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ABSTRACT:

Point cloud simplification is empowered by the definition of similarity metrics which we aim to identify homogeneous regions within
the point-cloud. Nonetheless, the variety of shapes and clutter in natural scenes, along with the significant resolution variations,
occlusions, and noise, contribute to inconsistencies in the geometric properties, thereby making the homogeneity measurement
challenging. Thus, the objective of this paper is to develop a point-cloud simplification model by means of data segmentation and
to extract information in a better-suited way. The literature shows that most approaches either apply volumetric data strategies
and/or resort to simplified planar geometries, which relate to only part of the entities found within a natural scene. To provide a
more general strategy, we propose a proximity-based approach that allows an efficient and reliable surface characterization with
no limitation on the number or shape of the primitives which in turn, enables detecting free-form objects. To achieve this, a local,
computationally efficient and scalable metric is developed, which captures resolution variation and allows for short processing time.
Our proposed scheme is demonstrated on datasets featuring a variety of surface types and characteristics. Experiments show high
precision rates while exhibiting robustness to the varying resolution, texture, and occlusions that exist within the sets.

1. INTRODUCTION

Laser ranging based mapping has gained increased popularity
in recent years, mainly due to the accurate and detailed sur-
face characterization that these systems provide. The resolu-
tion and accuracy of laser-scanning-based point clouds make
them a preferable source for a broad spectrum of applications.
Yet, a great challenge is associated with processing and inter-
acting with these clouds because of their volume and wide span
in 3-D space. As a consequence, the aggregation of homoge-
neous regions into segments has become a customary step to-
wards information extraction, modeling, and object detection,
to name only a few applications (Adam et al., 2019; Xing et al.,
2019). Point cloud segmentation is empowered by definitions
of similarity and aims to identify homogeneous regions and el-
ements within the data. Similarity is often measured in terms
of consistency in geometric attributes among neighbouring ele-
ments. However, the variety of shapes and the existence of clut-
ter, along with intrinsic data related challenges like variations in
resolution, uneven spacing, occlusions and, noise, contribute to
inconsistencies in the geometric properties and complicate ho-
mogeneity measurement.

With the increasing volumes of point clouds, the computational
demands for their segmentation rise as well. Using a region-
based partitioning where pre-defined patches consisting of sub-
sets of the points are used as the basic elements, can signif-
icantly reduce the computation cost (Yang et al., 2015). As
a result, such approaches become more attractive. Examples
of such atomic units include: voxels, slices and planar frag-
ments (Wu et al., 2013; Zolanvari and Laefer, 2016; Fan et
al., 2018). While the classic voxelization provides an index-
based partitioning, it neglects the point clouds properties such
as varying point density. Therefore, an octree structure is the
∗Corresponding author

more commonly used approach (Vo et al., 2015; Su et al., 2016;
Dong et al., 2018; Xu et al., 2018). Nonetheless, selecting an
appropriate voxel resolution (i.e., the termination criterion for
the octree construction) is crucial to the accuracy of the ex-
tracted features. As an alternative, supervoxels methods have
been proposed, where the original voxels (which are usually
defined with a fixed resolution) were aggregated to structural
primitives based on similarity (Papon et al., 2013; Lin et al.,
2018). However, these approaches are sensitive in sparse areas
where the total number of points is limited (i.e., erroneous at-
tribute computation) or in the presence of linear objects (Li and
Wu, 2019). Despite the significance of initial partitioning of
the point-cloud into regions, it is important to keep in mind that
it is merely an over-segmentation of the data, clustering these
over-segmented patches into meaningful objects still remains
the main challenge. Therefore, such partitioning should aim
to reduce the overall computational demands of the segmenta-
tion process without increasing its own. Such an optimal over-
segmentation is lacking, as evident by increasing number of
studies that tackle that aspect (e.g., Landrieu and Simonovsky,
2018; Lin et al., 2018; Li and Wu, 2019).

Most recent methods proposed graph representation for seg-
mentation purposes. In this form, the graph nodes represent
the basic units, while the edges define and measure the sim-
ilarity between neighboring ones. A computational efficient
graph construction often relies on the data-structure used to
extract the basic units (Dong et al., 2018; Xu et al., 2016).
This representation allows using graph-partitioning methods
such as Graph-Cuts (Green and Grobler, 2015; Landrieu and
Simonovsky, 2018) or probabilistic methods like Markov Ran-
dom Fields (MRF; Niemeyer et al., 2014; Li et al., 2019)
or Conditional Random Fields (CRF; Niemeyer et al., 2014;
Landrieu et al., 2017; Vosselman et al., 2017). The graph topol-
ogy impacts the resulting segmentation is two-ways: a large
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number of edges can yield better results, but implies a heavier
computational burden.

