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ABSTRACT: 

 

Acquisition of three-dimensional (3D) structural information is significant for forest measurements. To achieve faster data collection 

in forests, we design a backpack laser scanning (BLS) system using a single mobile laser scanning (MLS) scanner and specific to forest 

environments. The simultaneous localization and mapping (SLAM) approach based on the natural geometric characteristics of trees is 

used for BLS-based forest mapping, in which the skeleton line of the individual tree is extracted for scan matching and the incremental 

maps are adopted for global optimization of all the BLS point clouds. The final experimental results show that the SLAM-based BLS 

system achieves accurate forest plots mapping and allows reaching low mapping errors, in which the mean errors are approximately 3 

cm in the horizontal and 2 cm in the vertical direction. 

 

 

1. INTRODUCTION 

Three-dimensional (3D) structural information acquisition is an 

essential prerequisite and is the key to digital forest inventories 

(Chambers et al., 2007). Light detection and ranging (LiDAR) 

has been suggested to be a practical technique to acquire precise 

3D structural information of the forest (Zolkos et al., 2013; 

Magnussen et al., 2015; Varvia et al., 2019; Luo et al, 2019). 

Mobile laser scanning (MLS) has gained attention in forest 

mapping because of the advantage of the immensely faster data 

collection (Liang et al., 2014). The main limitation of MLS 

appears during the mapping step. 

 

Most of the existing MLS-based mapping techniques are based 

on the global navigation satellite system/inertial measurement 

unit (GNSS-IMU) techniques, in which the GNSS system is used 

for positioning the MLS system, and the IMU provides attitude 

information for the orientation of the MLS system (Tang et al., 

2015). However, the mapping becomes difficult when the GNSS 

signal is weaken or blocked. Thus, the simultaneous localization 

and mapping (SLAM) technique is typically used for solving the 

mapping, which is the process of mapping an unknown 

environment and locating the mobile platform simultaneously 

(Dissanayake et al, 2001). Kukko et al. (2017) used SLAM 

technique to correct the GNSS-IMU trajectory for position drift 

and in turn, the initial trajectory obtained from the GNSS-IMU 

system provided the constraints for the SLAM. The method not 

only obtained forest mapping but also improved the positioning 

accuracy, whereas the GNSS signal loss caused by the occlusions 

may affect the performance. The feature-based SLAM methods 

commonly extract features in environments to achieve mapping 

but without the GNSS-IMU system. For instance, the LOAM 

method (Zhang and Singh, 2014) extracted the line and plane 
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features from object surfaces for positioning and mapping in 

indoor and urban scenarios. However, due to the complexity of 

forest environments and the similarity between the objects, the 

reliable features are difficult to extract from the tree surface, and 

inaccurate corresponding pairs would fall scan matching into a 

local optimum. In addition, some methods registered forest point 

clouds, including the methods based on artificial markers 

(Henning and Radtke, 2006; Hilker et al., 2012; Zhang et al., 

2016a) and automated marker-free methods (Kelbe et al., 2016; 

Liu et al., 2017). These related methods were typically proposed 

for the registration of dense terrestrial laser scanning (TLS) point 

clouds and solved the occlusion influencing from single-scan 

TLS data (Wan et al., 2019), which are ill-suited for matching of 

sparse MLS point clouds. 

 

To achieve MLS-based forest mapping, we design a backpack 

laser scanning (BLS) system using a single MLS scanner and 

propose a novel SLAM method based on the natural geometric 

characteristics of trees. We first integrate a simple BLS system 

without GNSS-IMU system for acquisition of forest point clouds. 

Then, the trunk skeleton lines that represent the tree center lines 

are extracted for matching BLS point clouds, which prevents 

inaccurate correspondence. At last the graph-based optimization 

is used for the elimination of accumulative errors. 

 

2. METHODS 

In this paper, we realize forest plot mapping using the designed 

BLS system, in which the key of this task is to solve the SLAM 

problem. The SLAM process involves feature extraction, scan 

matching, and optimization. For scan matching, we propose the 

combination of the line features and point features for estimating 

the transformation between adjacent BLS point clouds, in which 
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the line features are derived from trunk skeletons that are natural 

geometric elements of trees, and the point features are extracted 

from each BLS point cloud evenly. Moreover, the incremental 

BLS point clouds and trunk skeleton nodes are used to provide 

constraints for optimization of all the BLS point clouds. The 

process of the paper is shown in Figure 1. 

 

 

Figure 1. The flowchart 

 

2.1 Feature extraction 

Feature selection and feature extraction are the precondition of 

feature-based SLAM method. To achieve accurate matching of 

BLS point clouds in forests, we propose to combine the trunk 

skeleton line and point features, in which the line and point 

features are used for maintaining the horizontal and vertical 

matching accuracies, respectively. 

