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ABSTRACT: 
 
Indoor object detection and classification from scanned point clouds has recently attracted considerable research interest. However, 
detecting and classifying objects with arbitrary upward orientation has emerged as a substantial challenge. This paper presents an 
anchor-based graph method via geometric and topological similarity among indoor objects. With this method, the misclassification 
that usually occurs in the objects placed non-vertical with the floor is overcome by extracting anchor in each graph via nodes’ geometric 
attribute and by matching graph via topological relationship between nodes and anchor, rather than the features along the upward 
orientation. A region growing-based method along the anchor’s upward orientation is proposed for classifying the unlabeled over-
segmentation parts. Such an anchor-based method ensures both the accuracy of object classification and the geometric integrity of 
object. A series of experimental tests using three real-world 3D scans of indoor environments show the effectiveness and feasibility of 
the proposed method. 
 
 

1. INTRODUCTION 

3D indoor object detection and classification have received 
increasing attention in recent years (Landrieu, 2018; Mattausch 
et al., 2014). It is a fundamental research area for certain 
applications, such as autonomous vehicles (Mattausch et al. 2014; 
Naseer et al. 2018), indoor reconstruction (Wang et al., 2016), 
robotics (Breuer et al., 2011). Moreover, recent advances in 
scanning technology greatly accelerate data acquisition and 
improve the accuracy of the scanned point cloud (Wang et al., 
2016; Mattausch et al., 2014). All these combined factors have 
contributed to the flourishment of research towards 3D indoor 
object recognition and scene understanding. 
 
Indoor object classification from the scanned point clouds is still 
remarkably challenging (Naseer et al. 2018), and this procedure 
is complicated by restrictions in the data and the complexity of 
indoor environments, which may exhibit high levels of clutter 
and occlusion. Despite the advances in recent research efforts, a 
satisfactory solution for indoor object classification is still 
undeveloped, especially in the cluttered indoor area (Mattausch 
et al. 2014; Wang et al. 2016). Specialized object classification 
methods try to reduce the complexity of indoor scene by 
assuming that all indoor objects should be placed vertical with 
the floor (Mattausch et al. 2014; Nan et al. 2012), or more 
restrictively, all objects should have the same upward orientation 
(Armeni et al. 2016). Although these assumptions may hold true 
for some indoor objects, many elements in real world deviate 
from that. More recently, the focus has shifted to address these 
problems by segmented patch-based method (Czerniawski et al. 
2018; Mattausch et al. 2014), which segment raw point cloud into 
a patch set and cluster these patches through their geometric 
attributes. These methods consider the object classification 
problem as a patch segmenting and clustering issue, which shows 
effectiveness in many cases but conducts its difficulty in 
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classifying objects without capturing the relationship among 
segmentations. More recent works (Dai 2017; Qi et al. 2016; Qi 
et al. 2017; Shi et al. 2019) exploit object repetitions to segment 
the indoor scene and classify the objects by learning-based 
method. The limitation of these approaches is the need to 
carefully acquire and learn the 3D geometry of each type of 
object one wish to detect, which entails large amounts of time. 
Thus, detecting and classifying the objects with arbitrary poses 
without enough train sets in a cluttered environment is still a 
challenge for these methods. 
 
As observation by (Spina, 2015; Laga et al., 2013; Fu et al., 2008), 
there is a strong correlation on geometric shape and upward 
orientation between functional parts (referring to anchors) in 
man-made objects. In the light of these observations, this study 
proposes an anchor-based graph method for detecting and 
classifying indoor object, which describe one object as a graph 
formed by connecting anchors with other parts. The raw point 
cloud is considered as the input and the labeled points 
representing object types are the output results. 
 
The remainder of this paper is organized as follows. Important 
related works are introduced in Section 2. The proposed method 
is described in Section 3. Experiments on the three datasets are 
presented in Section 4, followed by a discussion in Section 5. 
Finally, the conclusions are drawn in Section 6. 
 

2. RELATED WORKS 

According to capacity of dealing with orientation of indoor 
objects, the current methods for object detection and 
classification can be classified into two groups: upward 
orientation-based and graph-based. 
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2.1 Upward Orientation-based Methods 

The methods in this group assume all indoor objects placed 
vertical with the ground and extract the geometric features along 
upright orientation in each cell to classify indoor objects. The cell 
can be a patch, a voxel or a point. 
 
