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ABSTRACT:

Knowledge of tree species mapping and of dead wood in particular is fundamental to managing our forests. Although individual
tree-based approaches using lidar can successfully distinguish between deciduous and coniferous trees, the classification of multiple
tree species is still limited in accuracy. Moreover, the combined mapping of standing dead trees after pest infestation is becoming
increasingly important. New deep learning methods outperform baseline machine learning approaches and promise a significant
accuracy gain for tree mapping. In this study, we performed a classification of multiple tree species (pine, birch, alder) and standing
dead trees with crowns using the 3D deep neural network (DNN) PointNet++ along with UAV-based lidar data and multispectral
(MS) imagery. Aside from 3D geometry, we also integrated laser echo pulse width values and MS features into the classification
process. In a preprocessing step, we generated the 3D segments of single trees using a 3D detection method. Our approach achieved
an overall accuracy (OA) of 90.2% and was clearly superior to a baseline method using a random forest classifier and handcrafted
features (OA = 85.3%). All in all, we demonstrate that the performance of the 3D DNN is highly promising for the classification of
multiple tree species and standing dead trees in practice.

1. INTRODUCTION

Forest inventories based on remote sensing data, particularly
lidar point clouds fused with optical imagery, are the most
prominent options for the inventory of forest structural vari-
ables (Latifi & Heurich, 2019). Forest attributes such as above-
ground biomass and growing stock can be estimated from the
spatial distribution of tree species and dead wood. Tree-level
approaches utilize segmented single trees for forest inventory
parameter estimations. For forest managers and nature conser-
vationists, information about tree species, especially the clas-
sification of dead trees, is of increasing importance because
forests are suffering from changing climatic conditions.

In the past, extensive research has been conducted to apply ap-
propriate classifiers like support vector machines (SVM), ran-
dom forests (RF), or logistic regression to classify presegmen-
ted single trees with respect to tree species (Fassnacht et al.,
2016) and dead trees (Yao et al., 2012). Most methods have
been based on handcrafted feature sets extracted from airborne
laser scanning (ALS) data and multispectral (MS) or hyperspec-
tral imagery. Polewski (2017) successfully combined single
3D tree segments with MS aerial imagery to detect standing
dead trees in a binary classification. The authors incorporated
MS features generated from the covariance matrix of three im-
age channels and classified dead trees with an overall accur-
acy (OA) of ca. 88%. Moreover, Degerickx et al. (2018) dis-
tinguished healthy (precision = 93%, recall = 83%) from un-
healthy (precision = 71%, recall = 88%) deciduous trees using
ALS data and hyperspectral imagery in a regression method.
Recently, Amiri et al. (2019) reported a combined classifica-
tion of tree species and standing dead trees with crowns. Using
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a huge feature set generated from multi-wavelength lidar point
clouds, four tree classes could be classified with an OA of 82%.
Interestingly, dead trees were only classified with 76% preci-
sion and 73% recall. However, all in all, the performance of
these approaches for individual tree species classification is still
not sufficient for practical use.

Currently, the utilization of high-performance deep learning
(DL) methods as a classification tool for 3D sensed data has
gained a large amount of interest in the remote sensing com-
munity. Various authors have demonstrated that standard ma-
chine learning (ML) concepts using, for example, SVM or RF,
can be outperformed by DL-based methods (Voulodimos et al.,
2018; Liu et al., 2018). One big advantage of deep neural net-
works (DNNs) is the automatic extraction of features as part
of the training process, or so-called representation learning
(LeCun et al., 2015). Griffiths & Boehm (2019) emphasized
four general types of DL approaches for scene understanding
from 3D sensed datasets. To utilize well-proven and efficient
2D convolutional neural networks (CNNs), irregular and un-
ordered 3D point clouds can either be transformed into RGB-
depth (RGB-D) images (Zhao et al., 2018) or utilized to render
multiview images (Qi et al., 2016). Furthermore, the authors
discussed volumetric approaches that discretize raw 3D data,
that is, as regular 3D voxel grids, and that use 3D convolutions
to extract meaningful information (Zhou & Tuzel, 2018).
Finally, powerful network architectures have been developed,
enabling a direct input of raw and unstructured point clouds
without the need for a prior rasterization or voxelization. These
innovative networks like Pointnet (Qi et al., 2017a), PointNet++
(Qi et al., 2017b), PointCNN (Li et al., 2018), and Super Point
Graphs (Landrieu & Simonovsky, 2018) allow end-to-end clas-
sification.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-203-2020 | © Authors 2020. CC BY 4.0 License.