 

For line features, we utilize a hierarchical clustering method to 

extract the trunk skeleton lines. First, the BLS scan is divided 

into multiple subsets based on the vertical angular resolution. 

Then, region growing is used to cluster the adjacent points in 

each subset, and the circle fit based on the least square method 

is used to detect trunk skeleton nodes, in which the connected 

line between two neighbor nodes is regarded as a line feature 

(Figure 2a). In addition, the difference of Gaussian (DoG) is used 

to extract point features. In this paper, we referred to the work of 

Theiler et al. (2014) for extracting point features (Figure 2b). 

 

 
(a) 

 
(b) 

Figure 2. Feature extraction (grey points are the BLS points). 

(a) represents the skeleton nodes (red points), (b) represents the 

even-distributed point features (blue points). 

 

2.2 Scan matching 

The process of scan matching is to construct correspondence and 

calculate transformation between the adjacent BLS point clouds. 

Because the acquisition of BLS data is continuous, we use the 

Euclidean nearest neighbor search to find corresponding feature 

pairs, in which the distance between the corresponding pair is 

regarded as the constraint. For line features, the point-to-line 

(skeleton node to skeleton line) correspondence is established, 

and the point-to-line distance 𝑑𝑙 can be computed by 

 

𝑑𝑙 =
|(𝑋(𝑡+1,𝑙) − 𝑋(𝑡,𝑎)) × (𝑋(𝑡+1,𝑙) − 𝑋(𝑡,𝑏))|

|𝑋(𝑡,𝑎) − 𝑋(𝑡,𝑏)|
 (1) 

 

where 𝑋(𝑡+1,𝑙) is a skeleton node at the time of sweep t +1 

𝑋(𝑡,𝑎) and 𝑋(𝑡,𝑏) are the two nearest skeleton points 

of 𝑋(𝑡+1,𝑙) at the time of sweep t 

 

Because of the fast error convergence speed, the point-to-plane 

correspondence is established (Low, 2004), in which the plane is 

consist of three nearest points of the extracted point feature that 

are within a certain neighborhood and not on the same line. 

Therefore, the point-to-plane distance 𝑑𝑝 can be computed by 

 

𝑑𝑝 =
|(𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑎)) ∙ ((𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑏)) × (𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑐)))|

|(𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑏)) × (𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑐))|
 

(2) 

 

where 𝑋(𝑡+1,𝑝) is a point feature at the time of sweep t+1, 

and its corresponding plane at the time of sweep t, is 

set to {𝑋(𝑡,𝑎), 𝑋(𝑡,𝑏), 𝑋(𝑡,𝑐)} 

�⃗⃗�  is the normal vector of the plane 

 

Let 𝑋𝑡  be the extracted feature at the time of sweep 𝑡 , and 

𝑋𝑡+1 be the correspondence at the time of sweep t + 1. A rigid 

transformation relationship between 𝑋𝑡  and 𝑋𝑡+1  can be 

established: 

 

𝑋𝑡+1 = 𝑹𝑋𝑡 + 𝑻 (3) 

 

where 𝑹 and 𝑻 are unknown and can be represented by 6 

degrees of freedom (6-DOF) 

𝑹 is the rotation matrix (𝑹 ∈ ℝ3×3) 

𝑻 is the translation vector 

 

Then, the unknown can be solved by minimizing the error e 

toward zero with the Levenberg-Marquardt (L-M) method: 

 

𝑒 = 𝑎𝑟𝑔min
𝑒

1

2
∑‖𝑑𝑖 − 0‖2

𝑁

𝑖=1

 (4) 

 

Final, we can calculate the unknown through nonlinear iterations. 

 

2.3 Scan optimization 

To mitigate the accumulative error, we propose an optimization 

framework based on two incremental maps. The two maps 

contain incremental trunk skeleton points and incremental BLS 

point clouds. In particular, the first frame of BLS point cloud and 

its corresponding trunk skeleton points are regarded as reference, 
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and its coordinate system is also regarded as the common 

coordinate system. For each of the subsequent BLS point clouds, 

all of the previous BLS point clouds and trunk skeleton points in 

the common coordinate system are respectively composed of 

two incremental maps and regarded as constraints for optimizing 

the current frame of BLS point cloud. Meanwhile, the optimized 

BLS point cloud and its corresponding trunk skeleton points are 

added to the previous data, and two new incremental maps can 

be built. Furthermore, all BLS point clouds can be transformed 

in the common coordinate system. 

