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ABSTRACT: 

 

With the development of LiDAR and photogrammetric techniques, more and more point clouds are available with high density and 

in large areas. Point cloud interpretation is an important step before many real applications like 3D city modelling. Many supervised 

machine learning techniques have been adapted to semantic point cloud segmentation, aiming to automatically label point clouds. 

Current deep learning methods have shown their potentials to produce high accuracy in semantic point cloud segmentation tasks. 

However, these supervised methods require a large amount of labelled data for proper model performance and good generalization. 

In practice, manual labelling of point clouds is very expensive and time-consuming. Active learning can iteratively select unlabelled 

samples for manual annotation based on current statistical models and then update the labelled data pool for next model training. In 

order to effectively label point clouds, we proposed a segment based active learning strategy to assess the informativeness of 

samples. Here, the proposed strategy uses 40% of the whole training dataset to achieve a mean IoU of 75.2% which is 99.1% of the 

accuracy in mIoU obtained from the model trained on the full dataset, while the baseline method using same amount of data only 

reaches 69.6% in mIoU corresponding to 90.9% of the accuracy in mIoU obtained from the model trained on the full dataset. 

 

1. INTRODUCTION 

Nowadays, detailed 3D city models are required in many 

disciplines, like land administration (Lemmen et al., 2015), 

urban planning (Murgante et al., 2009) and tourism (Cooper et 

al., 2013). They are supposed to give various information in 

complex urban environments, like the number of buildings and 

trees and the size of buildings, roads and vegetation coverage. 

Point clouds are an essential type of data to generate detailed 

3D city models. However, manual labelling of point clouds in 

urban areas requires huge efforts. Therefore, machine learning 

techniques have been investigated to solve this semantic 

segmentation problem automatically.  

 

In machine learning based approaches, labelled datasets are 

required to train statistical models. Examples of supervised 

learning models are random forest (Breiman, 2001), support 

vector machine (Cortes & Vapnik, 1995) and Adaboost (Hastie 

et al., 2009). More recent techniques are deep neural networks 

that have outstanding performance in many 2D classification 

and recognition tasks like AlexNet (Krizhevsky et al., 2012) and 

ResNet (He et al., 2015). Then deep learning based methods 

extend to point cloud processing like Kd-Networks (Klokov and 

Lempitsky, 2017), PointNet (Qi et al., 2017a) and PointCNN 

(Li et al., 2018). In order to get accurate predictions, datasets 

should be large enough to avoid overfitting, especially when 

using deep learning based algorithms that learn features from 

training data. Larger labelled datasets for training help statistical 

models generalize to more data. However, annotation of 3D 

point clouds is tedious and time-consuming. It takes over 2500 

hours to manually label 260 million points into 8 classes in 

urban areas (Zolanvari et al., 2019). Therefore, it is necessary to 

develop methods to reduce this manual 1 work. In most of 

current researches, all samples in training datasets are treated 
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equally and are fed into classifiers with random shuffling. 

However, the informativeness of these training samples differs. 

Some bring more information and give more contributions to 

the model performance, while some are less informative and 

even introduce noisy information to models (Settles, 2009). 

Thus, a more efficient learning strategy is required to optimize 

models with most informative samples and labelling efforts 

only need to be put on these informative samples. 

 

Active learning strategies are developed to minimize manually 

labelling efforts while maximizing the model performance in a 

supervised learning process. The strategy is to evaluate the 

informativeness of unlabelled data by a model, label those 

informative samples by human annotators and then add the 

newly labelled samples to the current training data for the next 

training. Active learning has been applied to many disciplines 

like object detection (Sivaraman & Trivedi, 2014), semantic 

segmentation (Vezhnevets et al., 2012), image classification 

(Wang et al., 2017) and natural language processing (Wang et 

al., 2019). However, very few studies investigate how to apply 

active learning strategies to point cloud labelling tasks (Feng et 

al., 2019; Luo et al., 2018). 

