are non-finalized cells from the last step. Cells with the
same colors belong to the same tile.

Parameter tuning Among all possible parameters (at the
Spark or JVM level), we only focus here on the following para-
meters that impact the most the behaviour of the algorithm.

Figure 4. 1M random points triangulation on a 3x3x3 grid.

Figure 5. 3M LiDAR points triangulation on a 3x3x3 grid.

• At the algorithm level with:

– The maximum number of points per tiles,
– The number of points extracted in the first step.

• At the RDD storage level with:

– Number of partitions,
– Persistence type.

• At the cloud initialization level with:

– Number of executors,
– Amount of memory of an executor,
– Number of cores per executor.

[Caraffa et al., 2019] discussed that the main parameter is
the maximum number of points per tile that is allowed during
the tiling construction. It is clear that, as the batch Delaunay
insertions is a coarse grain step with in-memory inputs and
no need for synchronisation, any overly optimized and state
of the art implementation may be used. Thus, the larger the
number of points per tile, the better, until the memory limit
is reached. The octree structure allows a constant number of
points per tile. Since our local DT implementation is very effi-
cient thanks to the C++ implementation compared to the cost of
iterative scheme caused by the transfer of non-finalized cells,
the higher the number of points per tile during the first trian-
gulation (line 5), the faster the algorithm. With a maximum
number of 4GB of memory per executor, each tile can handle
during the first iteration 3M points per tile. With a bigger val-
ues, memory issues appear in the tested configuration. Figure 4
shows an example of 1M points generated with a uniform dis-
tribution tiled on a 4x4x4 grid.

To have a generic configuration that is both efficient with a
small number of points but can also handle an large point cloud
with a small number of executors, two persistence levels are
chosen. Input point sets and finalized cells are persisted only
on disk as we only need to read them one time and their num-
ber can be huge. Point sets that are broadcasted and triangu-
lations during the star splaying iterations are stored in memory
and disk as the operation is repeated several times. One can set
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the persistence in memory for every RDD with small data sets
and force everything into disk for very large data sets to avoid
memory issues. But as the algorithm can handle 2 billion of
points with only 7 executors, we strongly advise to increase the
number of executors and keep the persistence both in memory
and disk.

Scalability To see the ability of the proposed approach to
handle an large number of points with a constant configuration,
a varying number of points, from 100M to 2G is triangulated
with the 7 executors and 4 cores configuration on 3 data sets:
Normal distribution and Random distribution on a 4x4x4 grid,
and LiDAR on a 8x8x8 grid. The algorithm scales well and has
no particular difficulty to handle a large amount of point with
the a low memory to core ratio configuration.

In detail comparison Figure 8 shows the time spent in the
main steps in average for the previous tests . Even if the stand-
ard deviation (std) does not have a deep statistic meaning in
this case, it gives us a clue on the time variation in each step.
First, the time spent during the local insertion is more important
for the normal distribution than for the LiDAR or the uniform
distribution. Moreover, the std value is greater than in the two
other data sets where it remains stable. This makes sense ac-
cording to the sparsity and the variation of the point cloud dis-
tribution according to the 3 axes. However, it has the advantage
to produce a lightweight triangulation with a big interface with
the result of a small number of cells and shared points. Indeed,
the time spend during the iterative scheme is way shorter com-
pared to the rest and makes the algorithm much faster according
to the previous section.

The algorithm on the LiDAR data set has mixed behaviour com-
pared to the two others, the local triangulation remains quick,
but some case can take a while. On the contrary, the sparsity
can result in small interface and high speed iterative scheme in
some cases, such as roads and planar regions, or, by contrast,
create an large interface with a high density of shared simplices
which may slow down the process significantly. An important
aspect is the maximum number of 7 star splaying iterations re-
quired for the biggest data set. This indicates that the number
of edges grows in a logarithmic fashion. Moreover, the last iter-
ation has a lower cost as the number of active connections fall
drastically. As the algorithm persists all the finalized cells at
the finalization step, time to save finalized cells on HDFS are
also shown. As expected, saving C0 takes half the time of the
whole process when persisting. To conclude, this result shows
a relative good stability of the proposed approach despite of the
heterogeneity of the data sets.

5. RESULTS

Figure 1 shows how challenging computing the global trian-
gulation of a LiDAR point cloud is with a mobile mapping
acquired LiDAR point set of 1.98 billion points over a 6km2

area. The computation took 2h20 on a machine with 28 cores
and wrote after 4h11 the resulting local triangulations as bin-
ary ply to the HDFS distributed file system (400GB) Note how
the octree structure handles well the non-uniform distribution
of points. The point cloud is distributed mainly on the x,y axis,
this implies an large number of active connections (28402) at
the first iteration. In LiDAR datasets, outliers generated by non-
Lambertian materials create points at wrong positions (e.g. way
under the ground or above the city) that increases the maximum
degree of the connection graph. Thanks to the fully distributed
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Figure 6. Scaling on processing and persisting the DT according
to the number of cores with 4,3 and 2 cores/executors(12Go
Ram/executors) on a 300 millions of points test set generated
with the normal(N) and uniform(U) random distribution. The

two first figures show the scale factor according to the number of
core, last figure the time.

framework proposed by the approach, neighbor tiles within a
clique of high dimension are never all loaded at the same time
and the construction of this case is iteratively solved.

6. CONCLUSION

This article provides a theoretical basis for the distributed com-
putation of the Delaunay triangulation of massive tiled point set
proposed in [Caraffa et al., 2019]. We prove that the resulting
local triangulation in each tile is consistent with the global trian-
gulation thanks to an iterative process based on a star splaying
approach. The pipeline, being fully distributed, efficiently lim-
its the peak memory footprint, and is implemented on the Spark
Framework coupled with efficient C++ executables for compu-
tational geometry routines. This coarse-grain parallelization
is a key that enables this very modular approach to wrap any
Delaunay batch insertion implementation with any heavily op-
timized code Based on our experiments, the scaling performs
well according to an increasing number of cores and number of
points. As claimed before, the main advantage is that, unlike
more hardware dedicated algorithms, this framework can eas-
ily be deployed on a Spark cluster and integrates in a full pro-
duction pipeline for distributed 3D surface reconstruction from
LiDAR point clouds. This is justified by the reconstruction ex-
periments we performed on the urban dataset of figure 7. At
the implementation level, Spark-DIY [Cano-Lores et al., 2018]
defines itself as “A Framework for Interoperable Spark Op-
erations with High performance Block-Based Data Models”,
which may provide an abstraction layer over spark to design a
more efficient Spark implementation. In parallel, the algorithm,
while being coarse-grain by design is not tied to its Spark im-
plementation, it would be very interesting to implement an MPI
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Figure 7. Result of the proposed approach on 1.98 billion of points 6km2 with 2cm spatial resolution. First line: the whole scene.
Only finalized cells during the last step are shown. Triangles of the same tile have the same color. Second and third line: two tiles,

only local finalized simplex at the first step are shown.
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visibility purpose.

version and evaluate its performance on a HPC cluster. As
an interesting future work direction, the proposed framework
seems to be extendable in a recursive way to nested or adapt-
ative tiling procedures, where a distributed computation inside
tiles containing high number of vertices is considered. Lastly, if
an efficient computation of the set of tile pairs that need to ex-
change points were available (ie, the ones that have Delaunay
neighbors), then this could be performed as a preprocessing step

to drive the Delaunay computation distribution more efficiently.
This could also enable an efficient on-demand computation of
subsets of the Delaunay triangulation.
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