 

3. RESULTS AND DISCUSSION 

3.1 Data acquisition 

In this study, we designed a BLS system that consists of a single 

MLS scanner (Velodyne VLP-16), and a simple backpack frame 

(see Figure 3). The VLP-16 collects 600,000 points/sec, and its 

field of view is 360° in the horizontal direction and 30° in the 

vertical direction. The maximum range is approximately 100 m. 

We acquired two sets of data in two plots (Plot A and Plot B) of 

30 m × 30 m in size. 

 

 

Figure 3. BLS system 

 

3.2 Scan matching results 

According to the proposed method, we first matched the adjacent 

BLS scans and calculated the transformation between them. We 

arbitrarily selected two adjacent scans as instances and obtained 

the transformation matrix, in which we described the matrix 𝑴 

by 6-DOF, 

 

𝑴 = [−0.013, 0.050,−0.446, 0.087, −0.030, −0.002] 
 

where 𝑴(1)、 𝑴(2) and 𝑴(3) represent rotation angles 

around the x-, y-, and z-axes. 

𝑴(4)、 𝑴(5) and 𝑴(6) are translations along the 

x-, y-, and z-axes. 

 

Then, the two adjacent scans can be matched based on the matrix. 

Figure 4 shows the matching results, in which Figure 4(a) shows 

the initial states of the two adjacent scans and Figure 4(b) is the 

matching result. As seen in the results, the proposed method can 

achieve accurate scan matching. 

 

 
(a) 

 
(b) 

Figure 4. Scan matching results (red points are references, blue 

points in (a) and green points in (b) are the matched points). 

 

3.3 Forest plot mapping 

To verify the effectiveness of the proposed method, we achieved 

forest plots mapping and recovered the trajectory of the BLS 

system based on the acquired data (Figure 5). 

 

 
(a) 

 
(b) 

Figure 5. Forest mapping results (grey points are forest points 

and red curves are the trajectories). (a) is the mapping result of 

Plot A, and (b) is the result of Plot B. 
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From Figure 5, the results show that the below-canopy structures 

are mapped by using the proposed method, and the trajectories 

are coincident with the practical movements. In the mapping 

results, each tree in the plots is registered accurately, and the 

distribution of individual trees has no significant deviations, 

which suggest that the trees reconstructed by the proposed 

method are available. In addition, the open trajectories of the 

scanner do not drift from their correct values and are recovered 

by the proposed method in the two plots, which suggests the 

reliability of the trajectories. 

 

3.4 Mapping accuracy 

In forests, the locations of trees were available for evaluating 

horizontal accuracy. To quantitatively evaluate the performance 

of the proposed method, the tree position from the BLS-based 

mapping results were compared to those from the corresponding 

multi-scan TLS data. Therefore, each BLS-based mapping result 

was manually registered with its corresponding multi-scan TLS 

data. Then, the tree position is represented by extracting the 

center of the cross section of point cloud that falls above the 

ground level. In practice, we first filtered the ground points and 

the non-ground points (Zhang et al., 2016b), and detected all 

individual trees. In addition, the position deviations, including 

mean deviation (Mean), root mean square error (RMSE), and the 

maximum deviation (Max), were used to assess horizontal 

accuracy. The results are summarized in Table 1. 

 

Plots Number of 

sample trees 

Deviations (m) 

Mean RMSE Max 

A 10 0.029 0.031 0.040 

B 10 0.025 0.027 0.036 

Table 1. Horizontal accuracy 
 

From Table 1, the deviations were at the centimeter level, of 

which the mean absolute deviations and RMSE values were 

approximately 0.03 m, and the maximum deviations were less 

than 0.04 m, which indicated highly accurate mapping results. In 

addition, to further assess the performance of the proposed 

method, the deviations between the branch position in the BLS-

based mapping results and the corresponding positions in the 

multi-scan TLS data were calculated for evaluating the vertical 

accuracy. In practice, some sample points on the branches were 

selected to calculate the deviations. The vertical accuracies are 

summarized in Table 2. 
 

Plots Number of 

sample points 

Deviations (m) 

Mean RMSE Max 

A 10 0.0179 0.0187 0.0283 

B 10 0.0153 0.0155 0.0189 

Table 2. Vertical accuracy 
 

In the test plots, the branch position deviations were also at the 

centimeter level, of which the mean absolute deviations and 

RMSE values varied between 0.015 m and 0.020 m. In general, 

the requirement of the vertical accuracy is lower than the 

horizontal accuracy for forest measurements (e.g., tree height), 

so the accuracy results indicated the effectiveness of the results. 