 

In this paper, we propose an active learning strategy for 

semantic segmentation of large-scale ALS point clouds. The 

main objective is to effectively select point cloud samples for 

network training and therefore, reduce the manual labelling 

work but maintain the model performance. Figure 1 

demonstrates the framework in this paper. We estimate data 

informativeness by uncertainty. Experiments show that the 

active learning strategy using entropy within segments as the 

criteria can select the most informative data that improve model 

performance. The major contributions of this paper are as 

follows: 1) We propose an active learning framework to 

efficiently label point clouds based on a deep learning network, 
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PointNet++. To the best of our knowledge, our paper is the first 

one to combine active learning with deep learning for semantic 

segmentation of 3D point clouds. 2) Instead of simply assessing 

pointwise uncertainty using entropy, we consider interactions 

among points within segments. 3) The proposed strategy uses 

40% of the whole dataset to achieve 99.1% of the accuracy in 

mIoU obtained from the model trained on the full dataset.  

 

 
Figure 1. The proposed workflow for active learning strategy for semantic segmentation point cloud. Firstly, point clouds are split 

into tiles and separated into two groups: labelled (minority) and unlabelled (majority). Then, the network is trained on labelled tiles 

and the trained network selects segmented unlabelled tiles. Here two queries are tried. One query 1 directly consumes unlabelled tiles 

and the other one (query 2) relies on the unsupervised segmentation. Selected tiles are labelled before the next training. The trained 

network is evaluated on testing tiles in each iteration. 

 

2. RELATED WORK 

A lot of efforts have been spent in semantic point cloud 

segmentation tasks, starting from machine learning techniques 

with predefined features to deep learning methods achieving 

state-of-the-art performance. The following paragraphs give a 

brief review on recent deep learning approaches and related 

active learning strategies.  

 

2.1 Deep learning approaches 

Recently, more and more researchers put efforts on addressing 

semantic segmentation of point clouds via deep learning 

techniques. Current methods are divided into two categories. 

They are 2D based methods and 3D based methods. In the 2D 

category, 3D point clouds are converted into 2D images and 

then fed into 2D convolutional networks. For example, Su et al. 

(2015) propose image-based networks called Multi-view CNNs 

which take rendered views of 3D shapes as inputs. Similarly, 

Kalogerakis et al. (2017) propose fully convolutional networks 

(FCNs) to achieve the semantic segmentation at object levels. 

FCN gives a confidence map to every single view and then a 

surface based CRF (conditional random field) layer aggregates 

all these maps with geometric consistency cues to produce 

coherent part segmentation. Attempts have also been made to 

apply image based CNNs to large scale ALS data. To separate 

ground and non-ground points, Rizaldy et al. (2018) convert 

ALS point clouds into height images which are the input of 

FCN. 

 

Semantic point cloud segmentation is also solved by many 3D 

deep learning networks. Some of them split the 3D space into 

small grid voxels to adapt to 3D convolution filters (Maturana 

and Scherer, 2015; Wu et al., 2015). However, this voxelization 

always introduces artefacts that not only impede the learning of 

effective 3D features but also hinder the network generalization 

to semantic segmentation tasks. To mitigate the side-effects of 

voxelization, networks are designed to directly consume points. 

Klokov and Lempitsky (2017) propose Kd-Networks to handle 

unstructured point clouds, which is free from conventional 

uniform 2D and 3D grids. They use Kd-trees as underlying 

structures where point clouds are recursively split by binary 

spatial partition. Then, point clouds are constructed in a 

hierarchical way and this encodes shape information that is 

valuable for recognition and segmentation tasks. Qi et al. 

(2017a) propose PointNet which can also directly consume 

point clouds. The network is robust to variance in geometric 

transformations and can process unordered point sets. Then, 

PointNet++ is proposed to learn features in multiple scales (Qi 

et al., 2017b). Taking PointNet and PointNet++ architecture as 

backbones, Wang et al. (2019) design an associatively 

segmenting instances and semantics framework, aiming to 

perform instance and semantic segmentation simultaneously. 