By defining cell as a patch, those works classify the indoor 
objects by patch clustering methods based on Manhattan-world 
Hypothesis, where the point cloud is first segmented into patches. 
Mattausch et al. (2014) provide a patch similarity measurement 
and exploit a DBScan clustering in the diffusion embedding, 
which can automatic segment and classify the whole scene 
consistently. This method uses diffusion embedding to reduce 
geometric deviation among similar patches, which can detect 
both object furniture and the indoor structures, such as walls, 
doors and windows, especially in working environments. Valero 
et al. (2016) recognize the indoor furniture by comparing their 
height and shape templates with pre-constructed models, where 
shape templates differ with the type of objects, for instance, a 
tabletop template is a large horizontal rectangle, the chair leg 
template is disposed at the vertices of regular polygons or a star-
like patch after projecting these legs into floor. This approach is 
capable of both recognizing typical indoor objects and generating 
semantic 3D models of furnished interiors for TLS datasets 
without occlusions. Czerniawski et al. (2018) employ a six-
dimensional DBScan-based method to obtain better 
segmentations by adding points’ normals into Euclidean space as 
the last three dimension, which successfully segment indoor 
structures, while show its difficulty in classifying objects without 
capturing the relationship among segmented patches. 
 
By geometric features extracted from partitioned cells, some 
works (Tchapmi et al., 2017; Wang et al., 2017) expand the well-
studied structure of 2D convolutional neural network (CNN), 
which has been widely used for image, into 3D CNN to segment 
and classify indoor objects, while the performance of these voxel-
based methods is limited by the resolution of the voxels (Liang 
et al., 2019). Some deep learning-based researches (Li et al., 2018; 
Qi et al., 2017) take raw point clouds as input without extra 
preprocessing and directly exploit the geometric similarity 
among points to classify indoor objects. Although those works 
develop a unified architecture for applications ranging from 
object classification, part segmentation to scene semantic parsing, 
they rely heavily on the local geometric information extracted 
from voxels (or points) but fail to refer local relationship among 
them, which limits robustness. 
 
The above methods show feasibility in detecting objects by 
geometric features via various cells and show their achievements 
in dealing with indoor objects with upward direction with respect 
to the ground. 
 
2.2 Graph-based Methods 

To deal with object arbitrarily oriented, graph-based methods are 
presented to address point cloud semantic segmentation via 
adjacent relationship provided by various graphs (Armeni et al., 
2016; Armeni et al., 2017; Liang et al., 2019; Shi et al., 2015; 
Simonovsky and Komodakis, 2017; Spina, 2015; Wang et al., 
2016; Wang et al., 2018). 
 
As sliding windows show effective in reducing workload in 
computation for deep learning-based methods, many works 
(Armeni et al., 2016; Simonovsky and Komodakis, 2017; Armeni 
et al., 2017; Wang et al., 2018; Liang et al., 2019) use adjacent 
graph to enhance relationship among cells for classifying the 

indoor objects. Armeni et al. (2016) employ adjacent graph 
among voxels in sliding window for redefining the detected 
objects, which are extracted by geometric features similarity after 
partitioning indoor scenes into k-by-k-k voxel grid. Although this 
work can extract both indoor structures and indoor objects, its 
object classification still limits by the resolution of the voxels. 
Graph CNN-based methods (Liang et al., 2019; Simonovsky and 
Komodakis, 2017; Wang et al., 2018) address point cloud 
semantic segmentation directly on raw point clouds via extracted 
local features from point’s geometric attributes and contextual 
information from the KNN graph for the center point in each 
fixed sliding window. As the contextual information enhances 
the consistency of the classified objects, use of these approaches 
still depend on the priori-defined upright orientation. 
 
The cited researches showed that the objects detection and 
classification has been far from satisfactory, and the prominent 
deficiency of these method lies in finding a method available for 
handling non-upward direction in a cluttered indoor environment. 
 