In this paper, we propose a proximity-based strategy for hier-
archical partitioning of 3-D point clouds. Our method utilizes
a data-structure that not only captures the actual distribution of
the points in their native space and provides efficient neighbor
querying, but also allows immediate extraction of the basic el-
ements of our segmentation scheme. The proposed partitioning
supports a more reliable geometric attribution. This, in turn,
enables a computational efficient graph-based clustering of the
basic elements into meaningful segments.

The remainder of this paper is organized as follows: a de-
tails description of the proposed segmentation scheme is found
in Sec. 2. Sec. 3 analyzes the performance of the proposed
methodology on a set of point clouds each featuring unique
properties (e.g., scanning density, varying object complexity,
etc.). Finally, the conclusion of this work is presented in Sec. 4.

2. METHODOLOGY

Motivated by the redundancy that characterizes the data, our
segmentation strategy revolves around aggregates of points. To
an extent, the segmentation is applied to entities of spatial con-
text, rather than the individual points, while benefiting from the
reduction in volume and analyses related to point-wise evalua-
tions. To manage the data – points and aggregates – a structure
should, i) allow for an efficient access and data retrieval, ii)
facilitate an efficient geometric features computation, and iii)
establish partitioning both density and proximity. The literature
shows a variety of structures for the management of laser scan-
ning data, and it is clear that no ‘consensus’ structure exists for
laser scans. The discussion on data structures for point cloud
management can be roughly divided into two separate ones:
atomic region defining for segmentation purposes and efficient
neighbor querying. In the former, the voxels and octrees data-
structures are the dominant ones while the kd-tree is not even
part of the conversation, whereas for nearest neighbor querying
the case is inverted. An example of this is shown in Hackel et
al. (2016) where the voxels data-structure is used for extract-
ing geometric features while the nearest neighbor querying is
performed with a kd-tree one. However, volumetric partition-
ing (as in the case of octrees) is lacking for laser scanning de-
rived point clouds, considering that the data can be regarded as
3-D manifolds. Therefore, we first address data arrangement as
part of our segmentation process. We propose here a proximity-
based structure that allows splitting points into subsets that cor-
respond to the scanned elements. Moreover, we show that this
structure can be tuned to fit, query, store, and access point ag-
gregates that respond well to the characteristics of laser scans,
which enhances the geometric characterization of the scanned
entities.

An outline of our proposed segmentation algorithm is as fol-
lows: first, the point cloud is arranged in a ball-tree data-
structure. Next, equally-sized nodes, corresponding to the
smallest detectable objects within the scene, are extracted to be
utilized as basic elements in the segmentation scheme. Then,
a connectivity graph is established amongst the extracted fea-
tures, where a pairwise similarity determines the weights of
the edges. The final segmentation is achieved by a two-level
connectivity analysis.

Figure 1: Hierarchical partitioning of a point set (blue dots)
using the ball-tree model. Nodes are represented as colored
circles

2.1 Data arrangement

In our segmentation scheme, we adopt the ball-tree representa-
tion (Fig. 1), a binary structure that maintains spatial data hi-
erarchically. Each node in the tree defines a region that con-
sists of all the points bounded by a hyper-sphere (in fact plane)
whose interior leaves are chosen so that the distance between
them is maximal. Construction of the tree is performed by first
computing the centroid of the point-set, then setting the point
with the greatest distance from this centroid as the center of
the first child and setting the second child as the farthest point
from the first one. Points are then assigned to each child-node
by their proximity. This procedure is repeated for each node
until a termination criterion is reached. Sub-division at each
node can be understood as finding the orthogonal hyperplane
that bisects the line connecting the two centers. Unlike kd-tree
construction, balancing the number of points per node is not
prioritized as there is no constraint on the number of points per
child-node. While the unbalanced tree is larger (and construc-
tion time is longer) than its balanced counterpart, querying with
such trees might be significantly more efficient as they capture
the true distribution of the points in their native space (Kumar et
al., 2008). The hierarchical subdivision that this representation
provides, generates nodes with decreasing size as the node-level
increase. Notably, the number of points on a given node-level
varies, based on their distribution. When comparing the par-
titioning derived from the ball-tree data-structure to the tradi-
tional (hierarchical) voxelization (Fig. 2), the advantage of the
former over the latter is evident, as the ball-tree sub-division is
invariant to coordinate values, therefore, minimizing the aggre-
gation of points from multiple surfaces (e.g, building corner) to
the same node.