The framework takes advantages of two tasks and contributes to 

a win-win situation. Some attempts explore the potential of 

graph convolutional networks (GCNs) in point cloud labelling 

tasks. SuperPoint Graph (SPG) implements GCNs on segments, 

aiming to deal with large scale data (Landrieu and Simonovsky, 

2018). The graph is constructed by superpoints and edges. 

Superpoints are geometrically homogeneous elements and 

edges describe the adjacency relationship between superpoints. 

GCNs take the graph as the input to exploit contextual 

information between shapes and objects, and achieve top 

accuracy in semantic segmentation of point clouds in large 

scales. Wang et al. (2018) propose a GCN based module Edge-

Conv that dynamically computes graphs in order to capture 

geometrical structure at different scales. Griffiths and Boehm 

(2019) and Xie et al. (2019) review most recent deep learning 

techniques for 3D data classification. 

 

2.2 Active learning 

Active learning aims at querying informative samples to 

maximize model performance. The main challenge in active 

learning is to estimate the informativeness of samples, which 

has been researched for a long history in the machine learning 
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community. There are various approaches to selecting 

unlabelled data. Uncertainty sampling is the most commonly 

used method, which preferential selects the samples that models 

are least confident about. Density weighted methods select 

samples that are not only uncertain but also representative of the 

underlying data distribution (Settles and Craven, 2008). 

Expected change based methods choose data that cause the 

largest change in the current model (Vezhnevets et al., 2012). A 

comprehensive summary of active learning techniques is given 

by Settles (2009). 

 

Recently, few studies are applying active learning techniques to 

point cloud processing. Luo et al. (2018) design a framework to 

combine active learning and higher order MRF for the semantic 

segmentation of mobile LiDAR point clouds. During the 

sampling, they consider neighbour-consistency in a way that 

two spatially adjacent supervoxels are likely to have the same 

label. That means, for an unlabelled supervoxel, if its predicted 

label is different from the label of its nearby manually labelled 

supervoxel, it is considered as a misclassified sample and is 

supposed to be selected and manually labelled to improve the 

statistical model in the next iteration. Although the work selects 

optimal training data and saves some manual labelling work, the 

classifier MRF still requires pre-defined features which are not 

enough representative compared to deep learning features. Feng 

et al. (2019) integrate active learning with a state-of-the-art deep 

learning method for 3D object detection in LiDAR data. They 

use deep ensembles and Monte-Carlo dropout techniques to 

estimate both aleatoric (data dependent) and epistemic (model 

dependent) uncertainty. By active learning, the labelling efforts 

are reduced by 60%. To the best of our knowledge, there is no 

research which combines active learning with deep learning of 

semantic segmentation of point clouds. 

 

3. METHOD 

Figure 1 demonstrates the workflow in this paper. The red dash 

line box demonstrates the active learning strategy proposed in 

this paper. There are three components, namely, training, 

querying tiles with unsupervised segmentation information and 

labelling. The following sections firstly give an overview of the 

active learning framework and then explain the network 

structure and the training method. Finally, point entropy and 

segment entropy are introduced to query tiles.  

 

3.1 Active learning 

Algorithm 1: Active Learning Algorithm  

Input: a pool of unlabelled point cloud tiles S 

Output: the manually labelled point cloud tiles DL, and 

a neural network W. 

1: initialize DL by manually annotating some tiles  

2: repeat:  

3:     W = neural_network(DL)  

4:     xs = AL criterion(w, S) 

5:     DL = DL\ xs  

6:     S = S∪xs 

7: until the stopping condition is met  

8: return DL and W 

 

Algorithm 1 demonstrates active learning strategy in steps. The 

first step in active learning is to initialize the network with 

several labelled point cloud tiles. After the training, the trained 

model evaluates the informativeness of each tile in the 

unlabelled pool. Here, we select unlabelled tiles (xs) by query 

functions introduced in section 3.3 instead of selecting points or 

super voxels (Luo et al., 2018). Luo et al. (2018) extract 

predefined pointwise features, like linearity and planarity which 

can only be calculated from neighbouring points. MRF 

classifiers can assign every point a label according to its 

predefined features. However, in deep learning based methods, 

geometrical features are learned from data, so networks have to 

consume point cloud tiles that preserve geometrical 

information. If only several sparsely distributed points within a 

tile are labelled, the whole tile is still required in the network to 

learn geometrical features. The computational cost is the same 

no matter whether fully labelled tiles or partially labelled tiles 

are used. The only difference lies in the loss function where 

unlabelled points have no contribution. If we select points from 

all unlabelled data, we have to put all training points (all tiles) 

