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ABSTRACT: 

 

Plane segmentation from the point cloud is an important step in various types of geo-information related to human activities. In this 

paper, we present a new approach to accurate segment planar primitives simultaneously by transforming it into the best matching 
issue between the over-segmented super-voxels and the 3D plane models. The super-voxels and its adjacent topological graph are 
firstly derived from the input point cloud as over-segmented small patches. Such initial 3D plane models are then enriched by fitting 
centroids of randomly sampled super-voxels, and translating these grouped planar super-voxels by structured scene prior (e.g. 
orthogonality, parallelism), while the generated adjacent graph will be updated along with planar clustering. To achieve the final 
super-voxels to planes assignment problem, an energy minimization framework is constructed using the productions of candidate 
planes, initial super-voxels, and the improved adjacent graph, and optimized to segment multiple consistent planar surfaces in the 
scenes simultaneously. The proposed algorithms are implemented, and three types of point clouds differing in feature characteristics 

(e.g. point density, complexity) are mainly tested to validate the efficiency and effectiveness of our segmentation method. 
 
 

1. INTRODUCTION 

Detecting planar surfaces from LiDAR and photogrammetry 
point cloud, due to its vast applications in many areas, has been 
an active topic in many research communities (Brook et al., 
2013). The segmented planes can be applied to classification, 
scene understanding, navigation, and the building information 
model (BIM) reconstruction, but a poor segmentation can make 
these tasks fail. During past decades, many algorithms and 
systems have been proposed to the plane segmentation based on 

the type of input data and objects, making the production of 
segmentation faster and better. Even though much progress has 
been successfully achieved, the robust and accurate 3D plane 
segmentation from the point cloud remains to be a challenging 
issue, especially for the complex scenes with noise, outliers, and 
occlusions. Besides, such a process on the acquired massive 
point clouds can be quite a time consuming, and information of 
surfaces, boundaries, scene priors (e.g. orthogonality, 
parallelism) are not preserved or even extracted. Thus, this 

paper proposes a robust and efficient unsupervised method to 
the segmentation of point cloud acquired from structural scenes. 
 

2. RELATED WORK 

The issue of plane segmentation has received considerable 
attention in the area of photogrammetry, computer vision, and 
autonomous vehicles. Within these large bodies of work in this 
broad topic, the research involving the plane extraction or 
segmentation referred to the scope of this paper is reviewed. 
 
2.1 Supervised Methods 

The supervised 3D plane segmentation, especially using joint 
segmentation and recognition, has aroused great interest along 

with the machine learning and deep learning. Similar to the 2D 
semantic labeling technology, the 3D method learns a 
classification model from the training data to predict the 
semantic category of each 3D element (e.g. 3D point, patches). 
The graphical model like Conditional Random Fields (CRF) is 

always employed to capture scene features and different 
categories (Pham et al., 2015; Vosselman et al., 2017). This 
encoded 3D contextual information hinders its wide application 
to construct and optimize such a complex graphical model. 
Recently, deep learning-based approaches (Kong et al., 2019; 
Milioto et al., 2019) can directly achieve the semantic 
information without feature calculation and can obtain a state-
of-the-art result. However, the main limitations are the huge 

training samples and weak network migration capabilities 
between different layered architectures. 
 
2.2 Unsupervised Methods 

An extensive literature has been proposed to improve the 

robustness and efficiency of planar segmentation, which can be 
roughly categorized into four categories: model fitting-based 
methods (Chen et al., 2014; Schnabel et al., 2007), region 
growing-based methods (Deschaud et al., 2010; Vo et al., 2015; 
Vosselman et al., 2017; Yang and Dong, 2013), based feature 
clustering-based methods (Kim et al., 2016; Zhou et al., 2016), 
and energy optimization-based methods (Dong et al., 2018; 
Pham et al., 2016; Yan et al., 2014).  

 
Model fitting-based methods The early model fitting-based 
methods approaches, Hough Transform (HT) by Duda and Hart 
(1972) and Random Sample Consensus (RANSAC) proposed 
by Fischler and Bolles (1981), are widely employed and have 
been proven to successfully extract 2D and 3D elements 
(Schnabel et al., 2007). Although these approaches and 
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improvements have achieved satisfying 3D plane segmentation 

results, it always fails as the sensitive model parameters with 
noise and outliers. 
 