3. METHOD 

3.1 Overview 

In this section, we introduce our object detection and 
classification method. The proposed method uses raw point 
clouds as inputs and the labeled points representing object types 
as outputs, which consists of three main steps:  
 
 Pre-processing: The input point cloud is first segmented 

into a collection of nearly-planar patches and filtered the 
indoor structure patches via their fitting rectangle areas. 
Then the anchor-based graphs in the scene are constructed 
by anchor extraction and patches’ adjacent relationship.  

 Graph clustering: The graphs are roughly clustered by their 
anchors’ geometric similarity, followed by graph matching 
algorithm via super-graph to find the corresponding nodes 
among graphs within maximum likelihood. Then each 
clustered group is labeled as one type by matching graphs 
in this group with prepared template-graphs in ��� =
{���, ���, … ���}. 

 Object refinement: Each detected object is refined by 
extending its anchor’ fitting rectangle along normal to add 
the unlabeled patches into it. 

 
3.2 Pre-processing 

3.2.1 Patch Segmentation: The indoor scene is first partitioned 
into a set of nearly-planar patches by the region-growing method 
(Rabbani et al., 2012; Truong-Hong and Laefer, 2015). An initial 
seeding point � is selected in the area with the smallest curvature 
and has not been assigned to a patch. The point � will add into 
the patch if the following conditions are satisfied: 
 

��� ∙ ��� > cos (���) (1) 

 

(� − �) ∙ �� > ���(�,�) (2) 

 
The point � will add into the list of potential seed points and 
continue to grow from the points in the list of potential seed 
points if the following conditions are satisfied: 
 

�� < ��� (3) 
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The process is iteratively applied until all the points are 
segmented and assigned to patches. �� is the normal of � and �� 

is the normal of �. ��� is a smoothness threshold, which should 
be specified in terms of the angle between the normal of � and 
�. ���(�,�) is a distance threshold, which should be specified in 

terms of the Euclidean distance between �  and � . ��  is the 

curvature of point p and ��� is a curvature threshold, which could 
be specified by the percentile of the sorted curvatures. 
 
In each patch, the fitting rectangle is constructed by taking the 
bounding box for the patch and projecting it onto the plane 
spanned by its first two dominant axes to describe its geometric 
shape. The indoor structures that occupy a large spatial area 
(Ochmann et al., 2019; Wang et al., 2016; Zolanvari et al., 2018), 
such as the main walls, grounds and ceilings, will be filtered by 
their areas of fitting rectangles. As a result, the indoor scene is 
partitioned into a set of patches with their fitting rectangles. 
 
3.2.2 Anchor-based Adjacency Graph Construction: A 
straightforward strategy to construct the adjacency graph through 
segmented patches is connecting every adjacent patch 
successively. Apparently, there must be a large number of 
combinations and the size of the topological graphs would be 
huge, which may bring difficulties for graph matching. By 
observations (Spina, 2015; Laga et al., 2013; Fu et al., 2008), one 
object can be represented by an anchor-based graph with its 
anchors connecting other parts in the object. As the indoor scene 
contains some sub-scenes as the combinations of various objects 
that are spatially close to each other, shown in Figure 1b, rather 
than independent objects shown in Figure 1a, we propose the sub-
anchor to handle these cases. 
 
Given a patch set, the adjacency graph �(�, �) is constructed by 
connecting every adjacent patch, which can be considered as one 
object or one sub-scene with some objects, where � and � denote 
the node set and edge set in the graph which contain node �� ∈ � 
and edge �� ∈ �. In each graph, a node with its fitting rectangle 
area higher than the threshold (0.3 in our experiments) and 
neighbor size more than 1 is referred to sub-anchor ���. The ��� 
with the maximum number of neighbors in each graph is assigned 
as ��. If two adjacent nodes are both assigned as ���, the node 
with larger angle between its normal and ��’s normal will be 
removed. Finally, the anchor-based graphs are constructed by 
connecting ��s and ���s with all their adjacent nodes. 
 
The adjacency graph of one chair is shown in Figure 1a and the 
adjacency graph of a sub-scene with one table and two chairs is 
shown in Figure 1b. 
 

  
(a) (b) 

Figure 1. The anchor-based graphs: (a) the graph of one chair, 
where red node represents the anchor �� and yellow line 

between red node and blue node represents edge; (b) the graph 
of a sub-scene with one table and two chairs, where yellow node 

represents the sub-anchor ���. 
 

