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ABSTRACT: 

In residential areas, maintenance of power and communication lines is an important issue. In recent years, the frequency and power of 
typhoons and storms have significantly increased. If utility poles incline due to strong winds, slack cables may contact with large 
vehicles. For automatically detecting loose road-crossing cables in wide areas, the MMS is very promising. However, when road-
crossing cables are measured using the MMS, large portions of points on cables may be lost, because the directions of laser beams are 
nearly parallel to the directions of road-crossing cables, and therefore, the laser beams cross road-crossing cables only a small number 
of times. In this paper, we propose a new method for reconstructing cables crossing roads. In our method, road-crossing cables are 
reconstructed using both point clouds and camera images. While point clouds of road-crossing cables may be partly missing, their 
camera images can be captured with little occlusion. Missing portions are recovered using lines extracted from camera images. First, 
points of each cable are extracted from a point cloud, and the 3D vertical plane on which the cable exists are calculated. From camera 
images, 2D line segments are extracted as candidates of cable lines. 2D line segments are projected onto the 3D vertical plane using 
the pinhole camera model. Finally, 3D cable lines are reconstructed on the 3D vertical plane from the merged points. In our experiments, 
road-crossing cables could be sufficiently extracted using our method. 

1. INTRODUCTION

In residential areas, maintenance of power and communication 
lines is an important issue. Power lines and communication lines 
are connected to each house through utility poles or underground 
pipes. In Japan, utility poles are used in most areas, and the areas 
where cables are buried underground is very limited. The utility 
pole is usually shared by power lines and the communication 
lines, and the upper layer of cables is used for power lines and 
the upper layer is used for communication lines. In this paper, 
both power lines and communication lines are referred to simply 
as cables.  

In recent years, abnormal weather has been often reported around 
the world. In Japan, the frequency and power of typhoons and 
storms have significantly increased to record the highest, and the 
inclination of utility poles due to strong winds has become a 
serious problem for infrastructure maintenance because it occurs 
simultaneously over a wide area. When the utility pole is inclined, 
the distances of loose cables from the ground decrease. For cables 
crossing the road, loose cables may contact with large vehicles. 
In order to avoid contact accidents, it is necessary to investigate 
whether the height of the cable meets the regulations. 

Mobile laser scanning is useful for efficiently detecting loose 
cables in a wide area. So far, many methods have been studied 
for automatically detecting power lines from point clouds 
acquired by laser scanners. Many researches are based on point 
clouds captured using the airborne laser scanning (ALS) system. 
In their methods, cables were detected using the RANSAC 
method (Chen et al., 2012, Guo et al. 2016), the Hough transform 

method (Liu et al., 2009, Guan et al. 2016), or the machine 
learning method (Kim et al., 2012). 

However, ALS is not suitable for precisely measuring the 
distances of cables from the ground, because most ALS systems 
have accuracies of only a few tens of cm at most. So far, ALS-
based methods have been used for detecting thick and long cables 
stretched between transmission towers due to large point-to-point 
distances of point clouds. ALS has been a powerful approach for 
detecting such cables, because it can capture point clouds even in 
places with no road such as in the mountains.  

However, in our survey, cables used for utility poles in urban 
areas had diameters of 1.3 cm for power lines and smaller 
diameters for communication lines. Therefore, point clouds 
obtained from a distance using ALS are too sparse to detect 
cables with small diameters in urban areas. In addition, since 
multiple cables are stretched in parallel between utility poles, 
lower cables cannot be measured from above using ALS. 

To detect cables in urban areas, the vehicle-based mobile 
mapping system (MMS) is more suitable, because the MMS 

(a) Mobile Mapping System (b) Close-up
Figure 1. Mobile Mapping System 
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measures cables from the ground. The MMS can capture much 
more dense point-clouds than the ALS system, and it can also 
capture all parallel cables between utility poles from the ground. 

As shown in Figure 1, the MMS is a vehicle on which a laser 
scanner, digital cameras, GPSs, and an IMU are mounted. It can 
capture images as well as point clouds while running. 
 
Several methods have been proposed for extracting cables from 
MMS data. In existing methods, cables were reconstructed using 
Hough transform and Euclidean distance clustering (Guan et al., 
2014), the voxel-based hierarchical method (Cheng et al., 2014), 
and the region growing (Zuang et al., 2016), and so on. The 
method for reconstructing missing portions on power lines is also 
proposed by (Yadav et al. 2017).  
However, the existing methods mainly aimed at detecting cables 
parallel to the road, and did not deal with cables crossing the road. 
The MMS can capture dense point clouds from cables parallel to 
the MMS trajectory. However, when the MMS measures road-
crossing cables, large potions on cables may be missing.  
 