Algorithm 1 Ball-tree construction
1: procedure BALL-TREE CONSTRUCTION
2: Input: set of 3-D points and nthr – max number of points

in node
3: Result: organized point set in ball-tree data-structure
4: insert entire set to root node
5: while number of points in node ≥ nthr do
6: compute center of mass in node
7: set x as the farthest point in node from center
8: set y as the farthest point in node from x
9: move points closer to x to childnode A

10: move points closer to y to childnode B
11: goto 5 for childnode A
12: goto 5 for childnode B
13: return ball-tree data-structure

In our implementation, the tree construction is guided by its
i) to basic units for the segmentation, ii) establish connectiv-
ity (topology) among these elements; iii) conduct a point-level
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nearest-neighbor search; and iv) the quality of the segment.
These usages guide termination criterion, and we identify three
alternatives: the minimal area (radius); by conformity to a given
shape, and by the number of points per leaf. The first two are
synonymous, while the third has no spatial motivation, but in-
fluences the querying efficiency, e.g., the (k-) nearest neighbors.
The usefulness of the tree can be observed here, as area, shape,
and size (number of points per node) can be addressed simul-
taneously and interchangeably. The hierarchical nature of the
ball-tree suggests that each node has area-(radius) and shape-
related properties while its overall depth can be dictated (or
be governed by) the maximal number of points. The termina-
tion criterion is set as the number of permissible points within a
node (Alg. 1), and thereby guarantee an efficient neighborhood
querying. At the same time, we approach shape confidence re-
lated analyses by extracting surface elements as a function of
both the shape conformity property of a given node in the tree
and its area one.

2.2 Elemental units extraction

Once the point cloud is arranged in the ball-tree data structure,
we aim to exploit its hierarchical division strategy to define the
atomic units of our segmentation. As the tree construction is
distance driven, it is invariant to translation and rotation. Its
construction is also uninfluenced by the varying spatial reso-
lution of laser-scan related point-clouds. Because of the irreg-
ular point distribution and varying resolution, node-depth and
radii have no exact correspondence – nodes of similar depth
may have different radii, and conversely, a given radius may be
found at different depths. A question that arises is how these
leaves/nodes may be interpreted and analyzed. Since smaller
leaves do not represent an actual spatial entity, their interpreta-
tion is equivalent to a point-based analysis. A surface-element
of a given dimension requires to identify nodes whose radius is
of the sought-after size. These may appear at different depths
and the number of points they contain may vary. However, the
number of points per surface element has no effect as points are
collected for a given node, irrespective of its depth. Conversely,
if the size-related query has reached a leaf (namely, size ex-
ceeds the predefined radius) we may assume that these points
have been grouped merely as no proximal points exist and that
their aggregation is consequential. We may assume that these
points relate to noise or clutter and that it is unlikely that they
relate to an actual surface.

Angular resolution vs. size – since size is the deciding fac-
tor, the spatial resolution of the scan should also be discussed.
With laser scanners, spatial resolution corresponds to the an-
gular spacing that is set. Thus, distant objects will be sparsely
sampled compared to closer ones. In that respect, a tradeoff
may exist between the physical or spatial context in which a
surface-element may be defined and the scanning resolution.
Motivated by the understanding that segmentation aims to iden-
tify geometrically consistent physical entities; our implementa-
tion defines a surface element by a minimal radius (size) but
relaxes it to permit up to three-times its size, as long as the
minimal number of points criterion is met. Our evaluations
have shown that spatial resolution considerations did not lead to
misses in aggregating surface points into surface-elements and
that as long as the radius size was reasonable (e.g., 5-20 cm) its
relaxation extended to regions with sparse point distribution (at
the maximal range limits).

Figure 2: Point cloud partitioning into cellular units along a
building corner with voxels (a) compared to ball-tree (b).

2.3 Geometric cue computation

Next, we define means to similarity mensuration between the
extracted elemental units. To geometrically characterize them,
we use second-order tensor which is defined as the sum of outer
products with respect to a reference point (Eq. 1).

