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ABSTRACT:

Matching images containing large viewpoint and viewing direction changes, resulting in large perspective differences, still is a very
challenging problem. Affine shape estimation, orientation assignment and feature description algorithms based on detected hand
crafted features have shown to be error prone. In this paper, affine shape estimation, orientation assignment and description of
local features is achieved through deep learning. Those three modules are trained based on loss functions optimizing the matching
performance of input patch pairs. The trained descriptors are first evaluated on the Brown dataset (Brown et al., 2011), a standard
descriptor performance benchmark. The whole pipeline is then tested on images of small blocks acquired with an aerial penta
camera, to compute image orientation. The results show that learned features perform significantly better than alternatives based on

hand crafted features.

1. INTRODUCTION

Feature based image matching aims at finding correspondences
among images and is a fundamental research issue in photo-
grammetry and computer vision. The related pipeline is com-
posed of four steps, namely feature detection, feature orientation,
feature description and high dimensional descriptor matching.
Distinctive features are obtained during feature detection and
localization across scale. After the assignment of a principal
direction to each detection, all features are corrected accord-
ingly to remove the rotation difference. Afterwards, a support
window surrounding each detected feature with a size propor-
tional to the detected scale is chosen and is used to extract a
high dimensional vector, i.e. the feature descriptor, to represent
the detected features. Optionally, the affine shape of detected
features can also be estimated to compensate potential affine dis-
tortions, in particular when facing large changes in viewpoint
and viewing direction.

The key challenge of feature based image matching frameworks
is to ensure invariance against complex geometric and radiomet-
ric changes between images. For instance, when two images are
taken from distinctively different viewpoints, the local appear-
ance of image patches surrounding detected features can differ
significantly due to the geometric setup. Radiometric changes
can result from varying illumination, differences in imaging
bands and non-Lambertian reflection properties. As indicated
in (AanAqs et al., 2012) , the invariance of hand crafted detect-
ors and descriptors decreases sharply for images containing 3D
scenes when viewpoint and viewing direction changes increase.

However, feature based image matching algorithms can be de-
signed to be invariant against certain geometric and radiometric
changes. For instance, the well known SIFT operator (Lowe,
2004) is rotation and scale invariant to a certain degree. This
invariance can be extended to a reasonable level of affine trans-
formation between images, see e.g., the Hessian-Affine de-
tector (Mikolajczyk et al., 2005). The feature support window
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is then mapped to a high dimensional vector to represent the
underlying feature. The feature support window is normally
corrected according to the estimated orientation and optional
affine shape parameters.

Many successful detectors and descriptors based on hand-
crafted features were developed in the past, but achieved only
limited success for large view point changes. Therefore, ac-
quiring local feature descriptors using deep neural models has
been attracting more attention recently, because the latter have
been shown to have advantages with respect to discriminabil-
ity, e.g. (Lenc, Vedaldi, 2016, Tian et al., 2017, Mishchuk et
al., 2017). In this paper, a new feature based image match-
ing framework based on deep neural networks, including affine
shape estimation, feature orientation and description is presen-
ted and results for the image orientation of small blocks of
oblique aerial images are reported and analysed.

2. RELATED WORK

Feature based image matching has been studied for many dec-
ades. The central idea of detecting features is to find points or
blobs that are distinctively different from neighbouring pixels.
Following this idea, the determinant or trace of the Hessian
matrix computed from second order Gaussian smoothed image
derivatives is often used to measure how distinctive the under-
lying feature is. This analysis can be extended to scale space
by incorporating images convolved by derivatives of Gaussian
kernels of different width. In this way, local extrema in both
image x, y and in the scale dimension are detected as features.
The trace of the Hessian is approximated by the Difference of
Gaussians in SIFT (Lowe, 2004) and the determinant of the
Hessian is used in the scale invariant Hessian detector which is
a part of the SURF algorithm (Bay et al., 2008).

