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ABSTRACT: 

 

Semantic segmentation is one of the main steps in the processing chain for Airborne Laser Scanning (ALS) point clouds, but it is also 

one of the most labour intensive steps, as it requires many labelled examples to train a classifier. National mapping agencies (NMAs) 

have to acquire nationwide ALS data every couple of years for their duties. Having point clouds cover different terrains such as flat or 

mountainous regions, a classifier often requires a refinement using additional data from those specific terrains. In this study, we present 

an algorithm, which is able to classify point clouds of similar terrain types without requiring any additional training data and which is 

still able to achieve overall F1-Scores of over 90% in most setups. Our algorithm uses up to two height distributions within a single 

cell in a rasterized point cloud. For each distribution, the empirical mean and standard deviation are calculated, which are the input for 

a Convolutional Neural Network (CNN) classifier. Consequently, our approach only requires the geometry of point clouds, which 

enables also the usage of the same network structure for point clouds from other sensor systems such as Dense Image Matching. Since 

the mean ground level varies with the observed area, we also examined five different normalisation methods for our input in order to 

reduce the ground influence on the point clouds and thus increase its transferability towards other datasets. We test our trained networks 

on four different tests sets with the classes’ ground, building, water, non-ground and bridge. 

 

 

1. INTRODUCTION 

 

Semantic segmentation is the task to assign every pixel in an 

image or every point in a point cloud a specific label, which 

describes its object class. As their duty, NMAs are required to 

acquire point cloud data covering their territory every couple of 

years. Classifying large amounts of point cloud data already 

causes some logistical problems. Despite that, NMAs are also 

dealing with point clouds, which cover different terrain types and 

consequently a different composition of point and object 

structures, which describe similar yet different domains. In 

addition, NMAs acquire not only ALS point clouds, but also 

derive very dense point clouds using aerial images. These point 

clouds contain different characteristics than ALS point clouds, 

which have been pointed out by Mandlburger et al. (2017). All 

these factors are to be considered when classifying point clouds 

on a nationwide level.  

 

CNNs have been established as the state of the art method in 

several disciplines of remote sensing. There are three main 

approaches on point cloud classification using CNNs: point-wise, 

voxel-wise and raster-wise approaches. On the point-wise level, 

neighbouring points are collectively classified using 

automatically generated features from each point separately, but 

also as a set of points such as PointNet or its successor 

PointNet++ (Qi et al., 2017a; Qi et al., 2017b). Originally just 

tested on indoor point clouds and some CAD-generated point 

clouds, several extensions to adapt PointNet++ to terrestrial and 

aerial outdoor point cloud data have been proposed (Engelmann 

et al, 2017; Yousefhussien et al., 2018, Winiwarter et. al., 2019).  

                                                                 
* Corresponding author 

 

 

Figure 1. Schematic visualisation of our proposed algorithm 

using height distributions as input for classification. Gray: 

underlying objects, black: raster grid, red: measured points in the 

point cloud, yellow: calculated height distributions for each cell. 

 

Other point-wise approaches consider the spatial relation 

between points using graph convolutional networks (Landrieu, 

Simonovsky, 2017; Te et al., 2018). The second approach of 

point cloud classification uses 3D voxels instead. Here, the 

spatial relationships of points are defined by the position within 

a set voxel grid. These voxel grids might be fixed around a point 

or along a globally defined raster and the trained CNNs propose 

a class value for each voxel, which is later projected back to the 

original point cloud (Huang, You, 2016; Tchampi et al., 2017; 

Schmohl, Sörgel, 2019). The last approach of point cloud 

classification using CNNs deals with point clouds on a raster-

wise level. Here, the points are sorted in 2D raster cells and then 

used in a CNN like an ordinary image. While the input features 

vary from only using height values such as the minimal, mean 

and maximal height (Hu, Yuang, 2016; Politz, Sester, 2019) to 

some general features contained in ALS point clouds such as 

return numbers or intensity values (Zhao et al., 2018, Rizaldy et 

al., 2018). Some approaches even contain eigenvalue-based or 

normal vector based features (Xu, Yang, 2018).  
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At the end, the CNNs predict a class label for each raster cell, 

which is projected back onto the point clouds. However, most of 

the described classifiers either require ALS dependent attributes 

such as return numbers or intensity values, which are not 

available in image-based point clouds, or rely on extreme values 

such as minimal and maximal height to represent points in raster 

cells, which are prone to noise and very sensitive to specific 

heights.  