3.2.3 Graph Descriptors: The attributes of �� compose anchor 
flag, center point and the features of corresponding patch. Anchor 
flag represents its node type, 1 for ��, 2 for ��� and 0 for other 
type. As patch representation is to reduce the complexity of the 
input data, the segmented patches may suffer over-segmentation 

problem. Thus, for each node, we compute the geometric features 
mainly from its fitting rectangle, as shown in Figure 2. The node 
features used in present work are shown in Table 1.  

F Definition 

�� Area: w*l 

�� Ratio of width to length: w/l 

�� 
Ratio of areas: The ratio between area of the patch 

and �� 

�� 
The distance from the centroid of the patch to the 

fitting rectangle. 

�� Non-planarity: ��/(�� + � + �) 

Table 1. The node features. 
 

l

w  
Figure 2. The schematic diagram of the parameters in Table 1. 
The red box of the patch represents the fitting rectangle, whose 

length is l and width is w.  
 

The attributes of ��  include edge flag and the features for the 
relationship between ��  and its ��  (or ���). Edge flag give its 
edge’s type, 1 for the edge between �� and ��� and 0 for other 
edge type. The edge features used in present work are shown in 
Table 2. The distance is the Euclidean distance between two 
center points in ��. The edge orientation is the vector between 
two center points of nodes in ��. 

C Definition 

�� Distance 

�� Angle between orientation and ��’s normal 

�� Angle between orientation and ��’s normal 

�� Angle between ��’s and ��’s normal 

Table 2. The edge features. 
 
3.3 Graph Clustering 

The indoor scene has become a set of anchor-based graphs �� =
{��, ��, … ��} in the last section. Thus, the object classification 
problem can be considered as assigning each node from graph in 
��  with one type among type-set �� = {��, ��, … ��} , which 
contains three parts: rough clustering via anchor similarity, graph 
clustering via super-graph and clusters labeling. 
 
3.3.1. Rough Clustering: The graphs in �� are first clustered 
roughly by anchor similarity. This procedure starts by selecting 
two graphs randomly. Let �(�, �) and ��(��, ��) be the selected 
graphs with corresponding anchor �� and ��

�, where the selected 
graph can be one object or one sub-scene. Inspired by Mattausch 
et al. (2014), an anchor geometric similarity measurement is 
performed on �� and ��

� , which can be expressed as: 
 

��(��, ��
�) =  ��� ∑ (�������,��

��)�
���  (4) 
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where ��(��, ��

�) can be presented as: 
 

��(��, ��
�) =  �min �

��
��

��
��

� ,
��

��
�

��
����       �� � = 1,2,3,4,5

         

 (5) 

 
Once the ��(��, ��

�) is more than the threshold ��, �(�, �) and 
��(��, ��) have the similar anchor and these two graph will be 
clustered into a group. 
 
This processing is iteratively performed until all graphs in �� 
have been grouped and the graphs with similar anchor are 
clustered as  �� = {���, ���, … ���}. 
 
3.3.2. Graph Clustering: For ��� ∈ ��, an initial seed graph 
��(��, ��)  is selected with the maximum number of anchor’s 
neighbors and highest �� of its anchor. The first indicator ensures 
the edge’s integrity of the selected graph while the second 
indicator exploits the anchor’s geometric completeness via ��. 
Then the proposed graph matching algorithm will be performed 
on the super-graph �̅ that constructed by �� and other graph � in 
���, this graph matching algorithm will be illustrated in Section 
3.3.3. The returned sub-graph ��̅  after matching represents 
objects with the same type and will be partitioned into two pieces 
��′ and �′ along its axis of symmetry. After all graphs in ��� 
have been tested with ��, all ��s are clustered as one group ��, 
meanwhile, all ��′s are remerged into one graph and added this 
remerged graph into current group ��. A new seed graph will be 
selected from the remaining graphs and continued to match the 
remaining graphs in ���. 
 
The processing above repeats until all graph set ��� in �� have 
been clustered and indoor scene have been classified into a 
cluster set �� = {��, ��, … ��}, each ��  represents one type of 
objects.  
 