After features are detected, the rotation of a feature can be es-
timated by calculating a principal direction using the gradient
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orientations calculated in a local window surrounding the detec-
ted feature. Gradient orientation bins are used to find the prin-
cipal direction in SIFT (Lowe, 2004), while the Haar wavelet
responses in horizontal and vertical direction are used to assign
a principal direction to a detected feature in SURF (Bay et al.,
2008). In (Moo Yi et al., 2016), the orientation is estimated
by a deep convolutional neural network (CNN), showing sig-
nificantly better performance than the aforementioned methods
based on hand crafted features.

Detecting local features in scale space and assigning them an
orientation is basically equivalent to normalizing translation, ro-
tation and scaling of local features before description. However,
this transformation is not sufficient to model the geometric trans-
formations between local image patches in case of large changes
in viewpoint and viewing direction between images. Perspect-
ive changes, which for small windows can be compensated by
an affine transformation, should also be estimated and taken
into account before feature description. Compared to feature
detection, fewer works have been published in this direction.

In (Mikolajczyk et al., 2005), the second moment matrix M is
used to measure the level of isotropy of a feature. The patch sur-
rounding features is normalized by multiplying the patch with
M~1/2 (restricting the largest eigenvalue of M~/2 to 1) and then,
the second moment matrix for the normalized patch is iteratively
calculated and normalized with M~!/ 2 until the two eigenval-
ues of M for the normalized patch are close enough to each
other. After each iteration, the spatial localization of the max-
imum value of the feature response function is re-detected. As
a result, the affine transformation between two image patches is
removed and only a rotation remains. However, this algorithm is
not stable when the tilt between patches is large. Instead, affine
shape estimation based on a deep neural network is proposed
in (Mishkin et al., 2018), where it is estimated by minimiz-
ing the distance between the matched descriptors. In addition,
ASIFT (Morel, Yu, 2009) simulates the input image with differ-
ent versions of affine transformations and then the DoG features
and SIFT descriptors detected in each transformed image are
combined for descriptor matching; this means ASIFT is com-
putationally expensive.

Once orientation and affine shape are assigned to a detected fea-
ture, a small patch surrounding the feature is corrected to obtain
the feature support window, which is then fed into a descrip-
tion module to obtain the descriptor. Although the pixel grey
values in the feature support window can be used as a simple
form of descriptor, this is often too sensitive to remaining local
deformations in the patch and not discriminative enough. As
discussed in (Brown et al., 2011), a feature descriptor is a com-
position of transformation, aggregation, normalization and op-
tional dimension reduction. The transformation step magnifies
some signal, e.g., gradients in SIFT (Lowe, 2004) and Haar
wavelet response in SURF (Bay et al., 2008). Afterwards, the
transformation response is aggregated by means of computing
the mean value over a grid or the histogram of local response.
After that, features are normalized to improve their invariance
against radiometric transformations. Also, dimension reduc-
tion algorithms, e.g. Principal Component Analysis, can be
used to further decrease the dimension of the output descriptor.
Based on these steps, a descriptor learning method is proposed
in (Winder, Brown, 2007, Brown et al., 2011) to optimize the
configuration of different steps in building feature descriptors,
resulting in a notable performance improvement compared to
hand-crafted descriptors.

Descriptor learning methods use image patch pairs as input,
derive descriptions using some initial model, and then obtain
a similarity score for the descriptors of the patch pairs. The
model is then optimized using a loss function to increase the
similarity of matched feature pairs and decrease the similarity
of unmatched pairs. Following this approach, boosting is used
to learn weak features that can best discriminate matched and
unmatched pairs in (Trzcinski et al., 2012, Trzcinski et al., 2015,
Chen et al., 2014). More recently, many researchers extract the
descriptor by CNN, e.g., (Zagoruyko, Komodakis, 2015, Han et
al., 2015, Simo-Serra et al., 2015, Chen et al., 2016, Kumar et
al., 2016, Balntas et al., 2016, Tian et al., 2017, Mishchuk et al.,
2017). Also, additional constraints for regularization (Zhang et
al., 2017, Luo et al., 2018) were added for descriptor learning.
Not surprisingly, the deliberate choice to enlarge the amount of
training data has also increased the matching performance of
learned descriptors, as suggested in (Mitra et al., 2018).