T =
1

n

n∑
i

(xi − x̄)⊗ (xi − x̄) (1)

where xi, x̄ are the 3-D points of the elemental unit and its ref-
erence point, respectively. Here, the centroid of the elemental
unit acts as its reference as well. The equal significance of the
points composing the element in its characterization motivates
that choice. We analyze the spatial distribution by using the
spectral decomposition of T into its eigenvalues and eigenvec-
tors (λi and vi, respectively). An axial distribution would yield
a triplet of the form λ1 > 0 & λ2, λ3 ≈ 0, whereas a coplanar
one would yield a set of the form, λ1, λ2 > 0 & λ3 ≈ 0. The
ratio

√
λ2/λ1 measures the evenness of the distribution and al-

lows to distinguish planar patches from linear entities.

Taking advantage of the fact that a closed-form solution exists
for the characteristic polynomial, the eigenvalues are computed
as follows (Kopp, 2008):

λ1 = q + 2p · cos θ

λ2 = q + 2p · cos (θ + 120◦)

λ3 = 3q − λ1 − λ2

(2)

with:
q = 1

3
tr (T)

p =
√

1
6
tr
(
(q · I−T)2

)
θ = 1

3
arccos

(
1
2
det (T− qI)

)
(3)

where I is the 3× 3 identity matrix.

The relevant eigenvectors are either v3 for surfaces or v1 for
linear entities, and are computed by the cross product of two
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rows of T–λi∈{1,3}I. A smooth but non-planar surface is char-
acterized by the dominant plane of projection, with v3 and

√
λ3

as its normal and an estimate of the deviation from planarity.
Similarly, linear feautres are represented by their axial direc-
tion v1 with

√
λ2 measuring the deviation from the defined line.

Using the described formulation provides a direct approach for
the computation of the eigenvalues/vectors which can be easily
implemented in a parallel fashion.

2.4 Graph-based clustering

We take a graph-based approach for aggregating the elemental
units. Nodes in this representation correspond to the units,
edges to connectivity, and their weights measure similarity.
We establish connectivity based on k-nearest neighbors (k-nn)
querying. This choice has several merits: it helps us bridging
gaps, e.g., due to occlusions, and it makes sure that no surface
element is disjoint. The k-nn does not enforce dual connec-
tivity, as elements are irregularly distributed, and their density
varies. Thus, one-way connectivity is established among the
surface elements.

With the Euclidean proximity already embedded in the neigh-
borhood definition, there is no need for further consideration
of it in establishing the graph. For planar features, we define
similarity in terms of coplanarity and smoothness. Coplanarity
is expressed as the distance between the centroid of a surface
element to the plane defined by its neighbor (Eq. 4):

εsij =
∥∥∥vi

3vi
3

T
(x̄j − x̄i)

∥∥∥ (4)

For smoothness, the norm of the difference between the two
surface normals is measured by projecting one normal vector
on the other (Eq. 5):

θsij =
∥∥∥(I− vi

3vi
3

T
)

vj
3

∥∥∥ (5)

For linear elements, the connectivity is measured in similar
fashion by measuring the collinearity and smoothness between
them, defined as the distance between the centroid of a linear
element to the line defined by its neighbor and as the norm
difference between two axial directions, respectively (Eq. 6):

ε`ij =
∥∥∥(I− vi

1vi
1
T
)
(x̄j − x̄i)

∥∥∥
θ`ij =

∥∥∥(I− vi
1vi

1
T
)

vj
1

∥∥∥ (6)

Both measures have equal contribution and impact. It is cus-
tomary to apply a threshold to both measures and to weigh them
in a logical manner where the edge widths are set in a binary
fashion (Vo et al., 2015; Dong et al., 2018). However, we argue
that these measures are distributed in χ2 fashion with only one
degree-of-freedom (DOF). The single DOF can be derived from
Eqs. (4) – (6), as our measures are defined in terms of distance
estimates along or across predetermined axes without respect
to orientation. From an algebraic perspective, we note that the
rank for all the projection matrices is one. Therefore, both εij
and θij are χ2 distributed with a single DOF. Our experiments
show that this behavior is invariant to shape type and/or com-
plexity (c.f. Sec. 3.1). This implies that the edge weights could
be evaluated in terms of confidence intervals of a χ2 distribu-
tion, leading to a probabilistic expression of the threshold, i.e.,
the connectivity amongst the element units is defined by the
probability that both εij and θij are zero.