into the network for every training. The training time is then the 

same as for using fully labelled training data, which is quite 

time-consuming. If we query tiles, the less tiles we select, the 

less time is required for training. Considering time efficiency, 

we label point clouds by tiles. Then selected tiles (xs) are used 

to update the training data DL and then are removed from 

unlabelled pool S. This training and selecting process is iterated 

until the stopping criterion is satisfied, like there is no 

significant improvement in network performance for several 

iterations or the network performance is sufficient. 

 

3.2 Semantic segmentation by PointNet++ 

3.2.1 Network structure 

PointNet++ (Qi et al., 2017b) is a hierarchical neural network 

that recursively implements PointNet (Qi et al., 2017a). It 

encodes point cloud features by set abstraction modules at 

multiple scales in order to capture point cloud structures in a 

larger context. A set abstraction module consists of three layers, 

namely, sampling, grouping, and PointNet. In the sampling 

layer, a set of points are selected by iterative farthest point 

sampling (FPS). This helps receptive fields to adapt to the data 

distribution and avoids sampled point clustering within a small 

region. Then, neighbours around centroid points are grouped 

within a given radius. Next, selected points are fed into a 

PointNet layer. Here, each input point corresponds to a small 

group of points in a small local region and each group member 

has its own features like XYZ coordinates or features extracted 

from last set abstraction module. The PointNet encodes this 

neighbouring information into a 1D vector.    

 

3.2.2 Network training  

Networks in this paper are trained from scratch and all weights 

in PointNet++ are randomly initialized. However, we only 

initialize model weights once and all models start from the same 

initialization. This is because this paper aims to compare how 

different sampling strategies influence the model performance, 

while different starting points could lead to different network 

performances. This side-effect should be mitigated because we 

are only interested in the influence of different training samples 

on the model performance. During the training, networks are 

optimized end to end by stochastic gradient descent, aiming to 

minimize a weighted cross entropy loss. The loss function puts 

more weights on the loss caused by less frequent classes, 

dealing well with imbalanced data. Networks are trained with 

dropout to avoid over-fitting. In order to find optimal network 

weights, networks are assessed on validation data for every 

epoch. Weights are saved if validation loss improves and the 

training stops when validation loss has no improvement for 

several epochs. 
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3.3 Query functions 

This paper compares three strategies of sampling point cloud 

tiles. They are random sampling, point entropy sampling and 

segment entropy sampling. The first one randomly draws 

samples and we take it as a baseline to see whether the other 

two methods can outperform it. The other two methods are 

introduced in the following sections. 

 

3.3.1 Point entropy  

Shannon Entropy (SE) estimates the amount of information is 

required to ‘encode’ a distribution.  

 

 

 

(1) 

 

Where p(y=c|x) is the predictive probability for class c coming 

after the softmax function at the end of the network. If the 

model is very confident about a certain class label by assigning 

high predictive probability to that class and assigning very low 

values to other classes, the entropy for that point is low. On the 

contrary, the entropy is high when the model gives similar 

probabilities to all possible classes. Here, we query data which 

current trained networks are uncertain about. Therefore data 

with high entropy are preferred. As mentioned in section 3.1, 

this research selects point cloud tiles to save the time in training 

networks. To find the most informative tiles, pointwise 

entropies are averaged within all unlabelled tiles. Tiles with 

high averaged entropy are selected, labelled and combined with 

other labelled tiles. 