In this paper we suggest a feature matching pipeline based on
CNNss in order to derive image orientation parameters for blocks
of aerial penta cameras. These images typically have viewing
directions with differences amounting to 45 degrees (nadir vs.
oblique view) and 90 degrees (one oblique view vs. the other).
The work most related to ours is (Mishkin et al., 2018). In that
work the affine shape of local features is estimated by deep learn-
ing through optimizing the similarity of pairs of input patches
simulated by affine transformations. We use the same approach
and the same network architecture, but train the different mod-
ules from scratch. (Mishkin et al., 2018) differs from our work
in mainly two further aspects: 1) the affine shape estimation part
is trained based on a different form of loss; and 2) our algorithm
is applied and tested on real image orientation tasks, instead of
only on image matching benchmarks. The second aspect forms
the main contribution of this paper.

3. THE FEATURE MATCHING PIPELINE

In our method the three steps of affine shape estimation, ori-
entation assignment and description of local image patches are
all learned based on a CNN architecture with detected feature
pairs as input, which serve as training data (for details on the
detection see section 3.4). Subsequently, features of individual
images are detected using classical methods, followed by ap-
plying the trained CNN modules to obtain descriptors. Finally
matching is carried out. An overview of the training phase
is illustrated in Fig 1. The training data is a series of image
patches with known matching relationship ("matched" or "un-
matched"), thus matched and unmatched pairs can be sampled
from the training data. These training patches only have small
orientation and affine shape differences. First, the descriptor
part is trained based on the sampled dataset. Then, the affine
shape and orientation modules are trained separately (and inde-
pendently of each other) based on the descriptor learned in the
previous step and on sampled pairs of patch data which are now
rotated and distorted based on simulation (note that in contrast
to training, during inference, the sequence of first applying the
affine correction and then carrying out orientation assignment
does matter, see section 3.4 and figure 6 for details). The affine
shape and orientation are not solved simultaneously, because
preliminary experiments of solving the two parts in one step did
not converge.

3.1 Descriptor Module

To train descriptors, matched and unmatched patch pairs are
used. The patches are support windows of features. After ap-
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Figure 1. Overview of the method.

plying a CNN to those patches, related descriptors are obtained.
As the pair of patches is either matched or unmatched, the corres-
ponding descriptor distances are used to build the loss function.
In this section, the framework for descriptor learning is dis-
cussed first, followed by the generation of training pairs and the
design of the loss function. Additionally, the employed hardest
mining strategy (Mishchuk et al., 2017) and data augmentation
are discussed.

3.1.1 Descriptor Training Architecture: The descriptor is
trained based on a Siamese CNN, which is illustrated in figure 2.
The two branches of the CNN share the same weights and each
branch of the descriptor network is used to extract descriptors
from an input image patch.
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Input 1 Input 1
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Figure 2. Siamese CNN used for descriptor learning.

Details of the descriptor network used to generate descriptors
are provided in table 1. This network is identical to the one used
in (Mishchuk et al., 2017) and (Mishkin et al., 2018), and was
originally proposed by (Tian et al., 2017). Through a series of
convolution layers, a 32x32 pixel single channel image patch is
transformed and compressed into a 128 dimensional descriptor,
which is then scaled to unit length.

3.1.2 Generation of training pairs: Following (Mishkin et
al., 2018), the training data is composed of image patches. For
each patch it is known which other patches are correct matches
(this is realised via a 3D point index for each patch, thus matched
patches are characterized by the same 3D point index). First for
each mini-batch, N 3D points are sampled without replacement

Layer Filter ~#In-Out Stride Activation BN
Desc-1 3x3 1-32 1 RelLU Yes
Desc-2  3x3 32-32 1 ReLU Yes
Desc-3 3x3 32-64 2 ReLU Yes
Desc-4 3x3 64-64 1 RelLU Yes
Desc-5 3x3 64-128 2 ReLU Yes
Desc-6 3x3 128-128 1 ReLLU Yes
Desc-7 Dropout with rate=0.1

Desc-8 8x8 128-128 1 ReLLU Yes

Table 1. Descriptor Network architecture. #In-Out: number of
input and output channels. ReLU: Rectified Linear
Unit, which works as g(z) = max(0, z) for an input z.
BN: batch normalization.

from the training data and then, two different patches associated
with the same 3D point index are randomly selected to form a
pair of positive patches for each selected 3D point.