Figure 3: Textured wall (a) and its respective computed normal
vectors (b)

Following the connectivity graph construction, an aggregation
algorithm is used to extract the core-segments. We use the
strongly connected components (SCC; Pearce, 2016) algorithm
to establish the clustering, as it requires neither training data nor
recursive usage. Moreover, compared to other graph-based al-
gorithms, the computational complexity here is linear and pro-
portional to the number of vertices and edges in the graph,
O(|V |+ |E|), and in our case O(k · |V |).

2.5 Structural completeness

The established clustering defines core-segments that describe
smooth surface patches and curves. Nonetheless, they are in-
complete in terms of coverage and/or structure of the actual ob-
jects which they represent due to strong deviations in surface
normal directions (Fig. 3). To handle these imperfections, we
explore the similarity of the core-segments. Doing so requires
both the geometric characterization of the core-segments and
neighbor definition amongst them. For the latter, we exploit the
previously obtained neighborhoods of the elemental units and
collapse them to extract the corresponding ones for the core-
segments. Notably, the newly established connectivity allows
to analyze the similarity between elemental-units that were dis-
joint purely due to proximity considerations.

Tensors are once again used to geometrically characterize the
core-segments. Instead of the naive computation of Eq. (1), we
exploit the already computed tensors of the elemental units, to
efficiently obtain those for the core-segments. Suppose a core-
segment is composed of m elemental units that have their ten-
sors Ti, which are referred to their own centroids and sizes (x̄i

and ni, respectively). The corresponding tensor of the core-
segment, T∪, is obtained by:

T∪ =
1

N

m∑
i

[ni ·Ti + ni (x̄i − x̄∪)⊗ (x̄i − x̄∪)] (7)

where x̄∪ is the centroid of the core-segment. A detailed proof
of the correctness of Eq. (7) is given in the appendix.

We exploit the duality in the geometric characterization of the
core-segments to analyze the similarity between neighboring
ones. The computation of a unified tensor provides a higher-
order representation and the means to cope with texture as the
normals are smoothed throughout the core-segments. More-
over, the duality of our characterization allows us recogniz-
ing linear objects such as poles, that were considered as planar
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Figure 4: Analysis of object shape: Extracted elemental units
compare to and their respective core-segment

patches when analyzed in their elemental unit form Fig. (4). On
the other hand, falling back to the elemental analysis allows the
detection of curved objects, as they describe a smooth change
in the surface normal. Similarity is measured using the afore-
mentioned methodology of Eqs. (4) – (6), and is followed by a
second SCC analysis to obtain the segmentation.

Cluttered segments are easily distinguished as ones composed
of a couple of surface elements at most. Their corresponding
points are re-assigned in a point-wise fashion to the closest seg-
ment that is found within a certain distance in terms of either
coplanarity or colinearity (depending on the shape of the seg-
ment).

To sum, our proposed segmentation is derived as follows: first,
the point cloud is arranged with a ball-tree data structure. Next,
the elemental units are extracted as equally-sized nodes corre-
sponding to the smallest detectable objects within the scene.
Then, the k-nearest neighbors of these units are determined
and the connectivity graph is established. Edge weights are set
based on similarity mensuration, followed by a SCC analysis
to extract the core-segments. To cope with structural fragmen-
tation, a second SCC is performed over the collapsed connec-
tivity graph, where the edge weights are re-evaluated based on
the characterization of the established core-segments. Finally,
cluttered segments are dissolved, to establish the final segmen-
tation.

3. ANALYSIS

To evaluate the performance of the proposed methodology, the
segmentation was applied on two datasets, which were acquired
by a Leica C10 terrestrial scanner with an angular resolution of
at least 0.025◦. While both cases contain occlusions of some
magnitude, the scanned scenes are distinguished by their unique
characteristics which provide a more thorough examination of
the segmentation scheme. The first dataset consists of a build-
ing with textured walls, as they are coated with stone-carved
tiles. Each tile is 20×30 cm2 in size and the variations in depth
exceed in some case 10 cm. Moreover, the dataset contains
low vegetation in proximity to the building faces. The second
dataset we tested against included a complex industrial struc-
ture. The building is constructed with multiple faces including
curved ones. Due to the building’s extents (∼70 m in length and
∼15 m in height), the variation in scanning resolution is greater
than the previous one.