 

3.3.2 Segment entropy  

The uncertainty cannot only be estimated at the point level but 

also the segment level. Point cloud segmentation aims to 

separate points into geometrical homogenous units. Here we use 

the segmentation algorithm proposed by Vosselman et al., 

(2017). The unsupervised segmentation algorithm takes the 

advantages of both planar surface extraction and point feature 

based segmentation methods. The first step is to segment point 

clouds into planar objects by Hough transform and surface 

growing algorithm. However, this planar surface extraction 

over-segments non-planar objects like vegetation into small 

pieces. Therefore, only very large segments are kept and the rest 

of points are re-segmented by a segment growing algorithm 

relying on planarity and normal vector directions. This groups 

points on vegetation, cars and chimneys. To solve the over-

segmentation on slightly non-planar ground points, adjacent 

large segments are merged if they share borders, their normal 

vectors are parallel and points in one segment can also fit the 

plane of the other segment and vice versa. Unlabelled points are 

assigned to segment labels based on neighbours’ majority 

voting. Isolated points remain unsegmented and do not count 

for segment entropy calculation. 

 

Here, we assume that points within a segment are supposed to 

share the same label. Therefore, if different labels are predicted 

for points within a segment (Figure 2 middle), the model is 

likely to give the wrong predictions on those segments and 

therefore those difficult segments should be selected for training 

in the next iteration. The distribution of predicted labels within 

segments is estimated by segment entropy: 

 

 
 

(2) 

 
 

(3) 

 
 

(4) 

 
 

(5) 

 

Where Eseg is the entropy of a segments and q(c) represents the 

percentage of points that are predicted as class c.  is the class 

label that has the highest predictive probability. q(c) is 

calculated by equation 4, where N is the number points within a 

segment. Figure 2 demonstrates low and high segment entropies 

on a roof segment. As samples are selected by tiles, points 

within a segment share the same segment entropy and pointwise 

segment entropies are averaged within all unlabelled tiles.  

  
 

 

 

 

 
 

 Clutter Ground Building Water  
Figure 2. Segment entropy. Left: unsupervised segmentation 

results. Middle: high entropy within the roof segment. Right: 

low entropy within the roof segment. 

 

4. EXPERIMENTS 

To verify the efficiency of active learning in semantic point 

cloud segmentation tasks, airborne Lidar point clouds are taken 

as the source data in our experiments. More details about the 

dataset, the specific structure of PointNet++, training 

parameters and how the proposed query functions are 

implemented are explained in the following paragraphs.  

 

4.1 Dataset and implementation 

4.1.1 Dataset 

In this paper, we use a subset of AHN3 dataset (which can be 

downloaded from https://www.pdok.nl/nl/ahn3-downloads) 

which is a 2km*2km area in the centre of Rotterdam for the 

experiment, as shown in Figure 3. The selected point cloud was 

captured on 4th December 2016 by an IGI LM6800 system with 

a 60o field of view. The mean strip overlap is 30% and the point 

density is about 30 points/m2. Points are classified into 4 

classes, namely building, water, ground, and clutter (including 

vegetation, bridge, and car). The whole area is split into 3 parts 

for training, validation and testing.  

 

4.1.2 Preprocessing 

Due to the limited GPU memory, the network cannot directly 

process the entire study area. Therefore, the point cloud is 

subdivided into 50m*50m tiles. Within each tile, only position 

information for each point is taken as the input of the network. 

X, and Y coordinates are normalized by the starting location of 

the tiles and Z coordinates remain unchanged. In our 

experiments, for each tile, 20000 points are randomly picked 

during the training without replacement. As divided tiles vary in 

point density, for tiles with less than 20000 points, points are 

randomly and repeatedly selected. Tiles with less than 2000 

points are excluded from the training. In order to improve the 

model robustness to noise and orientation, training point clouds 

are randomly rotated around the Z-axis. Also, XYZ coordinates 

are jittered by adding Gaussian noise which is centred at zero 

with σ=4cm and the values are clipped to a maximum jitter of 
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15cm. These values are set empirically to add noises while 

maintaining the geometrical features for target objects.  

 

 

 

 

 
 

 Clutter Ground Building Water  
Figure 3. An overview of the study area. The training area is in 

the black box. The validation area is in the red box and the 

testing area is in the grey box. The area to initialize the model is 

in the purple box. 