During training we also need counter examples, i.e. non-
matching pairs: for a patch p, patches associated with a differ-
ent 3D point index belong to the unmatched patches (see Figure
3). The use of the 3D index thus ensures that these pairs, when
sampled randomly from the training data, do not by chance
contain correct matches. Obviously, the number of possible
unmatched pairs is much higher than that of the matched pairs.
For properly training our network, we need an equal number of
matched and unmatched pairs. We thus have to select the un-
matched pairs to be used in training from the larger set. For this
selection step we employ the hardest mining strategy (Mishchuk
et al., 2017).

Hardest mining of unmatched pairs: According to this
strategy, the unmatched pairs are required to be the most difficult
ones for each pair of patches. In this way the network best learns
how to differentiate between matched and unmatched samples.
The corresponding Euclidian distance Al’.’“’ dest s defined as:

Ahardest — in(min; 4 A(dY, d), minjA(dL, d]) (1)

where di = the descriptor for the ith patch in the patch set
1, i.e. the set passed through branch 1

dé = the descriptor for the jth patch in the patch set

2, i.e. the set passed through branch 2
A(:,:) = Euclidean distance of two descriptors

minA(d},d]) and minA(d},d}) compute the hardest negative
samples by finding the unmatched pair with the smallest dis-
tance. The selection of the hardest unmatched pair is illustrated
in figure 3. Through seeking the hardest samples anew in each
training epoch, the network "sees" many more unmatched train-
ing pairs than matched ones, which corresponds to the fact that
matching is a problem where a much larger number of negative
pairs than positive ones is typically compared for real matching
applications. After mining, a triplet containing a pair of matched
patches and a "most difficult" negative patch is obtained for each
training patch passed to the first branch of the network.

3.1.3 Loss function: The triplet margin based loss function
(Hoffer, Ailon, 2015) is used as the loss function for descriptor
training. For N sampled triplets, the loss is defined as:

N
L= max(0,A;(dy,d) + g — Ahardest) )
i=1

where A;(di,d,) is the Euclidian distance between the ith
matched pair and Af"” dest s the hardest distance computed
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Figure 3. Hardest mining. The patch p’l1 is compared with all the
patches with a different 3D index j from the patch sets
P1 and P2. The pair with the smallest distance is picked
for calculating the loss for unmatched pairs. Arrows:
comparison between patches.

for the i*" triplet as described above. S8 is a pre-defined margin
between the distance of matched and unmatched pairs. Consid-
ering all the descriptors are normalized, the maximum distance
between any two descriptors is 2. In this paper, § is set to be 1,
as suggested in (Mishchuk et al., 2017).

3.1.4 Data augmentation: In order to increase the number
of matched pairs during training, the available ones are aug-
mented by flipping or rotating them by a value randomly chosen
from the set [90°, 180°,270°].

3.2 Affine Shape Estimation Module

In this section, the learning architecture for affine shape estim-
ation, affine shape parametrization and the corresponding loss
function are discussed.

3.2.1 Training Architecture: Similar to the descriptor net-
work, the affine estimation network has two branches and shared
weights to handle patch pairs, which are sampled according to
the method described in section 3.1.2. However, here the input
patch pairs are first distorted by simulation using an affine trans-
formation and are then fed into the affine estimation network.
Note that both patches of a pair are distorted, and the shape cor-
rection is then computed for both of them. Through the affine
estimation network the underlying affine transformation para-
meters are estimated and the patches are then re-sampled using
the inverse transformation. Then, the resampled patches are fed
into the descriptor network to obtain descriptors and to calcu-
late the descriptor distance based loss. The whole architecture
is illustrated in figure 4.