 

In order to become independent of the sensor type, only the 

geometry of the point clouds or some derived characteristics from 

the geometry such as normal vectors can be used. If only the 

geometry of point clouds is concerned however, the individual 

height values can greatly differ for the same object, e.g. when the 

same objects are on flat or sloped terrain. Both, the flat and the 

sloped terrain, create two slightly different domains and to use a 

classifier from one domain on another, Domain Adaptation must 

be considered. There are already approaches for Domain 

Adaptation on aerial image data without requiring additional 

training data (Wittich, Rottensteiner, 2019). However, Domain 

Adaption may not even be necessary for point clouds as generic 

objects such as buildings, trees and bridges share similar 

geometrical characteristics independent of the underlying terrain. 

Only the underlying terrain such as flat plains or mountainous 

regions define those domain gaps between two different point 

cloud regions. Removing the ground influence from the point 

cloud geometry should already decrease or even close this 

domain gap. Consequently, determining the ground height and 

then subtracting it from the point cloud height should result in 

normalized point clouds, where a building originally close to sea 

level should have the same height and shape as a building in the 

mountains.  

 

Several different approaches to generate a Digital Terrain Model 

(DTM) and consequently to approximate the ground level from 

point clouds have been made (Chen et al., 2017). Filter matrices 

or other mathematical functions are often used to approximate the 

ground surface (Zhang et. al., 2003; Zhang et al., 2016). 

Similarly, other approaches use additional information such as 

aerial images, intensity values from point clouds or a mix from 

geometry and ALS characteristics to determine the ground level 

within a point cloud (Gevaert et al., 2018; Yunfei et al., 2008; 

Rizaldy et al., 2018). However, an approximation of the ground 

on a small area patch such as a plane (Vosselman, 2013) may also 

reduce the ground influence enough to use a trained network on 

different domains and still achieve sufficient results.  

 

The scientific contributions of this paper can be summarized as 

follows: 

 We propose an algorithm, which classifies point clouds 

independent from sensor systems and point density, as 

it only requires the geometry of a point cloud as input. 

 We explore and test five different height normalisation 

methods with varying level of complexity to remove 

the main part of the ground influence from the point 

cloud heights, while deducing what kind of complexity 

is necessary to achieve sufficient results using only the 

geometry. 

 We test our trained CNN on four different datasets to 

prove the transferability of our approach on similar 

domains without requiring any additional training data.  

 

The study is structured as follows. In section 2, we describe the 

calculation of our method (2.1), the different height 

normalisation methods applied on the point cloud (2.2), the 

network used for classification (2.3) as well as the loss function 

used for training the network (2.4).  

Algorithm 1: Input generation for height distributions 

Input: height values z� ∈ Z with i = 1, … , L different height 

levels. n� ∈ N is the amount of points at height i with  

N =  n�+. . . +n�. 

Output: Either �x��, s�, x��, s�� for two different height 

distributions or �x�, s, x�, s� for one height distribution. 

1: sort�Z�  
2: k∗, C�, C� ← Otsu�!"!�Z�  
3: x��, s�# ← mean and variance from C� =  +z�|z� ≤ k∗.  

4: x��, s�# ← mean and variance from C� =  +z�|z� > k∗.  
5: x�, s# ← mean and variance from Z 

6: λ� ← N1� ∑ n�3∗
�4�   

7: λ� ← 1 − λ�  
8: BIC89�:;<=> ← 2ln�N� − 2lnA∏ C�z�|x�, s#���4� D  

9: BICE�:;<=> ←  

4 ln�N� − 2lnA∏ ∑ λGCAz�|x�G, sG#D�G4���4� D  

10: HI BIC89�:;<=> ≤  BICE�:;<=> JKLM  
11:     NLJONM �x�, s, x�, s�  
12: LPQL  

13:     NLJONM �x��, s�, x��, s��  

 Algorithm 1. Input generation for height distributions 

 

Section 3 gives a short explanation of the training procedure and 

the different test sets and their respective differences. We show 

and discuss our results in section 4 and conclude this paper in 

section 5.  