 

4.1.3 PointNet++ implementation 

According to section 3.2, PointNet++ is a sequence of sampling 

and grouping layers. Table 1 demonstrates the spatial scales of 

four set abstraction modules. At the first level, in one tile, 4096 

points are sampled from 20000 points according to iterative 

farthest point sampling strategy. Then, neighbouring points are 

grouped at two scales. 16 neighbours are searched within 2 

meters and 32 neighbours are searched within 4 meters. For the 

second level, 1024 points are sampled from the 4096 points at 

the first level and then grouped at two larger scales. At higher 

levels, fewer points are available, and this inevitably causes the 

loss in information, but this sampling allows the network to 

capture a wider range of contextual information. 

Level Number  

of Points 

Search  

radius (m) 

Number  

of neighbours 

0 20000 
  

1 4096 [2, 4] [16, 32] 

2 1024 [4, 8] [16, 32] 

3 256 [8, 16] [16, 32] 

4 64 [16, 32] [16, 32] 

Table 1. Parameter setting of multiple grouping modules in 

PointNet++ 
During the training, the learning rate starts from 0.005 with a 

decay rate of 0.7 at every 5 epochs. The learning rate stops 

decreasing when it is smaller than 0.0001 and its value remains 

at 0.0001. The training stops when there is no improvement in 

model performance on the validation dataset for 30 epochs.  

 

PointNet++ is only able to take a fixed number of points in each 

point cloud tile. As a result of sampling, some points are still 

unlabelled in the original dataset. However, some points are 

duplicated because of repetition. Thus, we use nearest 

neighbour interpolation to propagate the probability distribution 

of predicted points to the whole original tiles. The class with the 

highest probability is assigned to each unclassified point. 

 

4.1.4 Accuracy assessment 

Network performances are evaluated by Intersection over Union 

(IoU) (Everingham et al., 2010). IoU is calculated from true 

positives (TP), false negatives (FN) and false positives (FP) in 

confusion matrices as TP / (TP + FN + FP).  

 

4.1.5 Active learning 

An area of 600m*600m located at the southeast of the study 

area is picked for the first training (purple box in Figure 3) 

because it includes all four classes (ground, building, water, and 

clutter). Excluding very sparse tiles, 107 tiles are selected to 

initialize the model. There are 783 tiles in the unlabelled pool. 

Considering the time efforts, it is not feasible to select very few 

samples in each iteration and to run the training and selecting 

process for too many times. However, it also does not make 

sense to select a large portion of the data like half or a quarter of 

the data for labelling in one iteration as all point cloud tiles 

would then be sampled in two or four iterations. This cannot 

demonstrate how informative samples progressively improve 

the model performance. To keep the balance between time and 

model performance, 35 tiles are sampled at each iteration, 

corresponding to 5% of the initially unlabelled tiles. Instead of 

manually labelling the selected tiles, the 4-class labels are taken 

from the original AHN3 dataset. To test the efficiency of active 

learning strategies, we run the querying and training for 10 

times and this selects about half of the whole area. In this 

research, the active learning strategies based on point entropy 

and segment entropy are compared with the baseline method 

where unlabelled tiles are randomly queried. Each strategy runs 

for 3 times.  

 

4.2 Results and discussion 

 
Figure 4. Mean IoU scores of baseline and active learning 

strategies with different query functions. The horizontal axis 

represents the iteration. Error bars represent standard deviation. 

 

 demonstrates the performance of different active learning 

strategies. It can be seen that with the increasing size of labelled 

data, the mIoU keeps increasing with some fluctuations for all 

three approaches. Before the fourth iteration, mIoUs for all 

three methods sharply increase and the performances of point 

based entropy and segment based entropy are not significantly 

better than the baseline. This is probably because, at the 

beginning stage, the tiles used for training are quite similar. For 

example, at the third iteration, 105 tiles are supposed to be 

labelled in addition to the 107 tiles with which we initialize 

models in all three methods. Therefore, we have 212 training 

tiles in total and at least half of the training tiles are the same. 