Affine Shape Parametrization: Similar to (Mishkin et al.,
2018) and (Perd’och et al., 2009), the affine transformation ap-
plied to each patch individually is decomposed into the following
form

cosy

siny

a. +1 0
11, ,
a22+1

M= [ —sinw] 3)

cosyr

ay

where A = detected feature scale, kept constant during
estimation of affine shape parameters

a’] I a’21 s a/22 = residual form of affine shape parame-
ters, computed during affine shape estimation

¢ = feature rotation angle, also kept constant during
estimation of affine shape parameters

The rotation matrix with angle ¥ will be discussed in section 3.3;
the other matrix contains the affine shape parameters. Setting
ajp = 0 enables the affine shape estimation to preserve the
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Figure 4. Affine shape estimation architecture. After affine distor-
tion of the patches, the affine shape matrix elements are
estimated and the patches are resampled. The corrected
patches are then introduced to the pre-trained descriptor
network to obtain descriptors.

direction orthogonal to x-axis for a image patch, because the
affine shape matrix always has one eigenvector equal to (0, 1)7 .

The affine shape estimation network (we again use the same
network as (Mishkin et al., 2018)) is used to estimate the af-
fine matrix elements for each input patch. This network has
a similar structure as the descriptor network, delivering resid-
ual affine shape parameters a'”,a;],a' To fix the overall
scale of features we subsequently divide them by det(A) =
(a/11 +1)x* (a/22 +1). During training, all affine shape parameters
are randomly sampled according to a uniform distribution, and
for a matching pair ¢ is set to the same angle for both patches.

3.2.2 Loss function: The k hardest loss is used for the es-
timation of the affine shape matrix elements.

< k
hardestk;
L:.ZlmaX(o’Ai(dl’d2)+ﬂ_UkZlAim estki) (g
i= =

The k hardest unmatched pairs are used for each matched pair
(here k > 1; for descriptor learning k£ = 1). S is the margin
defined in equation (2). This larger value of k reduces the risk
that the hardest unmatched sample lies between the matched fea-
tures in descriptor space, while still relying on difficult samples.
Based on experimental evaluation we set k to 3 in this paper.
This mining procedure is different from (Mishkin et al., 2018),
who set k = 1 in the loss function and eliminate the effect of the
hardest unmatched samples during back-propagation by setting
the respective gradients to zero.

3.3 Orientation Assignment Module

As feature pairs can not only exhibit affine distortion but also
be rotated in an arbitrary way, there still exists the (unknown)
rotation angle ¢ for each patch. In this section we describe how
we estimate .

3.3.1 Training Architecture: The feature orientation net-
work is again similar to the descriptor network and has two
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branches with shared weights to handle patch pairs, which are
sampled according to the method described in section 3.1.2.
Here, both input patches are first rotated by simulation and then
fed into the network. Both patches of a pair are rotated by an
angle sampled independently of each other , and the orientation
angle is then computed for both of them. The architecture for
orientation learning is shown in figure 5.
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same 3D point r 3
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Figure 5. Orientation estimation network architecture. After rota-
tion simulation, the rotation angle of simulated patches
are estimated and then the patches are resampled using
the estimated rotation angle. The resampled patches are
subsequently used as input to the pre-trained descriptor
network to obtain descriptors dy, d> and the loss.

3.3.2 Data Augmentation: A uniformly distributed random
rotation in a range of [0, 277) is applied to each patch of the input
patch pair. Also, a random translation in a range of [-2,2]
pixels and random scaling in a range of [0.9, 1.1] is applied to
simulate the localization and scale determination noise in the
feature detection stage, as suggested in (Mishkin et al., 2018).

3.3.3 Training Loss: In this case, the loss is only based on
the distance of matched feature pairs. It is defined as

N
L= min(0, Ai(d1,d)) 5)
i=1

where A;(d, d») is distance of the i’" pair. When patches are
rotated, the contents of the feature support window remain the
same, and assuming there exists no rotated repetitive texture,
incorporating hardest negative samples is not necessary.