 
203



Figure 1. Overview of the study area, located around 1.5 km west of the ChNPP (base map source: bing map ©Microsoft Corporation)

To the best of our knowledge, the application of DNNs for the
classification of presegmented single trees has been sparsely
investigated. In urban study areas, Wegner et al. (2016) ap-
plied latest CNN-based methods to extensive datasets compris-
ing aerial and street view images. The authors demonstrated
that multiview imagery significantly improved tree detection
and tree species classification, reaching close to human per-
formance. Furthermore, Hartling et al. (2019) classified eight
tree species using DenseNet (Huang et al., 2017), data from
satellite imagery, and lidar data (approximately 1 point/m2) in
urban study areas (OA = 83%). Moreover, Hamraz et al. (2019)
generated images from ALS point clouds and made use of a
CNN to classify overstory coniferous and deciduous trees in a
natural forest with a cross-validated classification accuracy of
92% and 87%, respectively. So far, using “real” 3D DNNs for
vegetation mapping has not been researched sufficiently. Re-
cently, Briechle et al. (2019) achieved promising results for ad-
apting PointNet++ to the semantic labeling of extensive ALS
point clouds, resulting in an OA = 85% for spruces and beeches.

The key idea of the current study was to adapt a 3D DNN for
the classification of multiple tree species based on presegmen-
ted single tree objects. Specifically, we applied PointNet++ to
a dataset composed of UAV-based lidar (including laser echo
pulse width) and five-channel MS imagery. All in all, Point-
Net++ achieved excellent classification results on the single-
tree level and clearly outperformed the baseline method. Fur-
thermore, we demonstrated that MS data clearly enhanced the
classification result.

In the following sections, we address the study area, sensors,
data preprocessing, and reference data. Subsequently, we
present the methodology for tree species classification using
PointNet++ and compare it with the baseline method. Next,
we demonstrate the conducted experiments and the main out-
comes, including a comparison of both methods. Finally, we
discuss the results referring to previous research and draw con-
clusions.

2. MATERIALS

2.1 Study area

In two unmanned aerial vehicle (UAV) flight missions (Novem-
ber of 2017 and April of 2018), both lidar data and MS im-

ages were captured in the study area Chornobyl Exclusion Zone
(ChEZ), located approximately 1.5 km west of the Chornobyl
Nuclear Power Plant (ChNPP) (Figure 1). This densely veget-
ated area (37 ha) comprises approximately 400 trees/ha with
tree heights of up to 30 m (Bonzom et al., 2016). The three
main tree species are silver birch (Betula pendula), scots pine
(Pinus sylvestris), and black alder (Alnus glutinosa). Moreover,
standing dead trees with crowns (solely pines) can be found in
the area.

2.2 Sensors and data preprocessing

During both flight missions, an octocopter was utilized; it was
developed by a team from the Department of Nuclear Physics
Technologies of the Institute of Environment Geochemistry of
the National Academy of Sciences of Ukraine. The copter en-
abled surveys, simultaneously recording with the lidar system
and two MS cameras.

2.2.1 Lidar data Lidar data with a nominal point density
of 53 points/m2 were collected in five automatic flights us-
ing a YellowScan Mapper I laser scanner at a constant alti-
tude of 50 m. To generate a geometrically reliable 3D data-
set, various postprocessing steps were conducted. First, dif-
ferential global navigation satellite system (GNSS) postpro-
cessing using a GNSS base station resulted in flight traject-
ories with centimeter-level precision. Second, the boresight
angles provided by the manufacturer were checked in a calib-
ration flight. Third, geometrically consistent lidar point clouds
were generated by simultaneously aligning the flight strips (Ja-
lobeanu & Gonçalves, 2014). Fourth, absolute 3D georeferen-
cing was achieved by fitting the ALS point cloud to the enclos-
ing polygons of a nearby building.
Additionally, the sensor provided the intensity values for each
laser point equivalent to the widths of the echo pulses (EW)
measured at a fixed internal sensor threshold. Because tree
species classification can benefit from these measurements, we
performed a data-driven correction step (Briechle et al., 2020).
Finally, we performed single tree segmentation using a normal-
ized cut algorithm, resulting in single tree point clouds and en-
closing tree polygons (Reitberger et al., 2009).