In Figure 2(a), there are cables parallel to the road and cables 
crossing the road. Figure 2(b) shows point clouds of cables. In 
this figure, while dense points could be obtained from cables 
parallel to the road, large portions are missing in cables crossing 
the road. Therefore, in conventional methods, only cables parallel 
to the road are detected, and most road-crossing cables are 
missing. In our knowledge, no method has been proposed for 
detecting road-crossing cables from point clouds captured using 
the MMS. 
 
It is very important for maintenance work to measure road-
crossing cables, because interference between cables and 
vehicles has to be avoided. Since the minimum height of road-
crossing cables is specified by law, cable heights have to be 
periodically inspected. If the MMS can automatically detect 
road-crossing cables, maintenance work for cables can be 
performed more efficiently. 
 
Figure 3 shows the reason why many points on road-crossing 
cables are missing. The MMS runs while emitting laser beams, 
as shown in Figure 3(a). Since the laser beams cross the cable 
parallel to the road many times, as shown in Figure 3 (b), dense 
points can be obtained from the cable. On the other hand, the laser 
beams cross the road-crossing cable only a small number of times, 
as shown in Figure 3 (c), because the direction of the scanning 
pattern is almost parallel to the direction of the cable. Therefore, 
points on the road-crossing cable become sparse and a large 
portion of points may be missing. In such cases, point acquisition 
is unstable and missing portions cannot be predicted. In 
conventional methods, it is difficult to reconstruct cables if a 
cable crosses the road and a large portion of points are missing.  
 
In this paper, we propose a new method for reconstructing cables 
crossing roads from MMS data. Missing points are recovered 
using camera images, and cables are reconstructed using points 
extracted both point clouds and camera images. As shown in 
Figure 1, the laser scanner and cameras are fixed on the vehicle, 
and their relative positions can be measured. In our method, the 
3D projection plane is constructed using cable points extracted 
from a point cloud, and 2D cable lines extracted from images are 
projected on the 3D plane. 3D cable lines are reconstructed from 
points merged on the 3D plane.  
 
The next section gives an overview of our method. Section 3 
describes projection of point clouds onto images for relating 
points and pixels. Section 4 describes the extraction of cable 
points from point clouds, and Section 5 describes the extraction 
of cable lines from images. Section 6 describes the method for 
reconstructing 3D cable lines by combining points extracted from 

 
(a) Road-crossing cables 

 

  
(b) Missing points on road-crossing cables 

Figure 2. Points-clouds on road-crossing cables 

 
(a) Scanlines from laser scanner 

 
(b) Points on cable along road 

 
(c) Points on cable crossing road 

Figure 3. Points scanned from cables 
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point clouds and images. Next, we describe experimental results, 
and finally conclude this paper. 
 

2. OVERVIEW 

In our method, road-crossing cables are reconstructed using point 
clouds, camera images, and MMS trajectory acquired by the 
MMS. In the MMS data, point clouds of road-crossing cables 
may be partly missing. On the other hand, images of road-
crossing cables can be captured with little occlusion in most cases 
because they are captured from the front of the MMS.  
 
Since images do not have 3D information explicitly, point clouds 
and images are considered to be complementary. In this paper, 
road-crossing cables are reconstructed by using both point clouds 
and images. Figure 4 shows the process of extracting and 
reconstructing road-crossing cables. Our method composed of 
three phases: point cloud processing, image processing, and cable 
reconstruction.  
 
In the point cloud processing phase, points that cannot be cables 
are removed from point clouds. Then the remaining points are 
projected onto the horizontal plane. Since each cable is a 
downward convex curve, it can be detected as a straight line on 
the horizontal plane. Points projected on the straight line are 
referred to as 3D cable points. Then, the vertical plane is 
calculated using points projected on each straight line. In this 
paper, the vertical plane is referred to as the cable plane. The 
cable plane is used as the projection plane for 2D lines extracted 
from images. 
 
In the image processing phase, images whose GPS times are 
close to the GPS time of 3D cable points are selected as 
corresponding images. Then line segments are extracted from 
each image. First, the region where cables may exist is selected 
using an object recognition technique. Line segments are 
extracted from the selected region using Hough transformation. 
Then, 2D cable lines are extracted from pixels extracted as line 
segments. 
 