3.4 Feature Description using Trained Models

Once the three aforementioned modules are learned, they are
integrated into a feature and descriptor extraction pipeline which
outputs detected features and their descriptors for an inputimage.
The whole process is shown in Fig. 6. First, the Hessian matrix
determinants of each pixel in the input image are calculated
for each sample scale of the input image in scale-space. Then,
the local extrema of the Hessian determinant are detected in
scale-space, followed by the refinement of image coordinates
and characteristic scale. Subsequently, a patch is re-sampled to

32 x 32 pixels around the detected feature position with a range
proportional to the characteristic scale. This patch is regarded
as input for the affine shape network to predict its estimated
affine shape, which is used in the next step to compensate affine
distortion of local patches. In the following step, the orientation
network is applied to the patch corrected for affine distortion in
order to estimate rotation. The patch is then further corrected
by the estimated rotation angle, and the related patch forms
the feature support window for the local feature. The trained
descriptor network is then applied to this support window and
a descriptor for the underlying local feature is derived. Note
that whenever resampling is necessary, all related parameters
are combined first and only a single resampling step is carried
out.

Scale-space and
Hessian determinant

- Extrema detection ~ Postion x, y and
Input Image WJr scale s
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Predicted affine shape of parameters
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Figure 6. Feature detection and descriptor generation.

4. EXPERIMENTS AND RESULTS

First, the learned descriptor is evaluated using the Brown dataset
(Brown et al., 2011) to reflect its performance for classification
of patch pairs. Second, the whole pipeline is used to extract
features and descriptors for small image blocks taken from an
aerial penta-camera system including nadir and oblique images
with significant changes in viewing direction. The quality of
image orientation parameters and the computed 3D points after
bundle adjustment using the matched features as input are used
to assess the results.

4.1 Experimental Datasets

Brown Dataset: The Brown dataset (Brown et al., 2011) is
used to train the descriptor network and to test its performance.
This dataset was generated from a multi-view image collection
containing a large number of images of community photo col-
lections (Goesele et al., 2007). Through structure from motion
and dense multi-view stereo matching (Snavely et al., 2008),
matches were retrieved, which are considered as ground truth
in the following!. The dataset is composed of three different

1 For a feature fr in image Ir,, a small grid surrounding f7, in I, is
extracted and transferred to image I through the depth map estimated
between stereo image pair I7., Ir. The transferred grid is then used
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subsets: Notre Dame, Liberty and Yosemite. In each subset, a
test set containing equal numbers of matched and unmatched
pairs is also provided.

Dataset for Image Orientation Five different image blocks,
each containing a mix of nadir and oblique images, are used
in this experiment. Blocks 1 to 3 were acquired using a penta
system with Cannon EOS-1DS Mark II cameras, while blocks
4 and 5 are part of the ISPRS/EuroSDR benchmark for multi-
platform photogrammetry (Nex et al., 2015)2, in which the IGI
penta camera system was used. The image dimension is 4994 x
3328 pixels for blocks 1 to 3 and 8176 x 6132 pixels for blocks
4 and 5. Details of the blocks are given in table 2.

Scene

Block #images #N #F #R #B #L contents
buildings, roads,

1 18 5 3 3 4 3 forest, lake
buildings,

2 17 5 3 2 3 4 forest
buildings,

3 19 5 3 4 3 4 lakes, road
building,

4 17 3 3 3 4 4 trees
buildings,

5 20 4 4 4 4 4 trees

Table 2. Details of the image blocks used for determining image
orientation. #N #F #R #B #L.: the number of images from
nadir, front, right, back and left camera, respectively

4.2 Training of Network

All three modules were trained using a mini-batch size of N =
1024 with 20 epochs, where one epoch represents the number of
iterations in which all training samples are used once. For the
descriptor, the pairs were regenerated after each training epoch.
The employed optimizer was standard gradient descent with
momentum, the learning rate @ was set to 0.001 and decayed
linearly with a step of «/#steps, where #steps is the number
iteration steps. The training of the descriptor for the Brown
dataset used 10 million pairs. The networks of descriptor, affine
shape and orientation estimation for image orientation were all
trained based on the complete Brown dataset. For descriptor
training, 30 million pairs were used, while for the other two
modules, 10 million pairs were employed. Note that there is a
domain gap between the training data and the image orientation
task data, because the Brown dataset is composed of close-range
terrestrial images and the orientation task uses aerial images.