2.2.2 MS imagery Five-band MS images (ground sample
distance = 8.9 cm) were captured using two MicaSense
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RedEdge cameras (spectral range 475–840 nm) mounted in a
twisted configuration with an angle of 22.5° (50% side over-
lap). Guaranteeing an extended camera footprint (field of view
70°) equal to the lidar footprint, this setup allowed for a con-
stant line-to-line distance for both lidar and MS sensors in a
combined survey. For postprocessing the five-channel images
(blue = B, green = G, red = R, red edge = RE, near infrared =
NIR), we utilized structure-from-motion software1. The pro-
cessing steps included bundle adjustment (mean reprojection
error of 1.3 pixels), calibration of reflectance, and the genera-
tion of dense photogrammetric 3D point clouds (80 points/m2)
and 10 cm orthomosaics. Because the overflown study area is
inaccessible, no ground control points could be used. There-
fore, photogrammetric point clouds were registered to geore-
ferenced lidar point clouds using an iterative closest point al-
gorithm2, resulting in a root mean squared error of 0.237 m
(Briechle et al., 2018).

2.3 Reference data

Because of the high radiation dose rates within the study area,
reference data were generated based on visual interpretation
of 3D point clouds and MS imagery. In total, we manually
labeled 1135 single tree segments assigned to the four tree
classes “pine” (368 samples), “birch” (243 samples), “alder”
(283 samples), and “dead tree” (241 samples), respectively.

3. METHODOLOGY

In the following, we describe the baseline method including fea-
ture engineering, classifier training and feature selection pro-
cedure. Furthermore, we give a detailed description of the clas-
sification process with the 3D DNN. Specifically, we address
the preparation of dataset as well as network training, hereby
focusing on hyperparameters and data augmentation.

3.1 Baseline method

3.1.1 Extraction of handcrafted features The feature set
generated from 3D lidar data (Table 1) comprised features
based on the tree geometry (GEOM) and the echo character-
istics (EC).

Features Definition

GEOM(1-10)1 Density distribution of points per height layer.
GEOM(11-20) Vertical distribution of tree substance per height layer.
GEOM(21-30) Mean distance of points to segment center.
GEOM(31-32) Standard deviation (std) of distance from crown points

to segment center, in x and y direction.
EC1 Mean EW of points of a single tree.
EC(2-11) Mean EW of points of a single tree per height layer.
EC12 (Σ middle / Σ first) reflections.
EC13 (Σ single / Σ first) reflections.
EC14 (Σ first + Σ middle)/(Σ single + Σ last) reflections.

1 Increasing numbering from bottom (1) to top (10).

Table 1. 32 GEOM and 14 EC features.

Moreover, we developed distinctive features from the five-
channel orthomosaics. For this purpose, we computed five
vegetation indexes (VI) from the available spectral channels.
First, we calculated the Normalized Difference Vegetation In-
dex (NDVI), a well-known index sensitive to healthy vegetation

1Agisoft PhotoScan Professional 1.4.1
2CloudCompare 2.8 [GPL software]

Figure 2. Superimposed tree polygons on the orthomosaic.

rich in chlorophyll and robust over a wide range of conditions
(Rouse Jr et al., 1973).

NDV I =
NIR−R

NIR+R
. (1)

Second, utilizing both RE and NIR channels, the Red Edge Nor-
malized Difference Vegetation Index (RENDVI) was computed
(Gitelson & Merzlyak, 1994). This index is a NDVI modific-
ation and has been developed for applications including forest
monitoring and vegetation stress detection. RENDVI is capable
of detecting small changes in canopy foliage content (Sims &
Gamon, 2002).