Overall, the proposed optimization framework can achieve BLS-

based forest mapping, of which the incremental maps provide 

effective global consistency constraints for each frame of BLS 

point cloud. In particular, the trunk skeletons map maintained 

the accuracies of positioning and mapping in the horizontal 

direction, and the incremental BLS point clouds that are in 

common coordinate system provided effective constraint for 

forest mapping in the vertical direction. 

 

4. DISCUSSION 

To demonstrate the advantage in scan matching, we compare the 

matching results from the proposed method with those from the 

iterative closest point (ICP) algorithm (Besl and Mckav, 1992). 

Specifically, the locations of tree stems were used for evaluating 

the horizontal accuracy (Table 3), and ground and vegetation 

points were selected for evaluating the vertical accuracy of the 

matching results (Table 4). 

 

Plots Methods Trees 

number 

Stem distance (m) 

mean RMSE Max 

A ICP 10 0.041 0.043 0.059 

Ours 10 0.022 0.023 0.041 

B ICP 10 0.051 0.053 0.069 

Ours 10 0.018 0.019 0.027 

Table 3. Horizontal accuracy 

 

Plots Methods Points 

number 

Distance (m) 

mean RMSE Max 

A ICP 10 0.062 0.076 0.128 

Ours 10 0.007 0.009 0.015 

B ICP 10 0.057 0.062 0.112 

Ours 10 0.008 0.010 0.018 

Table 4. Vertical accuracy 

 

The above results show that the mean distances and RMSEs of 

the proposed method are approximately 0.02 m in the horizontal 

direction and are approximately 0.01 m in the vertical direction. 

In the results, the matching accuracies of the proposed method 

are significantly higher than those of the ICP method, in which 

the proposed method adopted the trunk skeleton lines to provide 

horizontal constraint and obtained high horizontal accuracy, and 

the even-distributed points maintained the matching accuracy in 

the vertical direction. The ICP method utilized the overlapping 

points to calculate transformation between two adjacent scans, 

but the sparsity of the BLS point cloud caused the inaccurate 

correspondences and scan matching. The results indicated the 

effectiveness of the proposed method in scan matching. 

 

5. CONCLUSIONS 

To achieve fast forest mapping, this paper designed a single 

scanner BLS system and proposed a new mapping method. The 

BLS system is simple and specific to forest environments. In 

addition, the line features derived from the trunk skeletons was 

proposed and used for matching of the BLS point clouds, and the 

line feature effectively solved the inaccurate registration 

problem caused by inaccurate matching pairs in the horizontal 

direction; meanwhile, the optimization framework based on the 

incremental BLS point clouds and the tree trunk skeleton lines 

provided effective constraints for the BLS-based SLAM in forest 

environments and ensured the positioning accuracies without a 

GNSS-IMU system or loop-closure detection process, of which 

the incremental skeleton lines maintained accurate registration 

of individual trees, especially tree stems. Subsequently, practical 

experimental results show the effectiveness and reliability of the 

designed BLS system and the proposed method. Although the 

method achieved fast data acquisition, the data acquired by a 

single scanner were limited below the canopy. To acquire more 

complete data, two scanners will be considered, of which one is 

used for the SLAM technique and below-canopy data acquisition 

and another is used for canopy data acquisition. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-267-2020 | © Authors 2020. CC BY 4.0 License.

 
270



ACKNOWLEDGEMENTS 

This work was supported by the National Natural Science 

Foundation of China, grant nos. 41671414 and 41971380. This 

work was also supported by Guangxi Natural Science Fund for 

Innovation Research Team (grant no.2019JJF50001) and the 

Open Fund of State Key Laboratory of Remote Sensing Science 

(grant no.OFSLRSS201920). 

 

REFERENCES 

Besl, P.J., Mckay, N.D., 1992. A method for registration of 3-D 

shapes. IEEE T. Pattern Anal. 14(2), 239-256. 

 

Chambers, J.Q., Asner, G.P., Morton, D.C., et al. 2007. Regional 

ecosystem structure and function: ecological insights from 

remote sensing of tropical forests. Trends in Ecology & 

Evolution 22, 414-423. 

 

Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, 

H.F., Csorba, M., 2001. A solution to the simultaneous 

localization and map building (SLAM) problem. IEEE 

Transactions on Robotics and Automation 17(3), 229-241. 

 

Henning, J.G., Radtke, P.J., 2006. Detailed stem measurements 

of standing trees from ground-based scanning lidar. Forest Sci. 

52(1), 67-80. 

 

Hilker, T., Coops, N.C., Culvenor, D.S., Newnham, G., Wulder, 

M.A., Bater, C.W., Siggins, A., 2012. A simple technique for co-

registration of terrestrial lidar observations for forestry 

applications. Remote Sens. Lett. 3(3), 239-247. 