 

 

2. METHODOLOGY 

 

2.1 Height Distributions 

To be independent of the underlying point density or sensor 

system, the model requires a fixed resolution and a unique object 

representation. In order to achieve a fixed resolution, the point 

cloud is rasterized into raster cells with an edge length of 1m. In 

our approach, the unique object representation is based on the 

threshold selection algorithm from Otsu (1979). This algorithm 

allows partitioning the points within a raster cell depending on 

their height values into disjunct sets. These sets are then 

represented by up to j separate normal distributions using their 

empirical mean x�G and standard deviation sG. We set j = 2, i.e. 

separate the points into a top and a bottom set. Depending on the 

object, the two distributions vary in shape as shown in Figure 1. 

For a raster cell with only ground pixels, the mean values will lie 

in the middle of the ground and sG will be small. However, for a 

raster cell with a tree and ground present, one distribution will 

ideally cover the ground points while the other will describe the 

tree with a much larger standard deviation than on the ground. 

Finally, buildings will have a similar top mean, but a smaller 

standard deviation than trees. Consequently, those objects can be 

separated. An overview of our algorithm is shown in Algorithm 

1.  

 

The original algorithm of Otsu (1979) searches for an optimal 

threshold k∗ to separate image histograms with L different grey 

values into foreground and background pixels. Instead of grey 

value histograms, we adapted the algorithm to split sorted height 

values into a bottom set C� and a top set C�. Then, we calculate 

the empirical mean and variance x�;, s�# and x�� , s�# for the bottom 

and top distribution, respectively. Besides, we also calculate the 

empirical mean x� and variance s# of all points within a raster cell. 

In order to decide, which model achieves the higher likelihood 

concerning the underlying data, e.g. one or two distributions, we 

use the Bayesian Information Criterion (BIC) (Schwarz, 1978).  
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The BIC is calculated as 

 

 BIC = ln�N� k − 2ln �p�x|θU, M�� (1) 

with 

 

 p�x|θU, M� =  W X λGC�z� | x�G, sG#
Y1�

G4�
�

�

�4�
 (2) 

 

where: N: number of data points in the set 

k: number of parameters estimated by the model, 

either 2 for one or 4 for two distributions 

 L: different height levels with i = 1, … , L 

 J: number of distributions in the model 

 λG: relative point frequency, ∑ λG = 1G . 

 

The model with the lowest BIC is selected for the raster cell. If 

one distribution is preferred, the input for the network will consist 

of the mean and standard deviation calculated from all points 
�x�, s, x�, s�. For two distributions, the input will contain the values 

for the top and bottom distribution �x��, s�, x��, s��. The majority 

class of the respective distribution decides the reference class. If 

a raster cell is empty, default values and an additional no data 

class are set. Finally, the raster data is split into non-overlapping 

raster images of size 100 x 100 m². This is large enough to still 

contain some ground information for normal sized residential and 

industrial buildings within a single raster image in most cases. 

 

2.2 Normalisation Methods 

Since the input only relies on the geometry itself, classifying 

other regions and consequently dealing with different ground 

heights is difficult. We examine several methods to determine the 

ground surface and thus obtain normalised height values for each 

point by calculating the height above ground. In addition, we 

trained and tested the network using all those different 

normalised point clouds as input to evaluate the influence of each 

normalisation method and its consequences on the classification 

result.  

 

2.2.1 Original: Original height values are used for input 

generation, i.e. no normalisation is performed. 

 

2.2.2 DTM: Since NMAs do collect point clouds every 

several years, we assume that a DTM or a labelled point cloud of 

the test region already exists. In this study, we applied a Delaunay 

triangulation on the labelled ground points for each test set to 

generate a surface model. The normalised point height is 

calculated by the distance between each point in the dataset and 

the plane from its closest triangle. 

 

2.2.3 LAStools: The height above ground is calculated using 

the tool lasground_new from the software LAStools1. The tool 

only considers points from last pulse for its surface 

reconstruction. The default parameters are used for all datasets 

and the program returns the normalized height above ground. 