RENDV I =
NIR−RE

NIR+RE
. (2)

Third, we introduced a NDVI-inspired index. Instead of the
NIR channel, the RE channel was used to generate Red Edge
Difference Vegetation Index (REDVI).

REDV I =
RE −R

RE +R
. (3)

Fourth, we utilized the Modified Red Edge Simple Ratio
(MRESR), which is used for forest monitoring and vegetation
stress detection, incorporating a correction for leaf specular re-
flection (Datt, 1999).

MRESR =
NIR−B

RE −B
. (4)

Fifth, we included the Modified Chlorophyll Absorption Ra-
tio Index (MCARI), a well-suited index to indicate the relative
abundance of chlorophyll. Daughtry et al. (2000) introduced
this index, minimizing the combined effects of soil and non-
photosynthetic surfaces.

MCARI =
RE

R
· (0.8 ·RE −R− 0.2 ·G). (5)

We superimposed the enclosing tree polygons on the orthomo-
saic (Figure 2) to mask VI pixels located within the tree seg-
ments. For each of these pixels, statistical features were calcu-
lated and standardized for each object (Table 2). These result-
ing 60 MS features were complemented with 10 independent
interchannel covariance values generated from the covariance
matrix of the five VI channels. Using this feature set, an RF
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(a) ’pine’ (b) ’birch’ (c) ’alder’ (d) ’dead tree’

Figure 3. Samples of 3D point clouds per tree class; for each class, the samples on the right show surface normals.

classifier was trained on the labeled dataset and optimized in
a three-times-repeated five-fold cross-validation. Finally, we
identified the five most important MS features by evaluating the
feature ranking based on the mean decrease in accuracy. In
descending order, these were NDVI skewness, MRESR perc90,
NDVI perc90, RENDVI mode, and MRESR mode.

Features Definition

max, min, interval Maximum value, minimum value, and range (max-min).
mean, std Mean value and standard deviation.
mode Value that appears most often.
skewness Measure of asymmetry of the probability distribution.
kurtosis Measure of tailedness of the probability distribution.
perc(25,50,75,90) 25th (’1st quartile’), 50th (’median’), 75th (’3rd quartile’),

and 90th percentile.

Table 2. Object-based statistical MS features.

3.1.2 Classifier training For the baseline method, the data-
set comprised 32 GEOM features and 14 EC features (see Table
1), as well as the five most important MS features generated
from the VI orthomosaics. In a preprocessing step, highly cor-
related redundant features were eliminated from the feature set,
here based on the application of a threshold (0.9) to feature-to-
feature cross-correlation (Briechle et al., 2018). Next, an RF
classifier was trained, including recursive feature elimination
(RFE) based on Kuhn (2008) and a feature relevance assess-
ment. Finally, the generalization quality of the RF classifier was
verified by calculating classification metrics (OA, κ, precision,
recall, and F1 score) on the test dataset .

3.2 Classification using 3D DNN

PointNet++ is an advanced version of PointNet and incorpor-
ates hierarchical feature learning by extracting features from
multiple contextual scales. Therefore, fine-grained local pat-
terns and more general global features can be captured. In the
following sections, we demonstrate the methodology for the
utilization of PointNet++ to classify three tree species (pine,
birch, alder) and standing dead trees using the pytorch imple-
mentation from Wijmans (2018).

3.2.1 Preparation of dataset

Point sampling: For object classification, PointNet++ re-
quires a constant number of 3D points per sample (e.g.,
NUM POINT = 1024, see Table 3). In practice, the distribution
of points per tree is fairly heterogeneous due to variations in the

size, geometry, and species of single trees. Thus, an effective
approach must meet the following conditions: First, a constant
and adequate number of points per tree has to be guaranteed,
and loss of information during downsampling needs to be
minimized. Second, deletion of samples containing less points
than NUM POINT but still exceeding an acceptable number
of points should be avoided. Third, synthetic generation
of redundant information by extensive upsampling is not
reasonable. Therefore, we introduced the two thresholds θ1
and θ2 in a combined sampling approach. θ1 was utilized to
randomly reduce the points per tree to a certain value. Figure
4 exemplary shows the number of remaining samples per
class, in dependence of θ1. To preserve the selected objects
comprising less than θ1 points in the dataset, we made use of a
second threshold, θ2. Trees containing at least θ2 points were
sampled up to θ1 points using random copies of points. All in
all, our procedure handled the trade-off between upsampling
and downsampling, assuming that both thresholds are chosen
appropriately.