Region growing-based methods These methods for 3D plane 
extraction is an iteration process by progressively merging 
adjacent points or patches with similar feature characteristics. It 
starts with potential seeds and then expands to its neighboring 
points. Nevertheless, it is susceptible to the seeds selection, and 

difficult to terminate when the transitions between the two 
regions are smooth (Sampath and Shan, 2010). 
 
Feature clustering-based methods The statistical method 
classifies the point clouds into primitives based on fixed pre-
calculated local feature properties (e.g. saliency feature). The 
clustering (Vo et al., 2015) in the feature space excluded the 
boundary points, thus refinement was needed to test whether the 
points were within the same cluster space (Zhou et al., 2016). 

Despite the popularity and efficiency of this approach, it suffers 
the difficulty in neighbourhood definition and is sensitive to 
noise and outliers. 
 
Energy optimization-based methods The widely used energy 
minimization approach is a global optimization solution by 
constructing a stable plane energy model. It aims at fidelity data, 
continuity of feature values, and compactness of segment 

boundaries (Kim and Shan, 2011). The widespread applications 
of energy-based methods in the field of 2D image process can 
be found in (Dong et al., 2018; Hossam Isack, 2012; Pham et al., 
2014). These methods are robust, and can produce spatially 
coherent plane models, and improve the quality of plane 
extraction. However, the energy optimization methods are 
computationally expensive for the huge point cloud, and are 
greatly affected by the adequacy and reliably of initial inputs. 

 
Even though these proposed methods can generally provide 
satisfactory extraction results, there still exist limitations to 
extract primitives from point clouds, especially for the complex 
structural objects with occlusion and bias. To overcome these 
problems, this paper develops a simple segmentation strategy 
that is to transform the plane segmentation issue into the best 
matching issue between the over-segmented super-voxels and 

the 3D plane models, improving the robustness to noise and the 
efficiency of global optimization. 
 
The remainder of the paper is structured as follows. In Section 3, 
the details for plane segmentation is carried out, and results 
including assessment and discussion are presented in Section 4. 
Section 5 consists of the concluding remarks on the introduced 
method and future effort. 
 

3. METHODOLOGY 

The proposed approach, as illustrated in Figure 1, aims to 
extract planes from LiDAR or photogrammetric point clouds of 
a structured scene by best matching the generated super-voxels 

to the potential planes. It encompasses three key components, 
namely super-voxel segmentation (Preprocessing), candidate 
planes and geometry relationship generation (Initialization), 
and the super-voxels to planes assignment using the graph-
based optimization framework (Optimization). 
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Figure 1. The illustration of the proposed method 

 
The structured scenes are a dominant element of three-
dimensional modelling, which exists lots of planar surfaces and 
valuable scene priors as orthogonality, parallelism. Taking the 
point cloud of a structured scene as input, an over-segmentation 
preprocessing (Section 3.1.1) is introduced to segment the point 

clouds into super-voxels (Svs) and its adjacent geometric 
relations graph (Svs-G), then voxels can be classified as planar 
or non-planar segments with its geometrical characteristic 
(Section 3.1.2). To enrich the potential candidate planes, a 
randomly sampling strategy (Section 3.2.1) and a scene prior-
based translating of fitted grouped planar Svs (Section 3.2.2) is 
adopted, which can fill some issues like occlusion, noise, and 
outliers. The final super-voxels to planes assignment (planes 
segmentation) can be optimized by a multi-label graph-cut 

framework (Section 3.3), where these energy items are 
constructed by these candidate planes, original super-voxels, 
and its adjacent graph (Svs-G'). 
 
3.1 Preprocessing for Supervoxels Segmentation 

In this section, we introduce an over-segmentation approach to 
handle massive points and then extract the planar super-voxels 
using its geometrical characteristics. 
 
3.1.1 Super-voxel Generation 

 
Plane segmentation from the original point cloud (neither 

LiDAR or photogrammetric point cloud) is time-consuming, 
and the direct handle will increase the computational cost. Thus, 
we represent these several millions of points by a collection of 
small patches, named super-voxels (Svs), to reduces the 
processing complexity. To obtain the super-voxels, a planar 
over-segmentation approach (Papon et al., 2013) is adopted, 
producing a set of small patches marked as Svs = {svi}. Each 
super-voxel has similar geometric features and can be 

formulated by centroid ci, curvature fi, and normal vector ni . In 
addition, an adjacent connected graph (Svs-G) for the super-
voxels is constructed between super-voxels. The graph can 
ensure super-voxels do not flow across object boundaries and 
can be efficiently used for further searching. A vertex (svi) in 
the graph (Svs-G) is an individual super-voxels, and a 
connected edge (ei) is linked with two adjacent vertexes. Thus, 
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the input point cloud can be finally recorded as Svs-G = {svi, ei}. 