In the cable reconstruction phase, cable curves are reconstructed 
by integrating 3D cable points and 2D cable lines. First, 3D cable 
points are projected onto an image using the pinhole camera 
model. Then, the correspondences between the projected 3D 
points and the 2D cable lines are calculated on the image. When 
a 2D cable line and 3D points are corresponding, they exist on 
the same plane calculated as the cable plane. Therefore, the 2D 
cable line is projected onto the cable plane, and the 2D cable line 
and the 3D points are integrated on the cable plane. Finally, the 
3D cable curve is reconstructed from the integrated points. 
  

3. PROJECTION OF POINT CLOUD ON IMAGE 

3.1 Mobile Mapping Data 

In our method, point clouds, camera images, and MMS trajectory 
are used for reconstructing cables. Point clouds and images are 
captured using a laser scanner and digital cameras on the MMS. 
The MMS trajectory is the trajectory of the origin of the MMS, 
and it is represented as a sequence of 3D coordinates with GPS 
time. We assume that the GPS time is given to each point, each 
image, and each trajectory point. The GPS time is obtained from 
satellites and indicates when the data was captured.  
 
The MMS used in this research was the Mitsubishi MMS-X  
(Mitsubishi Electric, 2018) , as shown in Figure 1. The laser 
scanner on the MMS is RIEGL VQ 250. The rotational frequency 
and the scan rate are 100Hz and 300,000 measurements, 
respectively.  
 
3.2 Corresponding Images  

The MMS captures points and images during driving. Figure 5 
shows a point cloud and images, which contain the same scene. 
In this figure, T represents the GPS time. Since the point cloud 
and the images were acquired at the nearest time, they include the 
same objects. Candidates of corresponding images are selected 
by comparing the GPS time.  
 
If points in a point cloud can be projected onto an image, objects 
in the point cloud are also included in the image. In such a case, 
the point cloud and the image are regarded to be corresponding. 
 
3.3 Relationship between Points and Image Pixels 

When the relative position between a laser scanner and a camera 
is given, 3D points captured using the laser scanner can be 
projected onto camera images. Figure 6 shows a pin-hole camera 
model for projecting points onto an image. In this model, the 
pixel position (𝑢#, 𝑣#)  can be calculated as the intersection 
between the normalized image plane and a straight line through 
(𝑥, 𝑦, 𝑧) and the optical center.  
 
However, the pixel position on the actual image is deviated from 
the intersection point (𝑢#, 𝑣#) due to lens distortion and so on. 
Therefore, the pixel position (𝑢#, 𝑣#)  is corrected to (𝑢, 𝑣) using 
the following equation. 
 

*𝑢𝑣+ = (1 + 𝑘!r" + 𝑘"𝑟# + 𝑘$𝑟%) *
𝑢#
𝑣#+ 

																																					+ 32𝑘"𝑢#𝑣# + 𝑘#
(𝑟" + 2𝑢#")

𝑘&(𝑟" + 2𝑣#") + 2𝑘#𝑢#𝑣#
5																						(1) 

 
where 𝑟" = 𝑢#" + 𝑣#" , and 𝑘!, 𝑘", 𝑘$, 𝑘#, 𝑘&  are parameters 
experimentally  determined by camera calibration. See (Zhang, 
2000) in more detail. 
 

 
Figure 4. Process of cable extraction 
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4. EXTRACTION OF CABLES FROM POINT-CLOUDS 

First, candidate points for road-crossing cables are extracted from 
point clouds using the following procedures. 
 
4.1 Filtering Point Clouds 

Before detecting cable lines, points that cannot be road-crossing 
cables are removed from point clouds. In our method, points near 
the road, planar objects, and cylindrical objects are detected and 
removed.  
 
Points near the road can be easily extracted if the trajectory of the 
MMS is given because the height of the road is about 2m below 
the MMS. Since the minimum height of cables is determined by 
regulations, points are removed if the height from the road is 
smaller than a threshold. In this research, we specified the 
threshold as 3 m.  
 
For detecting planar objects, a point cloud is projected onto the 
2D grid using the method proposed by (Kohira et al, 2017). In 
this method, each point in a point cloud is projected on the pixel 
position (I, J), as shown in Figure 7. The phase number I is the 
sequential number of measurements in each rotation, and the 
rotation number J indicates how many times the laser beam has 
rotated since the start of measurement. Figure 8 shows an 
example of projection on the 2D grid. Planes are extracted on the 
2D grid. By using adjacency relationships on the 2D grid, planes 
are detected using the region growing method. Since cables have 
very small areas on the 2D grid, planar regions with large areas 
are removed. 
 