Figure 4. Number of remaining samples per tree class in
dependence of threshold θ1.

Dataset generation: Initially, the remaining samples were bal-
anced according to the four occurring tree classes. Next, all
single point clouds were standardized by subtraction of the
mean x, y, and z coordinates and division by the x, y, and z
standard deviation. Consequently, all objects were rescaled and
had a mean of 0 and a standard deviation of 1. Practically,
the purpose of standardization is to make the classification res-
ults independent of the geometry within each tree class, for ex-
ample, the tree height and the crown width. Moreover, the EW
values were standardized as well. Subsequently, we calculated
surface normals (Figure 3) using the estimate normals function
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from the open source library Open3D (Zhou et al., 2018). The
two key arguments of the function, radius and max nn, were set
to 0.5 and 30, respectively. The parameter radius specifies the
search radius for the neighborhood definition, whereas max nn
defines the maximum number of nearest neighbors to be con-
sidered to save computation time. Next, the top five MS fea-
tures (see section 3.1.1) were integrated by assigning the stand-
ardized values to each 3D point of an object (tree species, dead
tree). Note that this procedure provides additional point attrib-
utes. All in all, we generated a dataset comprising raw point
clouds, surface normals, echo widths per point, and five previ-
ously calculated handcrafted MS features.

3.2.2 Training and validation

Hyperparameters: PointNet++ is an off-the-shelf 3D DNN.
Nevertheless, it is essential to consider various options to
optimize network performance for specific classification tasks
without model overfitting. To get a well-performing network,
the most decisive PointNet++ hyperparameters were adjusted
using a combination of manual search and automated grid
search (Table 3). For some parameters, the default values were
convenient and, therefore, remained unchanged.

Hyperparameter Value Declaration

NUM CLASSES 4 Number of object categories.

NUM POINT 1024 Number of points per sample.

MAX DROPOUT 0.5 Maximal dropout rate.

BATCH SIZE 8 Number of samples per batch.

MAX EPOCH 3001 Number of training epochs.

BASE LR 1e-3 Initial learning rate.

LR DECAY 0.7 Initial learning decay.

BN MOMENTUM 0.5 Initial batch norm momentum.

BNM DECAY 0.5 Batch norm momentum decay.

OPTIMIZER adam Optimization algorithm.

WEIGHT DECAY 1e-4 L2 regularization coefficient.
1 No early stopping criterion was used.

Table 3. Hyperparameters and default / optimized values for
PointNet++.

Data augmentation: A popular method to avoid model overfit-
ting on a small training dataset is the utilization of data aug-
mentation. Furthermore, performing data augmentation dur-
ing network training helps to make the neural network more
robust against object variation. Before each training epoch,
we shuffled the order of samples to generate random batches.
Next, we performed random transformations of the standard-
ized 3D objects by following common practice including scal-
ing (range = [0.80, 1.25]), rotation around vertical axis (range
= [0, 2*pi]), jittering with Gaussian noise (range = ±0.05 [m]),
and 3D translation of the entire point cloud (range = ±0.1 [m]).
Furthermore, we set the random input dropout parameter to
MAX DROPOUT = 50%, thereby increasing the robustness to
varying point density and occluded object parts. Practically, the
input points for each instance were randomly dropped out, gen-
erating subvolumes of the objects.

Model evaluation: For testing of the trained network, class la-
bels were predicted on trees that were not used for the training.
We compared these class predictions with the reference labels
and calculated standard metrics OA, κ, precision, recall, and
F1 score. For final evaluation, we used the model showing the
lowest validation loss.