In some cases, the colour is always missed or uncorrected, thus 
we focus on geometric features, and take the spatial distance, 
and normal vector deviation to generate Svs-G. 
 
3.1.2 Geometric Features Calculation 

 
Each generated super-voxel (Svs) is most likely to be part of a 
plane. To achieve a precise plane from super-voxels, the 

proposed method firstly calculates the saliency geometric 
features (Yang and Dong, 2013) of each super-voxel based on 
the formula as follows: 
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Where the value of i  is the singular values in descending 

order. Then each Svs can be classified into planar surface based 
on the following formula Eq. (2). 
 

)()( = ααsαααsαSvs                (2) 

 

Where αs is scaling factors defining relative tolerances for the 

acceptable amount off-plane displacement, and can empirically 
be set to (0.75-1.3) for the extraction of non-planar and planar 

super-voxels. 
 
3.2 Generation of Candidate Planes and Geometry 

Accurate and reliable candidate planes and its corresponding 

geometric connection (Monszpart et al., 2015) are the key 
factors for plane extraction. In this section, we will introduce 
the proposed approach for candidate planes enrichment, 
including the fitted planes pSetsam by randomly sampling on 
subsets of the centroids from the over-segmented super-voxels, 
and potential planes translating (pSettrans) from the combined the 
grouped planar super-voxels and structured scene prior (e.g. 
orthogonality, parallelism). 
 

3.2.1 Plane Candidates Fitted by Random Sampling  

 
A fast and simple method to generate candidate planes is to fit 
randomly sampled minimum subsets from the original points. 
However, sampling a large number of minimum point subsets is 
time-consuming, which can ensure the adequacy of the plane 
hypothesis set. Instead, we propose to generate candidate plane 
models by randomly sampling the over-segmented super-voxels, 

which can provide centroids and normal vectors for the further 
RANSAC or Least-Squares plane fitting. 
 
3.2.2 Candidate Planes Translation using Scene Priors 

 
For such structured scenes, there are always a large number of 
planar surfaces and valuable scene priors (e.g. orthogonality, 
parallelism), which can be effectively used to enrich potential 

planes especially in the case of noisy, incomplete, outlier-ridden 
data. Here a region growing approach (Rabbani et al., 2006) 
based on curve smooth is applied to group planar super-voxels 
from the over-segmented Svs. It merges two adjacent planar 
super-voxels (shared a valid edge ei,) with similar features ({ci, 
fi, ni,}). The optimal features of the referred super-voxels, as 
well as the local part of the adjacent graph (Svs-G), will be 
synchronous update, which can avoid the points in the same 

plane being scattered on different planes as noisy. What’s more, 

this merging update is local as only edges with the related 

super-voxels adjacent to the two planar merged are processed. 
resulting in an updated adjacent graph (Svs-G'). 
 
With these grouped planar super-voxels, we first calculate the 
3D plane models by least-square estimation. We prefer these 
planes to be orthogonal or parallel (depends on the structural 
prior knowledge), thus the potential planes translating will be 
performed. For each pair of nearly orthogonal or parallel planes 

(PA, PB), we can rotate one plane (PA) by a fixed angle (e.g. 

90°) and translate it to the other (PB). This translating, which 

can generate the potential planes, is consistent with the fact that 
points of PA can be better explained by plane model PB. 

 
3.3 Graph-based Optimization for (Svs-to-planes)  

The generated candidate planes (pSet = pSetsam + pSettrans), 
super-voxels (Svs), and updated adjacent graph (Svs-G') will be 
used to be optimized by the global energy minimization 

(Delong et al., 2012) solution as follows: 
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Where p and q are the symbolic super-voxel (Svs), and Lp is the 
3D plane model from the candidates (pSet) expressed by: 
 

)( =++=+++=  cbadczbyaxLp           (4) 

 
The optimization problem can be resolved via a popular graph 

cut like the extended ɑ-expansion algorithm (Delong et al., 2012; 

Isack and Boykov, 2012), which achieves a good balance of 
data item cost (geometric errors), smooth item cost (spatial 
coherence), label item cost (number of planes). 