Cylindrical objects are detected and removed using the method 
proposed by (Fukano et al., 2015). By removing cylindrical 
objects, utility poles are removed from a point cloud. Figure 9 
shows a process for detecting cylindrical objects. In this method, 
a wireframe model is generated by connecting adjacent points on 
the 2D grid, and the wireframe is sliced using horizontal planes. 
Then, circles are fitted to the section points, and cylindrical 
objects are extracted as vertically aligned circles. 
 
Figure 10 shows the remaining points after removing lower 
points, planar objects, and cylindrical objects. In this example, 
poles that support cables were removed as cylindrical objects. 
 
4.2 Extraction of Cable Candidates 

The cable shape is a downward convex curve in 3D space due to 
gravity. Therefore, when points on a cable are projected on a 
horizontal plane, it becomes a straight line. To detect cables, the 
remaining points in Figure 10 are projected onto a horizontal 
plane, and straight lines are detected from the projected 2D points. 

 
(a) Point cloud 

 

 
(b) Corresponding images 

Figure 5. Correspondence between points and images 
 

 
Figure 6. Pinhole camera model 

 

 

 
Figure 7. The phase and rotation numbers of each point 
 

 
Figure 8. Projecting point cloud onto 2D grid 

 

 
Figure 9. Detection of cylindrical objects 

 

 
Figure 10. Removal of planes, cylinders, and lower points. 
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In our method, straight lines are detected using the RANSAC 
method by randomly selecting two points.  
 
In this research, cables crossing the road are detected for avoiding 
interference with vehicles. Therefore, straight lines with small 
angles to the MMS trajectory are excluded as cables parallel to 
the road. In our experiments, we specified the angle as 45 degree. 
Figure 11 shows straight lines detected from the projected points.  
 
Then a plane is generated using points on each straight line, as 
shown in Figure 12. This plane is referred to as the cable plane, 
because all points on the cable are constrained on this plane.  
 

5. LINE EXTRACTION FROM IMAGES 

5.1 Extraction of Line Segments 

In our method, missing points on road-crossing cables are 
compensated using 2D lines extracted from camera images. 
Figure 13 shows the process for extracting lines from each image. 
Each procedure in Figure 13 is explained as follows. 
 
The detection of linear objects from images is one of fundamental 
problems in image processing. Since a variety of methods have 
been proposed so far, various solutions are possible for detecting 
cables from images. In this paper, we combine several image-
processing operations to stably detect cables. In our experimental 
data, whole road-crossing cables were present only in images 
captured from a distance, because wide viewing angles were 
required for road-crossing cables. Since high-resolution cable 
images could not be obtained, we implemented several methods 
and selected the best one, which could most robustly detect 
cables from low resolution images. Our solution was selected by 
experiment, but  we note that simpler methods might be possible 
for detecting cables if higher resolution images could be obtained. 
 
In our method, first, the image is binarized using adaptive 
thresholding, in which a threshold for each pixel is determined 
using pixels in a small region. In our method, the threshold is 
calculated as the average of 15 × 15 pixels minus 5 (Jain, 1986). 
Figure 13 (b) shows the binary image of Figure 13 (a). 
 

Since the binary image is noisy, morphological transformation is 
applied to remove noise. This operation alternately erodes and 
dilates white areas in the binary image. We used a 3 x 3 kernel 
for morphological transformation (Serra, 1983). Figure 13 (c) 
shows the transformed image. 
 
Then, straight lines are extracted from the image using the Hough 
transform. Each cable is not entirely a straight line, but it can be 
locally approximated as a straight-line segment, because the 
curvature of each cable curve is small. Therefore, in our 
method, straight-line segments are extracted from each image, 
and they are connected to construct a smooth curved cable.  For 
extracting straight-line segments, we use the probabilistic Hough 
transform proposed by (Kiryati et al., 1991) to improve efficiency. 
In the Hough transform, it is necessary to specify the minimum 
line length for rejecting short lines. For detecting cable lines, we 
specified the threshold as 30. Figure 13 (d) shows the output of 
the probabilistic Hough transform. 
 
Next, vertical lines are removed from extracted line segments 
because the image of a road-crossing cable are nearly parallel to 
the horizontal plane. In our implementation, the line segment is 
removed as not a road-crossing cable if the angle from the 
vertical line is less than 30 degrees. Figure 13 (e) shows the image 
from which vertical lines are removed. 
 
Finally, pixels extracted as straight lines are thinned using the 
method proposed by (Zhang et al., 1984). Figure 13 (f) shows 
thinned lines. 
 