4. EXPERIMENTS AND RESULTS

4.1 Experimental setup

The original reference dataset was prepared for object classi-
fication, performing point sampling (θ1 = 1024, θ2 = 512) and
class balancing (see section 3.2.1). The remaining 668 samples
(167 per class) were divided into 464 training and 204 test
samples using a split ratio of 0.7. Note that for a fair com-
parison of 3D DNN and baseline method, the particular train-
ing and test datasets were identical. For network training and
validation, we used an Intel Xeon Platinum 8160 CPU and a
Nvidia Titan V GPU (NVIDIA Corporation, 2019) with 12 GB
on Ubuntu 18.04, reaching a processing time of approximately
10 seconds per epoch.
We performed classification with PointNet++ on four differ-
ent datasets investigating their impact on the classification res-
ult. In more detail, the datasets represented geometry (GEOM,
see Figure 5), geometry and surface normals (GEOM+normals,
see Figure 6), geometry and EW values (GEOM+EW, see Fig-
ure 7), and all data subsets (GEOM+EW+MS, see Figure 8).
Furthermore, we conducted comparative experiments with the
previously described baseline method (RF). For validation, we
compared both classifier procedures on the same test dataset.

(a) PointNet++ (GEOM) (b) RF (GEOM)

Figure 5. Confusion matrices on the test dataset using only
geometry information.

(a) PointNet++ (GEOM) (b) PointNet++ (GEOM+normals)

Figure 6. Confusion matrices on the test dataset using only
geometry information and PointNet++ exclusive (a) and

inclusive of (b) surface normals.

4.2 General classification results

PointNet++ outperformed the baseline method in all experi-
ments (Table 4). Especially, if only geometry information was
used, PointNet++ and automatically extracted features led to
a result that was 17.7% better than the baseline method us-
ing 32 “standard” handcrafted geometry features. Adding sur-
face normals improved the DNN result by 1.4%. Here, no
comparison to the baseline was available. Fusing geometry
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(a) PointNet++ (GEOM+EW) (b) RF (GEOM+EW)

Figure 7. Confusion matrices on the test dataset using only
geometry information and EW values.

(a) PointNet++ (GEOM+EW+MS) (b) RF (GEOM+EW+MS)

Figure 8. Confusion matrices on the test dataset using geometry
information, EW values, and MS features.

data with EW data, the OA increased by 1.0% (DNN) and
14.2% (RF), respectively. Using this feature set generated from
lidar data, the DNN (OA = 79.4%) was 5.9% better than the
baseline method (OA = 73.5%). Including five top MS fea-
tures – namely NDVI skewness, MRESR perc90, NDVI perc90,
RENDVI mode, MRESR mode – the OA increased by approx-
imately 11% for both methods. Using all data subsets, Point-
Net++ (OA = 90.2%) outperformed the baseline method (OA =
85.3%) by 4.9%.

Feature sets PointNet++ RF
OA [%] κ OA [%] κ

GEOM 77.0 0.693 59.3 0.458
GEOM+normals 78.4 0.712 — —
GEOM+EW1 79.4 0.725 73.5 0.647
GEOM+EW+MS1 90.2 0.869 85.3 0.804

1 Due to the architecture of PointNet++, surface
normals are mandatory when adding extra attrib-
utes like EW values or MS features.

Table 4. Classification results using different data subsets.

4.3 Analysis of results using baseline method

The classification of multiple classes with the baseline method
utilizing only geometry features performed fairly poor (Figure
9b). Adding EW data increased all F1 scores, with a major im-
provement of 0.24 for pine. Moreover, the top five MS features
especially boosted the F1 scores of birch by 0.23 and dead tree
by 0.22 but could not improve alder classification. Overall, the
F1 scores ranged between 0.76 and 0.93. The feature ranking of
the RF classifier clearly confirmed the importance of MS fea-
tures for tree species classification, with all five MS features
being ranked in the top 10 of the most important features (Table

5). Unsurprisingly, five of the EC features were also ranked in
the top 10. These features mainly represent the interaction of
the laser beam with the top layers of the tree (EC10, EC11)
and penetration to the ground (EC13, EC14). Furthermore,
the mean EW value of the laserpoints of a single tree (EC1)
was ranked eighth. Finally, none of the geometry features was
ranked in the top 10.