4.3 Evaluation Protocols

4.3.1 Brown Dataset: The descriptor network is trained us-
ing one subset and then tested on the other two (in all permuta-
tions), therefore six different combinations of training-test sub-
sets are obtained. The distances of descriptors for pre-defined
patch pairs, containing an equal amount of matched and un-
matched pairs, are computed and a threshold is applied to obtain
the False Positive Rate (FPR) - True Positive Rate (TPR) curve.
FPR (in %) at 95% TPR is reported as our evaluation criterion.

to estimated the scale and pixel localization for the transferred feature
point in Ir. If the difference of estimated scale and pixel localization
for the transferred features point is close to the scale and localization of
a feature point fg in Ir, then fr and fr, are judged as a ground truth
match.

4.3.2 Image Orientation: After feature detection and
matching a bundle adjustment is carried out for the five blocks
to obtain image orientation parameters. A number of quality
measures are recorded as evaluation criteria (see below for de-
tails). In this experiment, three different combinations of affine
shape estimation, orientation and feature description algorithms
are compared in order to evaluate the contribution of the three
different modules in comparison to published work. Note that
for all three combinations the same set of detected features is
provided as input. The three variants formed by different com-
binations are:

e hbss: the variant uses Baumberg iteration (Baumberg,
2000) for affine shape, gradient statistical orientation as-
signment as in SIFT (Lowe, 2004) and the SIFT descriptor
(Lowe, 2004).

e hbsl: same affine shape and orientation solution as for hbss,
and the descriptor learnt as explained in this paper.

e hlll: the method explained in this paper, i.e. all affine
shape, orientation and descriptor are learned.

Determination of image orientation For this task the follow-
ing steps are conducted.

e Detection of features for all images, see section 3.4. In this
step, a fixed number of Hessian features with potentially
high repeatability against viewpoint changes is detected in
scale space. We use 5000 features per image in blocks 1 to
3 and 12000 features per image for blocks 4 and 53.

o Estimation of the affine shape and orientation of local fea-
tures and computation the descriptors using the trained
network, as explained in section 3.4.

e Nearest neighbour threshold matching (Lowe, 2004) to ob-
tain initial matches for each pair of images in a block.
The maximum ratio allowed between nearest and second
nearest matching features is set to 0.67.

e Structure from motion (SfM) software COLMAP* (Schon-
berger, Frahm, 2016) to obtain initial orientation paramet-
ers. Note that we ignore matching points that only appear
on two images in this step.

e Transformation of the initial orientation results obtained
from the different pipelines into a common coordinate sys-
tem for further comparison>. To achieve this goal, one
image is selected as origin of the common coordinate sys-
tem, setting both its projection centre and rotation angles to
zero; a second image is selected to define the scale between
the two projection centres, then the length of the baseline
is set equal to 1. The selected first and second image are
identical for each image block processed by the different
variations, i.e. hbss, hbsl, hlll.

e Robust bundle adjustment. The bundle adjustment deliv-
ers the final orientation parameters. Robust estimation is
used and observations with residuals larger than 3.2 times
the standard deviation are considered as outliers and are
excluded from further iterations. According to the prior
camera information different sets of additional parameters
are used in the bundle adjustment: For blocks 1 to 3, radial
and tangential distortion parameters are estimated in both,
the SfM pipeline and the bundle adjustment. For blocks

w

Features for blocks 4 and 5 are extracted in four separate non-
overlapping tiles of the original image and are subsequently combined.
4 https://github.com/colmap/colmap

5 As matches obtained from the different variants vary, so do the ori-
entation parameters, especially when different image pairs are used as
initial pairs in Structure-from-Motion (SfM). Also, not all images can

2 http://www?2.isprs.org/commissions/comm1/icwg15b/benchmark_main.html be registered with all variants.
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4 and 5, distortion parameters are not used because the
cameras only have a negligible level of distortion.