 

2.2.4 Local: As already described in section 2.1, we split the 

data into an upper and lower set C� and C�. Consequently, the 

bottom mean values x�� for each sample will mostly contain 

ground information. For each raster image, we sort the x�� values 

according to their height. Then, we take the lowest 10% of those 

values and calculate their mean x��,:[=9. 

 

                                                                 
1 https://rapidlasso.com/lastools/ 

In our experiments, 10% showed to be robust against noise as 

well as to be able to describe the lower parts of the ground quite 

nicely. x��,:[=9 represents a local horizontal plane, which is 

subtracted from all points within the raster image to gain 

normalized points heights. In comparison to a local plane 

reconstructed from the minimal height value within a raster 

image, x��,:[=9 is more robust towards noise. 

 

2.2.5 RANSAC: Similar to 2.2.4, we exploit the split into an 

upper and lower distribution from the input generation and 

calculate the normalised height for each raster image separately. 

Instead of using the bottom mean values x��, we filter the point 

cloud, so that only the points from set C�, which also have a 

standard deviation s� lower than 0.15m, remain. 0.15m equals the 

absolute standard deviation from most ALS point clouds and we 

discovered in our experiments, that ground points, but also 

building points usually tend to stay within this 0.15m boundary. 

Finally, we calculate a plane using a random sample consensus 

(RANSAC) algorithm on those filtered points. For the sampling 

process, we set the probability w, that a drawn observation 

belongs to the plane, at 0.6. Setting w at 0.6 enables the 

RANSAC algorithm to try more, possible solutions and 

consequently to find a suitable ground plane more likely. In 

addition, we set the desired probability z with which the model 

shall be found in the data to 0.95. The normalized height for a 

point within the sample equals the point to plane distance with 

the resulting plane from the RANSAC algorithm.  

 

 

Figure 2. Network Architecture for the experiments using 

convolution blocks (CB), max pooling (MP), dropout (DO), up-

sampling blocks (UB) and a softmax layer to output class 

probabilities for the top and bottom distribution, respectively. 

 

2.3 Network Architecture 

We extend the U-Net structure from Ronneberger et al. (2015) 

for the semantic segmentation of rasterised ALS point clouds. 

The network structure is shown in Figure 2. The encoder-decoder 

network structure allows an end-to-end training of the height 

profiles as described in section 2.1. The encoder has three levels 

and each level consists of two convolution blocks, where each 

block includes a convolutional layer using a 3x3-filter matrix, a 

Rectified Linear Unit (ReLU) as activation function as well as 

Batch Normalisation. Between levels in the encoder, max pooling 

is applied to down-sample the raster images by a factor of 2. In 

addition, the amount of calculated feature maps doubles in each 

level starting from 64 to 256. On the last level, there is a dropout 

layer with a dropout rate of 0.5 between the convolution blocks. 

After these blocks, the network splits into two separate, but 

identical built decoder parts. In order to restore the image 

resolution, up-sampling blocks are used. Up-Sampling blocks 

consist of an Up-Sampling layer using nearest neighbour 

interpolation, which is followed by a convolutional layer using a 

2x2-filter matrix.  
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Figure 3. Reference classes for the AHN3 test set (left), Brunswick (middle) and Vaihingen (right). Grey: ground; green: non-ground; 

red: building; blue: water; yellow: bridge. 

The Up-Sampling block concludes with concatenating the 

resulting feature maps from the convolution layer with those 

from the encoder of the same level. Like in the encoder, two 

convolution blocks follow the Up-Sampling block in each level. 

Finally, a softmax classifier predicts the class probabilities for 

each decoder part. One decoder predicts the class probabilities 

for the bottom, the other one for the top distribution. The network 

differentiates ground, building, water, non-ground, bridge and an 

additional no data class in order to deal with empty raster cells. 

 

2.4 Loss Function 

Since there are two outputs in the network, the loss function is 

the sum of two partial loss functions LG. Each partial loss function 

LG is a weighted cross-entropy function 

 

 

LG =  − X wG�x�y^,G�x� log `ya^,G�x�b
c

^4�
 (3) 

 

with the weight wG�x� =  1 f^,G⁄ , where f^,G is the relative class 

frequency, y^,G�x� is the reference and ya^,G�x� is the predicted 

label of class c for distribution j. We also tested different weight 

functions. Nevertheless, those functions yielded worse 

predictions in our experiments. 