3.1 Learning the interactions amongst elemental unit

As previously stated (Sec. 2.4), the pair-wise similarity of
elemental-units is distributed in a χ2 manner with a single

Figure 5: The pairwise similarity distribution between elemen-
tal units over various surface types: measured distances (a) and
differences of normals (b)

DOF. To verify this behavior, multiple surfaces were extracted
from the datasets with different characteristics in terms of ori-
entation, texture, and curveness. Each surface was studied sep-
arately by computing its corresponding surface elements and
measuring the similarity between neighboring ones in terms
of both coplanarity and smoothness. Since all the elements lie
on the same surface, the SCC analysis should produce a single
segment. This assumption is the basis of our examination and
is used to investigate the maximal confidence level to apply
while evaluating the connectivity amongst elemental units. Our
experiments included more than 40 objects consisting of ap-
proximately 60,000 unique elemental unit pairings. For each
pair, the distance (Eq. 4) and difference of normals (Eq. 5) were
measured, and the distributions of both values were studied
over the entire sample set. As expected, the distances behave
in χ2-like distribution with a mean and standard deviation of
0 cm and 1 cm, respectively and a single DOF. The differ-
ences of normals exhibited similar behavior with a mean and
standard deviation of 0.01 and 0.05, respectively. In terms of
similarity, our experiment shows (Fig. 5) that two elements are
to be aggregated with a 99% confidence level if the measured
distance and difference of normals are under 8 cm and 0.2
(corresponding to a maximum angular difference of ∼ 20◦),
respectively.

3.2 Evaluation

To evaluate the outcome of our algorithm, it is tested both
by means of visual inspection, but more importantly via a set
of quantitative measures with respect to manually obtained
ground-truth labelings. When applied on the first dataset
(Fig. 6), our proposed segmentation scheme managed to extract
the building faces as complete objects, despite the variations in
normal directions due to stone-carved tiling. With respect to
the low vegetation, the corresponding points were well sepa-
rated from those of the building facades. Once again, proving
the advantage of using a proximity-based partitioning for the
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Figure 6: Segmentation results of first dataset. Object colors are chosen randomly

Figure 7: Segmentation results of second dataset. Object colors are chosen randomly

initial over-segmentation. Notably, despite their planar charac-
terization, the extracted elemental-units of the low vegetation
do not share any similarity to their neighbors other than Eu-
clidean proximity, and therefore, remained detached from their
surroundings. Despite the overall accuracy of the obtained seg-
ments, those representing the staircase still remain fragmented.
Our investigation indicates that this is mainly due to the reso-
lution at which it was scanned. While the vertical parts have a
sufficient amount of points to detect them as individual objects,
the horizontal ones are sparsely represented within the point
cloud and, therefore, the geometric characterization in these
areas is faulty, leading to being initially the respective points
assigned to the features they are closest to.

When inspecting the obtained segmentation for the second
dataset (Fig. 6), the proposed model was able to extract all the
building faces as individual objects despite the curved tops of
the vertical walls. The results accurately identify the walls and
extract the supporting columns and bars, irrespective of their
distance from the scanner. Notice also that the curved wall was

identified as a single entity despite its bending. Here again,
low vegetation was separated from the segments independently
of their resolution and distance from the scanner or from the
surrounding objects.

Quantitative evaluation – several measures are utilized here,
including three standard metrics for assessing the object de-
tection and point cloud classification scheme, namely the pre-
cision, recall, and a test accuracy measures (termed also F1–
score). The quantitative evaluation results are summarized in
Table (1), along with an overall performance estimation, indi-
cating the high accuracy of the proposed scheme.

Dataset No. of points Precision Recall F1

1 258,000 92.6% 88.0% 90.3%

2 364,000 92.4% 91.7% 92.1%

Overall – 92.5% 89.8% 91.2%

Table 1: Segmentation quantitative evaluation results

Efficiency evaluation – for a complete assessment of the pro-
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posed model, its efficiency is studied in terms of run-time
performance. The execution times of each step in our algorithm
was studied against both datasets. Testing was performed on a
i5-3230M CPU with 4 GB RAM executing a python implemen-
tation. The results are summarized in Table (2) and show that
majority of run-time is invested in arranging the data within a
ball-tree data structure and the extraction of elemental units.
These stages involve reducing the data volume and therefore
they are expected to be slower compared to the rest of the
methodology. Run-time for both stages would significantly im-
proved when implemented in a compiler based programming
language. Note the efficiency of the graph-based clustering,
where both its construction and clustering is almost indiffer-
ent to data size. Overall, the segmentation for both datasets
required less than a minute, which shows the potential of our
method.