Feature name Feature importance1

NDVI skewness 100.0
MRESR perc90 88.6
NDVI perc90 85.6
EC10 59.5
RENDVI mode 54.1
EC11 52.3
EC14 39.6
EC1 39.2
EC13 36.2
MRESR mode 33.3

1 Normalized mean decrease in ac-
curacy.

Table 5. Top 10 features using RF classifier and all data subsets.

4.4 Analysis of results using 3D DNN

In general, the results demonstrated that PointNet++ is an ef-
ficient 3D DNN for the classification of three tree species and
dead trees using point clouds (see Figure 9a). In particular, the
experiments showed that the inclusion of surface normals to the
geometry data improved the F1 score for standing dead trees by
0.06. Incorporating EW values mainly led to a high F1 value
for pine (F1 score = 0.90). Nevertheless, the F1 score for birch
decreased by 0.10 to a relatively low value of 0.65. Adding the
top five MS features enhanced all F1 scores. Interestingly, the
F1 score for birch clearly increased by 0.24. When utilizing all
subsets, the F1 scores ranged between 0.88 and 0.95.

5. DISCUSSION

The proposed framework using PointNet++ for the classifica-
tion of three single tree species and standing dead trees per-
formed fairly good. Especially, when classification was only
conducted based on geometry information, the results were sig-
nificantly better than those of the baseline method. Obviously,
handcrafted geometry features are considerably inferior to in-
formation automatically extracted in a DNN. If we analyze the
confusion matrices in Figure 8a, we notice a higher confusion
between alder and dead trees. Very likely, the tree geometry and
spectral appearance of alder is similar to dead pines. Stepwise
improvement of the results produced by PointNet++ was rather
low when we fused surface normals and EW values with geo-
metry data (1.5% and 1.0%, respectively). Interestingly, adding
surface normals particularly increased the classification accur-
acy for dead trees. Also very important, the classification of
pine, the only conifer in our study area, profited most by the
EW values (F1 score = 0.90), thereby confirming the findings
of Reitberger et al. (2009). Furthermore, we included five MS
features that were selected by the RF-based feature assessment.
Embedding these features, the overall results were considerably
enhanced for both methods by approximately 11% (see Table
4). Especially, the classification of birch and dead tree benefited
from these MS features. Note that at the time of data collection,
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(a) PointNet++ (b) RF

Figure 9. F1 scores per class using PointNet++ (a) and RF (b).

birches had already sprouted. Therefore, their characteristic
spectral appearance supported the classification significantly.

Investigating the related work reveals that our approach
achieves very promising and competitive results. For the classi-
fication of individual tree species, most previous studies based
on classic ML approaches did not reach an acceptable accuracy
level of up to 90%. Yu et al. (2017) classified three tree species
using multispectral ALS data and an RF classifier (OA = 86%).
Moreover, Shi et al. (2018) categorized five species, fusing ALS
data with hyperspectral imagery (OA = 84%). Kamińska et al.
(2018) classified three tree species (spruce, pine, deciduous),
each of them further categorized as “dead” or “alive”. Their
approach using an RF classifier and features generated from
ALS data and color-infrared imagery reached an OA of 94%.
Nevertheless, a comprehensive and, thus, fair comparison to
other studies that have addressed classification of presegmented
single trees is challenging. Collecting data using a huge variety
of sensor platforms and sensor types, utilized datasets strongly
differ in their spatial, spectral, and temporal resolution. Addi-
tionally, the type of study area (urban, natural, managed) and
number of samples and classes fluctuate as well.

We would also like to address some limitations of PointNet++
for classification tasks. Because PointNet++ can only deal with
objects comprising a constant number of points, point sampling
including upsampling and downsampling must be performed.
Thereby, information loss is unavoidable and must be minim-
ized based on reasonable thresholds (see section 3.2.1), de-
pending on the specific point density of the dataset. Never-
theless, this disadvantage is clearly compensated by the DNN
performance with its ability to automatically extract meaning-
ful information from 3D datasets. Moreover, 3D DNNs like
PointNet++ need to be trained from scratch using a specific and
fairly high number of training samples. Contrary to well-known
2D CNNs, no publicly available databases like ImageNet (Deng
et al., 2009) can be used for transfer learning and reasonable
weight initialization.