 

 

3. DATA 

 

In order to test the suitability of our method, we train the network 

from data of a single dataset (3.1) and apply it on several other 

datasets to test its generalization capability (3.1 - 3.4). 

 

3.1 Rostock 

The ALS point clouds provided by the NMA of Mecklenburg-

Vorpommern (AFGVK) have a mean point density of 5 points/m² 

and cover an area of 20km² in southern Rostock, Germany in 

2012. The mean ground level of the area varies from -1m to 56m. 

Urban areas with residential and industrial buildings in the North 

West and Nord East, garden plots with small cottages in between, 

huge agricultural areas and grassland in the South, forests, a river 

and several small lakes characterise the region (see Figure 4). The 

classes ground and non-ground are automatically created and 

manually controlled by the NMA. The classes building, water 

and bridge were manually added, but not fully controlled, so that 

some label error exist in the training data.  

                                                                 
2 http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-   

labeling.html 

 

Figure 4. The training and test dataset of Rostock, Germany 

 

The data is pre-processed as described in section 2.1, which 

results in 2000 raster images in total. 300 images are picked 

randomly for testing to ensure, that all different regions within 

the dataset are covered. To find the optimal hyperparameter for 

the network, the dataset is further split into five chunks for a 5-

fold cross validation, where one is used as validation set and the 

remaining ones for training. The final network is trained on all 

1700 training images. 

 

3.2 Brunswick 

The dataset is provided by the NMA of Lower Saxony (LGLN), 

Germany and covers an area of 4km² with a mean point density 

of roughly 8 points/m² of the city centre of Brunswick, Germany 

from 2015 (see Figure 3, middle). In contrast to the dataset in 3.1, 

this data contains a densely built-up area with various building 

shapes, which the network has never seen during training. The 

data is automatically labelled and manually checked into the 

classes ground, building, non-ground and bridge. Although the 

river Oker is flowing through the area, there are no natural water 

points contained in the dataset. The main ground level varies 

from 69m to 88m. 

 

3.3 ISPRS Vaihingen 3D Semantic Labeling Challenge 

We are also testing our method on the ISPRS 3D Semantic 

Labeling Contest2 (Niemeyer et al., 2014). It contains two ALS 

point clouds for training and testing and covers an area of 

Vaihingen an der Enz, Germany in 2008. The mean point density 

is about 4 points/m² (8 points/m² on strip overlap) and the mean 

ground level varies from 265m to 288m. The point clouds contain 

the classes’ powerline, low vegetation, impervious surfaces, car, 

fence/hedge, roof, façade, shrub and tree.  
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We refrain from training or refining our network on the available 

training set, but apply our network as is on the test set (see Figure 

3, right). In order to use the same network trained on the Rostock 

data of section 3.1, the classes powerline, low vegetation, car, 

fence/hedge, shrub and tree are condensed in the class non-

ground. The class impervious surfaces is renamed as ground and 

the classes roof and façade are summarized to building. 

Compared to the other test datasets, the Vaihingen dataset has a 

much higher mean ground level, so it is possible to test the 

network on its generalization capability concerning different 

input heights and the influence of different applied normalisation 

methods. 

 

3.4 Actueel Hoogtebestand Nederland (AHN3) 

The Actueel Hoogtebestand Nederland (AHN3)3 dataset covers 

most areas of the Netherlands by the end of 2019. The point 

density is about 16 points/m² and it is classified into the classes 

unassigned, which contains objects such as vegetation, vehicles 

and street furniture, ground, building, water and bridge. As the 

class unassigned contains the same objects as the class non-

ground in the datasets of Rostock and Brunswick, we will further 

refer to it as non-ground as well. We test our network on a subset 

from tile C_33_FN1 of the city Deventer, Netherlands. Schmohl 

and Sörgel (2019) have already used this specific data for point 

cloud classification and the data is split into a training, validation 

and test set. As with the Vaihingen dataset, we refrain from 

training or refining our trained network using those datasets, but 

purely test our trained model on the described test dataset. The 

test dataset covers an area of 2.5km² with a mean ground level 

between 4 and 14m (see Figure 3, left). In contrast to the Rostock 

dataset, the bridges are mostly built for pedestrians and are 

consequently much smaller than bridges for vehicles, which are 

present in the Rostock and Brunswick dataset.  