3.3.3. Graph Matching: Given two graphs �(�, �)  and 
��(��, ��), the graph matching can be seen as finding the optimal 
correspondence nodes among them, which can be represented as 
a binary indicator matrix � ∈ {0,1}|�|×|��| . If �� ∈ �  matches 

��
� ∈ �� , the corresponding entry of � is 1, e.g., �(�, �) = 1; 0 

otherwise. After transferring the matrix into a vector, � ∈
{0,1}|�||��|×� , the graph matching between �  and ��  can be 

formulated to find the optimal correspondences �∗  that 
maximizes the matching similarity between � and ��, which can 
be stated as: 
 

�∗ = �������(�(�|�, ��)), � ∈ {0,1}|�||��|×� (6) 

 
where �(�|�, ��) is a function measuring the matching similarity 
between �  and ��  under corresponding node-pairs indicator � , 
which conducts that the maximum of �(��|�, ��) can be found 
by traversing all combination of node-pairs between � and ��. 
 
As graph matching between �� and � is formulated as searching 
all possible corresponding node-pairs from ��  and �  for 
maximizing �(��|�, ��) , we present a super-graph �̅(��, ��)  to 
represent all corresponding node-pairs between ��  and � , as 
shown in the black box in Figure 3. A super graph �̅(��, ��) is 
constructed by connecting ��

�  with ��  via an edge and 
connecting other node �� ∈ � with ��

� ∈ �� by a virtual edge to 

represent the corresponding node-pairs between �  and �� . 

�̅(��, ��)  contains all nodes and edges in �  and �� , the 
reconstructed �̅(��, ��) is shown in Figure 3. 
 

 
Figure 3. The schematic diagram of the super-graph. 

 
After reconstructing �̅ ,  �(��|�, ��)  can be rewritten as 
�(��

� , ��
� , … , ��

� |�̅), where ��
�  conducts the corresponding node-

pair and k is the size of node-pairs, which is reduced from |�| to 
�� successively, as descripted in Eq.7. Thus, finding the optimal 
�∗ can be stated as finding the sub-graph �� from �̅ maximizing 
�(��

� , ��
� , … , ��

� |�̅) . The ��  searching details are shown in 
Algorithm 1. 
 

�(��
� , ��

� , … , ��
� |�̅) =

∑ �(��
� |�̅)�

���

�
∗

�

|�|
 

(7) 

=
∑ (����(��

� ) + ����(��
� ) + ����(��

� ))�
���

|�|
 

 
where ��(��

� ) captures geometric similarity between node-pair 
in ��

� , ��(��
� ) measures connective similarity between edge-pair 

in ��
�  and ��(��

� ) is the splitting/merging penalty for nodes in 

��
� ; ��

�  is a virtual edge between ��� ∈ � and ���
� ∈ ��; ��, ��  

and ��  are scalar weights that satisfy �� + �� + �� = 1 . 

��(��
� ), ��(��

� ) and ��(��
� ) are defined by Eq. 8, Eq. 9 and Eq. 

11, respectively. 
 

��(��
� ) =  ������, ���

� � (8) 

 

��(��
� ) =  ��� ∑ (��������,���

� �)�
���  (9) 

 

where ������, ���
� � can be presented as: 

 

������, ���
� � =  

⎩
⎪
⎨

⎪
⎧

min �
��

���

��

���
� ,

��

���
�

��
���

�      �� � = 1      

�cos (��
��� − ��

���
�

)�    �� � = 2,3,4

 (10) 

 
A ��� has a high likelihood to be an anchor for its neighbor. Thus, 
directly assigning ��� as one part of certain object may lead to 
misclassification for its adjacent objects. Inspired by (Alhashim 
et al. 2015), the anchor likelihood for ��� ,��

� , is proposed to 
compute the probability of merging ���  into current graph, 
which can be calculated as the ratio between the volume of the 
external cuboid after and before splitting ���  and ��� ’s 
neighbors from the graph. The smaller ��

� is, the less the penalty 
for assigning ���  to current graph becomes.  ��

�  of node with 
anchor flag equaling 0 is 0. ��(��

� ) is stated as: 

 

��(��
� ) = �

1 − ��
���, �� ��

��� ≥ ��

���
�

1 − ��

���
�

, �� ��
��� < ��

���
�   (11) 
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Each of the three similarity measurement might individually 
favor different influence on the final clustered results. In this 
paper, we place more value on the �� rather than �� which show 
sensitive to the clutter and missing parts. The weights used in our 
experiments are  �� = 0.3, �� = 0.5, �� = 0.2. 