6. CONCLUSION

Our experiments demonstrated that 3D DNN PointNet++ could
successfully be applied to the classification of three tree spe-
cies - pine, birch, and alder - and standing dead trees. Fusing

UAV-based lidar data and features generated from five-channel
MS imagery, we achieved an OA better than 90% on single-tree
level. Moreover, classification with PointNet++ was clearly su-
perior to the described baseline method in all cases. All in all,
our DL-based approach provided detailed and reliable 3D ve-
getation maps at the tree level in the study area ChEZ. In a next
step, a large scale experiment in an extended forest area is inten-
ded to verify the promising results of this current study, thereby
demonstrating the suitability for practical use.

ACKNOWLEDGEMENTS

The authors would like to thank N. Molitor from Plejades
GmbH as well as V. Antropov, O. Tretyak and the collegues
from the State Central Enterprise for Radioactive Waste Man-
agement for the technical support in the ChEZ. We also highly
appreciate the support from Y. Zabulonov from the Institute
of Environmental Geochemistry, the supply of the octocopter
and its piloting by our Ukrainian colleagues from Flycamstu-
dio. The research was funded by Federal Ministry of Education
and Research (BMBF), grant number 13FH00$IX6.

References

Amiri, N., Krzystek, P., Heurich, M., Skidmore, A., 2019. Clas-
sification of Tree Species as Well as Standing Dead Trees Us-
ing Triple Wavelength ALS in a Temperate Forest. Remote
Sensing, 11(22).

Bonzom, J.-M., Hättenschwiler, S., Lecomte-Pradines, C.,
Chauvet, E., Gaschak, S., Beaugelin-Seiller, K., Della-
Vedova, C., Dubourg, N., Maksimenko, A., Garnier-Laplace,
J., Adam-Guillermin, C., 2016. Effects of radionuclide con-
tamination on leaf litter decomposition in the Chernobyl ex-
clusion zone. Science of the Total Environment, 562, 596-
603.

Briechle, S., Krzystek, P., Vosselman, G., 2019. Semantic la-
beling of ALS point clouds for tree species mapping using
the deep neural network PointNet++. International Archives
of the Photogrammetry, Remote Sensing and Spatial Inform-
ation Sciences - ISPRS Archives, 42(2/W13), 951-955.

Briechle, S., Molitor, N., Krzystek, P., Vosselman, G., 2020.
Detection of radioactive waste sites in the Chornobyl Exclu-
sion Zone using UAV-based lidar data and multispectral im-
agery. Under review.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-203-2020 | © Authors 2020. CC BY 4.0 License.

 
209



Briechle, S., Sizov, A., Tretyak, O., Antropov, V., Molitor, N.,
Krzystek, P., 2018. UAV-based detection of unknown radio-
active biomass deposits in Chernobyl’s Exclusion Zone. In-
ternational Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences - ISPRS Archives, 42(2),
163-169.

Datt, B., 1999. A new reflectance index for remote sensing of
chlorophyll content in higher plants: Tests using Eucalyptus
leaves. Journal of Plant Physiology, 154(1), 30-36.

Daughtry, C., Walthall, C., Kim, M., De Colstoun, E.,
McMurtrey III, J., 2000. Estimating corn leaf chlorophyll
concentration from leaf and canopy reflectance. Remote
Sensing of Environment, 74(2), 229-239.

Degerickx, J., Roberts, D., McFadden, J., Hermy, M., Somers,
B., 2018. Urban tree health assessment using airborne hyper-
spectral and LiDAR imagery. International Journal of Ap-
plied Earth Observation and Geoinformation, 73, 26-38.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.,
2009. Imagenet: A large-scale hierarchical image database.
2009 IEEE conference on computer vision and pattern re-
cognition, Ieee, 248–255.

Fassnacht, F., Latifi, H., Stereńczak, K., Modzelewska, A., Lef-
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