 

 

4. EXPERIMENTS 

 

4.1 Training 

The datasets are pre-processed according to the proposed method 

in section 2. Because of format issues, it was not possible to test 

Vaihingen on the LAStool normalisation setup. The proposed 

network is trained ten different times using the training data of 

the Rostock dataset. The final class predictions for all test sets are 

based on the maximal class probabilities of the network 

ensemble.  

 

4.2 Classification Transferability 

When used on different domains than the trained one, the results 

of any classifier are expected to become worse. However, the 

overall F1-Scores from the main domain (Rostock) to Brunswick 

or AHN3 decrease by only a small margin of about 1.5% and 

remain above 90% in most normalisation setups as shown in 

Table 1. Unfortunately, our approach is not able to achieve 

comparable results in the AHN3 test dataset to Schmohl and 

Sörgel (2019), who trained their classifier using the proposed 

training and validation datasets as described in section 3.4. With 

their approach, they achieved an overall F1-Score of 95.4% in the 

test set, which is roughly 5% higher than our results. However, 

our results still show a good transferability of the proposed 

approach onto datasets with similar terrain without the need of 

any additional training data, once the network is trained. 

                                                                 
3 https://downloads.pdok.nl/ahn3-downloadpage/ 
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DTM 96.3 91.3 92.3 83.0 86.3 93.4 

LAStools 95.7 90.2 71.7 82.2 66.2 92.5 

Local 95.8 90.7 80.3 82.1 85.4 92.7 

RANSAC 95.8 89.3 81.1 81.8 64.2 92.6 

B
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n
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 Original 22.7 52.0 -- 77.1 0.0 45.7 

DTM 94.1 95.4 -- 88.9 38.7 92.7 

LAStools 92.9 94.1 -- 88.3 4.8 91.6 

Local 92.6 93.6 -- 88.3 6.8 91.4 

RANSAC 92.5 93.2 -- 88.2 18.7 91.2 

V
ai

h
in

g
en

 Original 0.0 45.2 -- 0.0 -- 15.1 

DTM 95.7 85.7 -- 79.3 -- 86.9 

LAStools -- -- -- -- -- -- 

Local 87.5 90.3 -- 78.5 -- 85.4 

RANSAC 86.7 90.1 -- 78.7 -- 85.2 

A
H

N
3

 

Original 93.3 88.5 9.6 88.8 0.0 89.8 

DTM 93.3 91.4 78.8 90.5 0.0 91.9 

LAStools 91.8 90.5 7.5 89.8 0.0 90.7 

Local 91.9 90.7 17.7 89.7 0.0 90.8 

RANSAC 91.9 89.7 18.0 89.4 0.0 90.5 

Table 1. F1-Scores from the accumulated prediction of ten 

networks. Best results for each test set are marked bold. 

 

Only the predictions of Vaihingen achieve lower overall F1-

Scores of about 85% as shown in Table 1, which are mostly due 

to some issues at the border of the point clouds (see Figure 5). 

Results of the different test areas are shown in greater detail in 

Table 1 and Figure 5. 

 

Even though the overall F1-Scores are similar in all test sets, the 

class specific F1-Scores vary notably. Having class weighting 

been used during training, classes with more available points 

such as ground, building and non-ground still achieve higher and 

more stable results in all test sets than the smaller classes water 

and bridge (see Figure 5, Table 1). As shown in Table 1, the 

ground class appears to be the most stable, but is also the most 

common class in all test sets. The best class F1-Scores for ground 

in each test set only differ by 3% with AHN3 achieving the 

lowest score of 93.3%. Similarly, building is quite stable and the 

best F1-Scores in each test set only vary between 90.3% and 

95.4%. The later result is interesting as building was predicted 

better in Brunswick (95.4%) than in Rostock (91.3%). This might 

be due to the lack of vegetation close to most buildings in 

Brunswick, which consequently decreases the chance of having 

border issues between objects (see Figure 3, middle). Equally, 

one of the major drawbacks of non-ground classification 

originates in the limitations of our approach, which are further 

discussed in this section below. As a result, non-ground achieves 

best F1-Scores varying from 79.3% to 90.5% between test sets 

and roughly 2% difference within a test region. Water points 

hardly exist in ALS point clouds due to the reflection of the beam 

if the plane is not in nadir view to the respective water source. In 

most ALS point clouds, water points are usually spatially apart 

from the other object points and are mostly surrounded by the no 

data class representing the lack of points within a raster cell in 

our approach. As a result, the network learns this topological 

characteristic and thus classifies points on the riverside as water. 
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Figure 5. Exemplary results of the point cloud classification on all four test sets. Grey: ground; green: non-ground; red: building; blue: 

water; purple: bridge. 