 

Algorithm 1. Node searching algorithm 
1 Input: �̅ 
2 Output: sub-graph �� 
3 Set ��, �� 
4 initial �������� = 0, ��� = |�| 
5 repeat 
6 form �� by selecting ��� virtual edges in �̅ 
7 compute �(��

� , ��
� , … , ��

� |�̅) for �� by Eq. 7 
8 if � > ��& � > �������� 
9 �������� = � 
10 until all combinations have been tested 

if ��� > ��   11 
12 ��� = ��� − 1 

go to line 5 13 
14 return �� with � == �������� 

 
3.3.4 Clustering Labelling: As the scene have been partitioned 
and grouped into a cluster set �� = {��, ��, … ��}, in this section, 
each cluster �� ∈ ��  will be labeled as one type �� ∈ ��  by 
matching graphs in ��  with template-graphs in ��� =
{���, ���, … ���} , which is constructed by the objects in 
Alhashim et al. (2015).  
 
Each graph �  in ��  is compute the similarity with template-
graphs in ���  via graph matching algorithm in Section 3.3.3 
with setting |�| as ��. � is labeled as �� when � and ��� obtain 
the maximum similarity score. ��  is labeled as ��  if most of 

graphs in ��  are labeled as �� , and all graphs in ��  will be 

relabeled as ��.  

 
As tables are usually surrounded by chairs that cause the structure 
to be occluded under tabletops, the unlabeled patch with a 
relatively large area surrounded by more than two chairs is 
labelled a table. 
 
3.4 Object Refinement 

Although most patches have been classified, some extracted 
patches are still unlabeled for three reasons. First reason is that 
this patch may contain missing parts, especially for the legs of 
the chairs or desks, as shown in Figure 4a. Second reason is that 
the patch may suffer over-segmentation, as shown in red box in 
Figure 4b. The last reason is that some tiny parts of the objects, 
such as the chair handrails, are removed during the graph 
matching processing, as shown in green box in Figure 4b, since 
the handrails in other chairs may not be scanned, and in turn, no 
matching on handrails among the chairs has been found.  
 
Under the definition of the anchor, the legs and tiny parts of the 
objects tend to be covered by the oriented bounding box of 
anchor along its normal, as shown in Figure 4. Thus, we extend 
each anchor’s fitting rectangle with a distance of ��  along its 
normal. Once an extending box attach with an unlabeled patch, 
this patch will be merged into this object.  

Anchor

  
(a) (b) 

Figure 4. The unclassified cases: (a) missing parts in the chair 
leg (blue box), (b) the anchor over-segmentation (red box) and 

chair’s tiny parts (green box). 
 

4. EXPERIMENTS 

The proposed method was tested on three real datasets of indoor 
scenes, as shown in Figure 5a.The statistics for these datasets 
were shown in Table 3. The algorithm was implemented in C++ 
by Cloud Compare and MATLAB. All the experiments were 
performed on a 3.60 Hz Intel Core i7-4790 processor with 12 GB 
of RAM.  
 
Dataset-1 and -2 were taken from the S3DIS dataset, captured by 
Matterport scanner (Armeni et al., 2016). Dataset-3 was obtained 
by hand-held active-light scanner (MantisVision Inc.) (Nan et al., 
2012). Clutter and occlusion were present in these datasets. 
Dataset-1 and -2 were obtained by RGBD, the density of point 
clouds was moderate. Dataset-1 and -2 provided highly detailed 
objects, while a large amount of data were still missing due to 
occlusions and restricted accessibility. Dataset-1 was a 
conference room with various chairs and conference table, while 
Dataset-2 was a large-scaled cluttered environment containing 
some office rooms (part-1 and -2) and storage (part-3). Dataset-1 
and -2 were tested for common office environment with missing 
data and Dataset-3 was tested for cluttered and noise environment, 
which contains objects with various poses. 
 