 

Liang, X., Hyyppä, J., Kukko, A., Kaartinen, H., Jaakkola, A., 

Yu, X., 2014. The use of a mobile laser scanning system for 

mapping large forest plots. IEEE Geosci. Remote Sens. Lett. 11, 

1504-1508. 

 

Liu, J., Liang, X., Hyyppä, J., Yu, X., Lehtomäki, M., Pyörälä, 

J., Zhu, L., Wang, Y., Chen, R., 2017. Automated matching of 

multiple terrestrial laser scans for stem mapping without the use 

of artificial references. Int. J. Appl. Earth Obs. Geoinf. 56, 13-

23. 

 

Low, K., 2004. Linear least-squares optimization for point-to-

plane ICP surface registration. Chapel Hill, University of North 

Carolina 4(10). 

 

Luo, L., Wang, X., Guo, H., Lasaponara, R., Zong, X., Masini, 

N., Wang, G., Shi, P., Khatteli, H., Chen, F., Tariq, S., Shao, J., 

Bachagha, N., Yang, R., Yao, Y., 2019. Airborne and spaceborne 

remote sensing for archaeological and cultural heritage 

application: a review of the century (1907-2017). Remote Sens. 

Environ. 232, 111280. 

 

Kelbe, D., Van Aardt, J., Romanczyk, P., Leeuwen, M.V., Cawse-

Nicholson, K., 2016. Marker-free registration of forest terrestrial 

laser scanner data pairs with embedded confidence metrics. 

IEEE Trans. Geosci. Remote Sens. 54, 4314-4330. 

 

Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V.V., Jaakkola, 

A., Hyyppä, J., 2017. Graph SLAM correction for single scanner 

MLS forest data under boreal forest canopy. ISPRS J. 

Photogramm. Remote Sens. 132, 199-209. 

 

Magnussen, S., Næsset, E., Gobakken, T., 2015. LiDAR 

supported estimation of change in forest biomass with time 

invariant regression model. Can. J. Forest Res. 45(11), 1514. 
 

Shao, J., Zhang, W., Mellado, N., Wang, N., Jin, S., Cai, S., Luo, 

L., Lejemble, T., Yan, G., 2020. SLAM-based forest plot 

mapping combining terrestrial and mobile laser scanning. ISPRS 

J. Photogramm. Remote Sens. 163, 214-230. 

 

Tang, J., Chen, Y., Niu, X., Wang, L., Chen, L., Liu, J., Shi, C., 

Hyyppä, J., 2015. LiDAR scan matching aided inertial 

navigation system in gnss-denied environments. Sensors 15, 

16710-16728. 

 

Theiler, P.W., Wegner, J.D., Schindler, K., 2014. Keypoint-

based 4-points congruent sets – automated marker-less 

registration of laser scans. ISPRS J. Photogramm. Remote Sens. 

96, 149-163. 

 

Varvia, P., Lahivaara, T., Maltamo, M., Packalen, P., Seppanen, 

A., 2019. Gaussian process regression for forest attribute 

estimation from airborne laser scanning data. IEEE Trans. 

Geosci. Remote Sens. 57 (6), 3361-3369. 

 

Wan, P., Wang, T., Zhang, W., Liang, X., Skidmore, A.K., Yan, 

G., 2019. Quantification of occlusions influencing the tree stem 

curve retrieving from single-scan terrestrial laser scanning data. 

Forest Ecosystems. 6(1). 

 

Zhang, J., Singh, S., 2014. LOAM: lidar odometry and mapping 

in real-time. Robotics: Science and Systems Conference. 

 

Zhang, W., Chen, Y., Wang, H., Chen, M., Wang, X., Yan, G., 

2016a. Efficient registration of terrestrial lidar scans using a 

coarse-to-fine strategy for forestry applications. Agric. For. 

Meteorol. 225, 8-23. 

 

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan, 

G., 2016b. An easy-to-use airborne LiDAR data filtering method 

based on cloth simulation. Remote Sens. 8, 501. 

 

Zolkos, S.G., Goetz, S.J., Dubayah, R., 2013. A meta-analysis of 

terrestrial aboveground biomass estimation using lidar remote 

sensing. Remote Sens. Environ. 128 (21), 289-298.

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-267-2020 | © Authors 2020. CC BY 4.0 License.

 
271

https://www.sciencedirect.com/science/article/pii/S030324341630188X#!
https://www.sciencedirect.com/science/article/pii/S030324341630188X#!
https://www.researchgate.net/profile/Erik_Naesset