Dataset 1 2

Ball-tree Construction 23% 36%

Elemental Units Extraction 47% 42%

Connectivy Graph Establishment 7% 5%

Graph-Clustering via SCC 1% 2%

Structural Completeness Analysis 22% 15%

Total Runtime [sec] 18.7 50.6

Table 2: Segmentation performance evaluation results

4. CONCLUSIONS

In this paper, we proposed a segmentation approach that is at-
tentive to the characteristics of laser point clouds; Recognizing
that the high point density has no direct bearing on the inter-
pretation of geospatial objects, an approach that is applied to
elemental units of ‘physical’ value is proposed. The choice of
a range-based tree structure in the form of a ball-tree allows
not only to define partitioning according to size and distances,
in an invariant form to position and orientation (as opposed to
using of actual coordinates) but also to maintain properties of
size so that proximity-based queries are performed efficiently.
The integration of range and size allows to generate a structure
that has a natural ability to handle variations in resolution and
occluded areas in the scans while maintaining meaningful units
for subsequent computations. By not restricting itself to a des-
ignated surface type, our segmentation approach allows us to
group together smooth non-planar surfaces and linear entities,
not necessarily straight ones. Its adaptation to varying resolu-
tions allows applying it under different scenarios. Future work
will include extending our segmentation scheme to better cope
with elongated planar objects such as stairs and sidewalk pave-
ments and testing it against other state-of-the-art methods and
benchmark datasets.
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APPENDIX – TENSOR ARITHMETICS

Given m point subsets, from Eq. (1) the tensor of each subset is
defined as:

Ti =
1

ni

ni∑
j

(xj − x̄i)⊗ (xj − x̄i) (8)

where xj is the j-th point of the subset of size ni, and x̄i =
1
ni

∑ni
j xj is the the centroid which acts as the reference point

for the tensor computation. Similarly, the tensor for the unified
set is defined by:

T∪ =
1

N

N∑
j

(xj − x̄∪)⊗ (xj − x̄∪) (9)

with N = n1 + n2 + ... + nm. However, Eq. (9) can also be
expressed in terms of the original subsets:

T∪ =
1

N

m∑
i

ni∑
j

(xj − x̄∪)⊗ (xj − x̄∪) (10)

We note that the nested summation is essentially, the computa-
tion of the tensor for the i-th subset, referenced to the centroid
of the complete set of points. For simplicity, we denote that
expression as T∗i , which yields:

T∪ =
1

N

m∑
i

T∗i (11)

Our aim is to obtain a relation between T∗i to the originally
computed tensor, Ti. To do so, we augment Eq. (11) with the
reference point of the original subset:

T∗i =

ni∑
j

(xj − x̄i + x̄i − x̄∪)⊗ (xj − x̄i + x̄i − x̄∪) (12)

The RHS of Eq. (12) can be re-written as:

T∗i =
∑ni

j (xj − x̄i)⊗ (xj − x̄i)+

+
[∑ni

j (xj − x̄i)
]
⊗ (x̄i − x̄∪)+

+ (x̄i − x̄∪)⊗
[∑ni

j (xj − x̄i)
]
+

+
∑ni

j (x̄i − x̄∪)⊗ (x̄i − x̄∪)

(13)

The first term in Eq. (13) is the original tensor multiplied by the
size of the subset, while the second and third ones equal zero
from the average definition. Substituting back into Eq. (11), we
get:

T∪ =
1

N

m∑
i

[ni ·Ti + ni (x̄i − x̄∪)⊗ (x̄i − x̄∪)] (14)

Thus, the tensor computation for a unified pointset is expressed
in terms of those of the individual subsets and translations to the
centroid of the complete set. For the unification of a pair of ten-
sors, Eq. (14) can be further simplified, as the overall centroid
can be expressed as:

x̄∪ = x̄1 +
n1

n1+n2
(x̄2 − x̄1)

x̄∪ = x̄2 − n2
n1+n2

(x̄2 − x̄1)
(15)

Resulting in:

T∪ = n1
n1+n2

T1 +
n2

n1+n2
T2+

+
n2
1·n2+n1·n2

2

(n1+n2)
3 (x̄2 − x̄1)⊗ (x̄2 − x̄1)

(16)

which depends solely on the original subsets and their corre-
sponding tensors, centroids and sizes.
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