Also, for the first several runs, networks are scarce of data and 

give very low mIoU scores. Adding more tiles is less likely to 

provide redundant information even if point cloud tiles are 

randomly selected. At the third iteration, the mIoU reaches 

70.17%, 69.31% and 69.25% for segment entropy, point 
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Figure 5. IoU (lines) and data distribution (columns) for different classes. The horizontal axis represents the iteration. Error bars 

represent standard deviation. 
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Point entropy 
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 Clutter Ground Building Water  
Figure 6. Qualitative comparison of different model performance. The first row shows the ground truth labels, model performances 

trained on initial data and full training data. The second row shows final model performances trained on data iteratively selected by 

baseline, point entropy and segment entropy strategies.
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entropy and baseline respectively. Comparing to 75.9% mIoU 

obtained from a full training model where all points in the 

training area are labelled, all these three methods achieve over 

90% of the accuracy in mIoU using only about a quarter of the 

training tiles.  

 

Starting from the fourth iteration, the model performances are 

quite different. Although the model performance of the baseline 

is in a tendency to improve, the accuracy is always lower than 

the other two methods. In the segment entropy method, model 

performance firstly reaches 75.2% at seventh iteration which is 

99.1% of the full train accuracy in mIoU. After that, the 

performance starts to be stable with some fluctuations.  

 

Point entropy performs slightly better than the baseline between 

the fourth and seventh iteration. Then the baseline catches up 

with it at the eighth iteration. The performance of the point 

entropy is not as good as that of segment entropy. The highest 

mIoU (74.25%) is achieved at the tenth iteration which is 97.8% 

of the fully trained strategy accuracy. 

 

The line plots in Figure 5 illustrate the change in IoU with 

increasing iteration for different classes. Column plots in Figure 

5 demonstrate how the data distribution changes with different 

query functions. It can be seen that all classes experience an 

increase in IoU score except water. Figure 6 shows that water 

points are well predicted even by the initial model and their IoU 

keeps relatively high values which fluctuate around 80% 

(Figure 5). One possible reason is that the model is initialized 

by tiles with a large water area and the IoU is too high to be 

improved in the following iterations. Also, in our dataset, water 

is the easiest class which is featured by large flat areas. In the 

following selection, the water points take less and less 

percentage. Comparing to random selection, both point entropy 

and segment entropy keep higher proportion of water points 

which contributes to slightly better performances on small water 

areas (Figure 6). 

 

Point  entropy queries tiles with more building points. This is 

because the networks are very uncertain at large roof areas 

which are characterized by large flat areas. The confusion exists 

between the building and other classes and results in high 

entropy for building points. However, comparing to the 

performance of segment entropy, it seems simply selecting 

point cloud tiles with pointwise entropy without considering 

interactions between points cannot significantly improve the 

network performance.  

 

It is interesting to note that segment entropy prefers tiles with 

more ground points compared to the other two methods. This 

preference gives rise to the higher IoU for ground. Although 

segment entropy selects fewer building points, the IoU score is 

relatively higher. This is because ground points are likely to be 

misclassified as building and vice versa. The model reduces the 

amount of false negatives for ground and at the same time 

decreases the number of false positives for building and is 

thereby contributing to better performance for the building 

class. 

 

The change in the percentage of clutter demonstrates that both 

point and segment entropy query functions can ignore points 

that cannot make contributions to the model performance. By 

random sampling, clutter points always take about 30% of all 

selected points, while both designed query functions prefer 

smaller proportions of clutter points without impairing 

accuracy. 

 

5. CONCLUSION 

In this paper, we explore the application of active learning in 

semantic point cloud segmentation. Instead of simply assessing 

pointwise uncertainty, we proposed a segment based query 

function, considering interactions among points within 

segments, to assess the informativeness of samples. Here, the 

proposed strategy uses 40% of the whole training dataset to 

achieve 99.1% of the accuracy in mIoU obtained from the 

model trained on all full dataset. In the future, Bayesian 

networks will be explored to assess the uncertainty of samples 

to effectively reducing the labelling efforts for deep learning 

training.    
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