Quantitative evaluations on the classified results were conducted 
by using three metrics: completeness, correctness and quality.  
 

������������ =  
��

�� + ��
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where TP represents true positives, which refer to the number of 
objects detected both in classified result and ground truth; FP 
represents false positives, which refer to the number of classified 
objects that couldn’t be found in the ground truth; and FN 
represents false negatives, which refer to the number of 
unclassified ground-truth objects.  
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Figure 5. Qualitative results of indoor object classification. (a) 
Original data (certain datasets have the ceilings removed for 

clarity). (b) Side view of data in one room. (c) The patch 
segmentation result of one room. (d) The classification results in 

one room (One colour represents one type of objects). 
 

5. DISCUSSION 

In Figure 5, we showed the experimental results of proposed 
method. The original point clouds were shown in first column. 
The points in each room of input data were conducted in the 
second column. The patch segmentations were shown in third 
column and the classified results in one room were shown in forth 
column (One colour represents one type of objects). 
 
For the quantitative analysis on the classified results, the results 
of three metrics on different type of objects were shown in Table 
4. As shown in Table 4, all of chairs in each dataset had a good 
correctness, which indicated that all classified chairs could be 
detected in both the raw data and ground truth. The completeness 
and quality metrics of all datasets on the chairs were higher than 
0.8, except for Dataset-2 (part-3), which showed our method was 
effective with classifying indoor chairs. However, the 
unclassified chairs occurred, as shown in the red box in Figure 6, 
in while almost all parts except the back of this chair were 
missing due to occlusion. 
 
As Table 4 shows, most of tables in the indoor scene could be 
detected and classified except for Dataset-2 (part-1) since the L-
shaped table in Dataset-2 (part-1) was over-segmented and 
labeled as two long tables for their similar geometric shape. The 
bookcases were relatively easy-classified objects for its relatively 
large volume and well-bedded topological graph, which deviated 
from other objects. The dataset-3 contained various chairs with 
different poses, and our method was performed well in this 
dataset.  
 
These results showed that the proposed method was robust for 
detecting and classifying indoor objects, even with various 
upward orientation. However, the test on dataset-2 (part-1) 

indicated that the patch segmentation method encountered 
difficulties with L-shape table. 

 
Figure 6. The failure cases in Dataset-2 (part-3). 

 
6. CONCLUSIONS 

In this work, an anchor-based graph matching method is 
proposed for detecting and classifying the indoor objects with 
freely upward orientation. The graphs are matched by performing 
graph rough clustering via anchor similarity, super-graph 
segmentation via graph similarity and object geometric 
refinement successively.  
 
The proposed method was tested with three real indoor scenes. 
The experiments showed that the proposed method could achieve 
indoor objects classification without training dataset. The 
quantitative result of the experiments showed that the object 
classification precision with almost all completeness, correctness 
and quality above 0.8. These findings show that the presented 
method is appropriate for arbitrary upward oriented object 
classification. The experiments show the effectiveness and 
availability of the proposed method. 
 
However, the presented method currently can only segment 
planar surfaces and shows its weakness with L-shape table 
classification. Those topic will be our future study. 
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Test Sites Rooms Clutter Points Area(m2) Relative Accuracy From 

Dataset-1 1 Moderate 1,136,617 22.8 2-3 cm Matterport3D 

Dataset-2 6 Moderate 6,160,304 161.8 2-3 cm Matterport3D 

Dataset-3 1 Moderate 167,768 - 1 cm MantisVision Inc. 

Table 3. Description of the datasets. 
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Test Sites 
Chair Table Bookcase 

Com. Cor. Qua. Com. Cor. Qua. Com. Cor. Qua. 

Dataset-1 0.83 1 0.83 1 1 1 - - - 

Dataset-2(part-1) 0.8 1 0.8 0 0 0 1 1 1 

Dataset-2(part-2) 0.83 1 0.83 1 1 1 0.5 1 0.5 

Dataset-2(part-3) 0.75 1 0.75 1 1 1 1 1 1 

Dataset-2(all) 0.8 1 0.8 0.8 0.8 0.67 0.8 1 0.8 

Dataset-3 1 1 1 - - - - - - 

Table 4. Quantitative results of the datasets. 
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