This is especially problematic, if the point cloud is small and the 

majority of a raster image is set to no data as found in the 

Vaihingen dataset (see Figure 5, Vaihingen). Here, the street 

going outwards and the border points of the whole test set are 

partially classified as water due to this problem resulting in poor 

overall F1-Scores as shown in Table 1. Another issue in all test 

sets are bridges, which are hardly classified at all except for the 

Rostock test set (see Table 1), but where their results still vary 

depending on the applied normalisation method. The training 

dataset only contains about a dozen bridges, which all were 

underpass bridges for vehicles. Consequently, it does not 

recognize footbridges, which are mainly present in the AHN3 

dataset and which are much smaller than bridges for vehicles (see 

Figure 3, left). In Brunswick, where underpass bridges are 

present, the prediction differs with the normalisation method and 

is still quite below the results from the Rostock dataset. Although 

the kind of bridge is similar to the training dataset, only the 

trained networks using DTM or RANSAC normalisation are able 

to predict parts of the bridges correctly (see Figure 5, Brunswick).  

The location of these bridge parts is often at the foot of the bridge 

with a present slope in either the bridge or the ground below. 

When the bridge flattens, the main part of the bridge is classified 

either as building, when the bridge is above ground in the city, or 

non-ground, when the bridge is above a river. Consequently, it 

appears that the trained network ensemble is still able to 

differentiate and understand the context of its environment, even 

though the bridge itself is not detected as one. 

 

Our approach performs the classification based on the number of 

distributions j within a raster cell. Consequently, only j classes 

are possible within each cell. This is an inherent limitation, which 

leads to some misclassification between object boundaries 

remaining in all tests. Due to the coarse resolution of 1m² in the 

raster cells, points of two neighbouring objects fall into the same 

raster cell. If the two objects belong to the same class, there is no 

issue unless the prediction of the network ensemble returns a 

wrong class in the first place. However, since the network 

ensemble only returns one class label per distribution, points 

within a mixed raster cell will automatically contain labelling 

errors when projected back to the original point cloud, since one 

of the objects is classified wrongly. This is especially the case for 

trees close to buildings (see Figure 5, Rostock and AHN3). 
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Decreasing the length of a raster cell, so less objects fall into the 

same raster cell, or increasing the amount of possible 

distributions for each raster cell, so more objects could possibly 

be predicted, might solve this issue. Equally, taking into account 

the entire class probabilities for a distribution instead of just the 

highest probability and adding a mapping process from these 

class probabilities to the points itself might also work. Another 

issue occurs by trying to split only a limited amount of points into 

two separate distributions. The Otsu algorithm finds a local 

minimum between a lower and upper distribution. However, in 

situations with ground and tree points, the few points within a 

raster cell are spread apart in height, so that there is no clear 

boundary between objects anymore. As a result, the algorithm 

fails and some tree points are assigned to the bottom distribution, 

which are then classified as ground (see Figure 5, Rostock). This 

is especially visible in the Rostock test dataset with only 5 

points/m², which led to F1-scores for non-ground of only about 

82% as shown in Table 1. This problem becomes less of an issue 

with a higher amount of points/m² like in the AHN3 set with 16 

points/m² (see Figure 5). Independent of the normalisation 

method, it appears that some systematic errors during the training 

process happened, which result in some of the buildings being 

classified as non-ground (see Figure 5, AHN3).  