 
The data item ( )

p Svs

D p


  is used to measure the sum of 

geometric errors using a quadratic perpendicular deviation 
between super-voxel and plane label Lp as Eq. (5), and the 
construct quadratic distance is equivalent to the Gaussian 

distribution of assumed errors. 
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The second smoothness prior term in Eq. (3) assumes some 
specific neighborhood system edge for the adjacent super-
voxels along with the updated adjacent graph (Svs-G'). In this 
paper, the Potts model (Delong et al., 2012) is adopted for  the 
indicator function )(δ , written by: 
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A closer super-voxel is a priori more likely to fit the same plane, 

thus the weight pqω is set inversely proportional to the distance 

of adjacent the super-voxel p and q, as Eq. (7). 
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It is encouraging to express structural scenes with fewer planes, 

resulting in a brief description. Thus, the label item is built by 
the number of super-voxels for a plane, written by: 
 

iL-
e=L                              (8) 

 
The final optimization framework for assigning super-voxels to 
planes can be organized as follows: 
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The proposed energy optimization problem used for plane 

segmentation can be solved by ɑ-expansion algorithm (Delong 

et al., 2012; Hossam Isack, 2012). When the global energy is no 
longer reduced, and the iterative will be terminated, and then 3D 
plane models can be reconstructed from the optimized labels. 
 

4. RESULTS 

The proposed approach was implemented and applied to three 
data sets (S1, S2, and S3) that differ in density and feature 
characteristics, and the results of qualitative and quantitative 
analysis for plane segmentation are explained as follows. The 
S1 is a stand-alone building with noises and outliers, while S2 is 
a complex roof with different primitive types. Besides, the 

processed airborne LiDAR point cloud S3 is obtained from the 
NYU dataset which is a high-density ALS data for urban areas 
and contains a complex set of roof types such as multi-layered. 
 

 
 
(a) S1 with noises and outliers  (b) S2  with different elements 

 

 
(c) NYU data (S3) with complex roof types 

 

Figure 2. Overview of three tested point clouds 

Datasets S1 and S2 are tested by the proposed approach and 

compared with the RANSAC. The qualitative results are 
illustrated in Figure 3, where RANSC can discover the main 
planes, but failed to with smaller structures and large planes 
with noises, while the proposed has sucessfully recovered the 
small patches, espcailly the edges and transition areas. 
 

 
 

(a) Plane extraction by RANSAC 
 

 
 

(b) The proposed plane segments 
 

Figure 3. Comparison of plane segmentation from S1 and S2. 

 

An evaluation with a visual inspection for the 3D reconstructed 
models (S3) is shown in Figure 4. The basic planar primitives 
are well reconstructed including the narrow planes covering 

multi-layered, overhanging, and multi-layered with flat roofs.  
 

 
 

(a) Plane segments by the proposed approach 
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(b) The reconstructed 3D models with planes 
 

Figure 4. The plane segments and 3D models from S3.  

 
In addition, further quantitative evaluation is performed by the 

average distance between a point to the reconstructed 3D plane 
model, which is an internal quality measure. The assessment 
results for the tested point cloud are 0.68cm (S1), 1.3cm (S2), 
and 2.6 cm (S3), respectively. Moreover, over-segmentation is 
encouraged in the first data pre-processing, which can achieve 
more valid planar planes and can be further optimized in the 
proposed graph-based energy model. 
 

5. CONCLUSION 

A robust and accurate segmentation scheme for extracting a set 
of planar elements has been proposed. The main contribution of 
this paper is to transform the plane extraction problem into the 

best matching issue between the over-segmented super-voxels 
and the 3D plane models using an energy minimization 
framework. To get robust and reliable plane models, we first 
divide the input point cloud into over-segmented super-voxels, 
and cluster planar one to generate planes, then a random 
sampling strategy and a scene prior-based translating are 
adopted to enrich these plane models. The final super-voxels to 
planes assignment (planes segmentation) problem has achieved 

by these candidate planes, original super-voxels, and its 
adjacent graph. The qualitative and quantitative results of three 
types of point clouds with different point density and feature 
characteristics have proven the effectiveness of the proposed 
approach. It will be interesting to extract and optimize the 
freeform surface in the near future. 
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