Evaluation Criteria For the evaluation of the results, the fol-
lowing criteria are reported:

e Number of registered images, i.e. the number of images
for which the orientation parameters could be determined.

e Number of reconstructed 3D points.

e Average number of observations per image, namely the
mean number of matching points of each image used in
bundle adjustment.

e Number of intersecting rays per 3D point. For each 3D
point, depending on which images these rays come from,
four cases are distinguished:

— A) from only one viewing direction (nadir or oblique)
(only_nad_or_obl);

— B) from the nadir and one oblique camera (nad_obl);

— C) from the nadir and at least two different oblique
cameras (obl_nad_obl);

— D) from different oblique cameras (obl_obl).

In general, the difficulty of matching increases from level
A to level in D, as the change of viewpoint and viewing
direction becomes larger accordingly.

e Precision of the 3D point coordinates obtained from error
propagation. A higher precision indicates a better quality
of the whole image orientation pipeline.

4.4 Evaluation results

4.4.1 Brown Dataset: As mentioend before, we tested six
different combinations of the three subsets: in all combinations
one subset was used for training, the other two subsets as test
data. The results are shown in Table 3. The comparison to
the work of (Mishchuk et al., 2017), called HardNet, and to
SIFT (Lowe, 2004) is also reported.

For the descriptor evaluation on the Brown dataset our model
achieves a quality comparable to HardNet, which is the basis
of our work, and which can be considered as state-of-the-art in
the field: for three cases our result is better, for three cases is
is worse. This is a good pre-requisite for the determination of
image orientation parameters reported in the next section.

4.4.2 Results for image orientation: The result for the im-
age orientation experiment are reported in table 4 for the three
different variants hbss, hbsl and hlll. The table contains the
details of the bundle adjustment results. The distribution of the
number of rays intersecting at the 3D points are illustrated in
figure 7. The image orientation results indicate that the use of a
learned descriptor improves the performance compared to hand
crafted features (with SIFT as the example), see table 4. The
numbers for hbsl are significantly better than those for hbss. In
particular, the learned descriptor leads to a more complete image
block, more matches and thus more 3D points, more observa-
tions per image, and a better 3D coordinate precision, while the
mean reprojection error stays approximately constant.

The incorporation of learned affine and orientation parameters
further improves the results. From the distribution of the number
of views per 3D point in figure 7 it can be observed that our
completely learned variant hlll results in a larger number of
multiple ray 3D points. Also, the number of 3D points in the
cases B(nad_obl), C(obl_nad_obl) and D(obl_obl) is higher for
our pipeline than for the other two. Partly due to the fact that 3D
points in our pipeline are observed in a larger number of views,

the precision of reconstructed 3D points is also higher, which is
more obvious in block4 and block5.

Based on the above observations, the learned affine shape, ori-
entation and descriptor modules provide more complete and
more accurate results for image orientation than the other tested
pipelines for the challenging task of dealing with images con-
taining large viewpoint and large viewing direction changes.

5. CONCLUSION AND FUTURE WORK

In this paper, a feature based image matching framework making
use of deep learning is proposed. The affine shape estimation,
orientation assignment and description of local features are all
learned using CNN. The method provides state-of-the-art fea-
ture descriptors. Tests for image orientation of small blocks of
penta cameras reveal that the proposed method achieves a better
matching performance than more traditional methods.

Currently, we do not use canonical descriptions for the image
patches, such as referring the orientation to the main gradient
direction as is the case in SIFT. Consequently, multiple solutions
exist for image matching in terms of orientation and affine trans-
formation, and our solution contains an over-parametrisation of
the feature correspondence problem. While we still use very
good results, we plan to introduce constraints for the predicted
transformation parameters to make the estimation more stable in
the future. Also, we plan to use larger photogrammetric blocks
in our evaluation. Furthermore, we plan to explore the possib-
ility to integrate the three steps into one single network and to
evaluate the limitations of learning our network on one dataset
and then transferring the results to different sets of images.
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Figure 7. Resuls for the three pipeleins (see text for explanation of the abbreviations). Figure (a) to (e) indicate the distribution of the
number of multiple rays per object point for blocks 1 to 5. Figure (f) to (j) indicates the distribution of involved cameras for
the five blocks, where A="only_nad_or_obl", B="nad_obl", C="obl_nad_obl" and D="0bl_obl".
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