 

4.3 Normalisation Methods 

Independent of the specific test set, classification results show 

similar outcomes for the same normalisation method. The best 

results were achieved in all, but one case using an existing DTM 

as shown in Table 1. Considering no normalisation and 

consequently using the original height as input yields the worst 

classification results. With a higher mean ground level like in the 

Brunswick and Vaihingen test set, the ensemble of networks tend 

to classify all points as building and non-ground, which have 

typically higher z values than ground (see Figure 5). This is not 

surprising as a correct reconstruction of the ground ensures 

similar heights of objects independent of the specific region, 

which makes classification simpler. Although the normalisation 

using LAStools generates a similar height above ground as the 

DTM normalisation, the overall results of this method are more 

comparable with the local and RANSAC normalisation (see 

Table 1). In contrast, when the smaller classes water and bridge 

are concerned, the results with LAStools are even worse than the 

other two methods. These misclassifications using LAStools are 

mostly due to some reconstruction errors on the edges of tiles as 

well as at areas, where buildings are recognized as ground by 

mistake. The normalisation methods with a local plane as well as 

using RANSAC yield very similar results as shown in Table 1. 

While RANSAC classifies water by a small margin better than 

the local plane, bridge varies with the test sets. For the larger 

classes ground, non-ground and building, the local plane 

normalisation yield slightly better results (see Table 1). 

 

There are some advantages and disadvantages regarding certain 

normalisation methods. Only the network ensemble using DTM 

normalisation results in complete and correct predictions on large 

and flat or very complicated roof shapes, while the other methods 

fail partially (see Figure 5, Brunswick). However, in order to use 

this method, a DTM or given labelled point cloud of the same 

region is required, which is not available in most practical 

circumstances. Likewise, the approach using LAStools requires 

the point cloud to have information about the last pulse. 

However, point clouds from different sensor systems, e.g. from 

images, do not contain such attributes. In addition, the results 

from the network ensemble using a LAStools normalisation 

were, at least in our experiments, on the same level or below the 

other normalisation methods excluding using the original height. 

The network ensemble using the original height as input appears 

to yield poor classification results, when the mean ground height 

deviates a lot from the one used for training the network. 

Consequently, it could still be used for areas with similar 

topography as the training set as shown with the Rostock and 

AHN3 test set (see Figure 5). The most simple normalisation 

methods using a local plane or RANSAC do not require any 

additional information other than the geometry and yield results, 

which are less than 2% worse in the overall F1-Score when 

compared to the DTM normalisation approach in all test sets. By 

removing the majority of the ground influence using either the 

local plane or RANSAC, the results compared to using the 

original height improve greatly. Likewise, it appears that small 

local curvatures or slopes in the ground do not affect the 

classification process as much, but rather the different mean 

ground height in general. However, this is only valid for flat 

terrain, where the local plane and RANSAC normalisation 

achieve similar normalized heights. When tested on terrain with 

higher inclination, the normalisation method with RANSAC 

might surpass the one with a local horizontal plane, as this will 

no longer match the main ground surface anymore.  

 

 

5. CONCLUSIONS 

 

In this work, we presented a geometry-based classification 

approach, which uses height distributions calculated from a 

rasterized set of points. Since it only requires the geometry, the 

approach is independent of the sensor system and is applicable 

for different point densities as long as there are enough points to 

calculate proper height distributions within a raster cell of given 

size. We trained our network on one dataset and tested it on four 

different test sets without the use of any additional training data 

to show its transferability towards slightly different ground 

heights. Since all test sets contain flat terrain, the transferability 

on mountainous terrain remains open for future work. We tested 

five different height normalisations to reduce the ground 

influence on the point cloud heights greatly. Our experiments 

showed that normalisation using a given DTM achieves best 

results. As such, a DTM is often not available and comparable 

alternatives are necessary. Simpler normalisation methods using 

a local horizontal plane or an oblique plane calculated by a 

RANSAC algorithm also resulted in good class predictions 

without requiring any additional data source.  

 

However, there are still some issues remaining. Although class 

weighting has been applied during training, the classification of 

smaller classes such as water and bridge often result in 

misclassifications. Due to the sparsity of water points, the 

network associates water along point cloud borders and thus 

classifies riversides among others as water. Bridges cause various 

problems as they are difficult to normalize, require a complete 

training data set with different kinds of bridges and are hardly 

available in point clouds due to their sparsity in terrain. 

Consequently, our approach was not able to classify them in a 

satisfying manner. We discussed several ways to improve our 

proposed approach in future works. 
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