5.2 Selection of Cable Regions 

Straight lines can be extracted from objects other than cables. 
Therefore, we restrict regions for line detection to reduce 

 
 

Figure 11. Straight lines crossing the road 
 

 
Figure 12. Cable planes 

  
               (a) Image                              (b) Binary Image 
 

  
(c) Morphological transformation  (d) Probabilistic Hough transform 
 

  
   (e) Straight line removal                  (f) Thinning 

Figure 13. Process for line extraction 
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candidate lines for road-crossing cables. In our method, each 
image is divided into rectangular regions as shown in Figure 14 
(a). Then, search regions are selected in two steps.  
 
 In typical camera positions, cables exist only in the upper part of 
each image. Therefore, the lower regions in each image can be 
excluded from cable regions. Suppose H is the height of each 
image. In our method, regions are excluded if their positions are 
less than kH, where k is a constant value in the range 0 to 1. Since 
the value k depends on the camera setting, it is specified by the 
user according to captured images. In this research, we specified 
k as 0.5. 
 
In the second step, regions are further eliminated using a 
convolutional neural network (CNN). Since local operators for 
line detection are sensitive to noise, they produce a lot of false 
positives. In this study, a CNN is used for selecting regions where 
cables exist. CNNs are useful to reduce false positives using 
features in multiple layers. 
 
We use VGG16 (Simonyan et al., 2014) trained using ImageNet 
(Krizhevsky et al., 2012) as a CNN classifier. VGG16 is fine-
tuned using the two classes “Cable” and “Other”. For fine-tuning 
VGG16, we selected 260 images in which road-crossing cables 
exist. We divided the top half of each image into 50 rectangle 
regions as shown in Figure 14 (a), and manually selected regions 
that contain cables. Each rectangle image was input to VGG16 
with the label “Cable” or “Other”. The number of training images 
were 13,000. 
 
Figure 14 (b) shows regions selected as “Cable”. In this figure, 
regions excluded as “Other” are shown in gray, and lines 
extracted only from the regions selected using VGG16 are shown 
in magenta. 
 

5.3 Detection of Cable Lines 

In line extraction, pixels of thinned lines are obtained, as shown 
in Figure 14 (b). Since the pixels contain multiple cables, pixels 
are divided into cable lines. In our method, pixels on lines are 
grouped if they are adjacent in the eight neighbours. Since some 
cables are crossing, corner pixels are detected and removed 
before finding cables.  First, line pixels are smoothed using 
Gaussian smoothing with the 3 x 3 kernel size. Then corner points 
are detected using the corner detection method proposed by 
(Harris et al., 1988).  
 
Detected corners are removed from the line pixels. Then, the 
remaining line pixels are grouped by investigating the eight 
neighbours, as shown in Figure 15. Since each group may still 
contain multiple cable lines, they are further subdivided by 
detecting line segments using the RANSAC method. In the 
RANSAC method, two pixels are randomly selected from each 
group, the line equation is calculated, and the number of line 
pixels on the straight line are counted. This process is repeated 
many times, and the line segment with the most pixels is selected. 
The subdivided lines are maintained as 2D cable lines. 
 

6. RECONSTRUCTION OF CABLES 

6.1 Merging Lines Extracted from Point-Cloud and Images 

From a point cloud, 3D cable points and cable planes are 
extracted for road-crossing cables. From an image, 2D cable lines 
are extracted. Then the correspondences between the 3D cable 
plane and the 2D cable lines are calculated.  
 
3D cable points are projected onto the image using the pinhole 
camera model shown in Figure 6. Figure 16 shows projected 
points in black. For each projected point, the nearest 2D cable 

 
Figure 16. Merged lines 

 

 
Figure 17. Projection of pixel point onto 3D plane 

 

 
 

Figure 18. Merged points for road-crossing cables 

 
(a) Subdivided regions 

  

 
(b) Line extraction from selected regions 

Figure 14. Extraction of cable regions 
 

 
Figure 15. Lines segments 
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line is searched, and the 2D cable line and the 3D cable plane are 
associated if most points on the 3D plane are projected on the 2D 
cable line.   
 
Then, pixels on each 2D cable line are projected onto the 
associated 3D cable plane. Suppose pixel (𝑢' , 𝑣()  on the 
normalized image plane is projected to (𝑥' , 𝑦' , 𝑧') on the cable 
plane. Point (𝑥' , 𝑦' , 𝑧')  can be calculated as the intersection 
between the normalized image plane and a straight line from the 
optical center, as shown in Figure 17. However, since pixel 
(𝑢' , 𝑣() is corrected using Equation 1, the pixel (𝑢#, 𝑣#), which is 
the position before correction, has to be calculated. In order to 
obtain the pixel position before correction, the inverse calculation 
of Equation 1 is required. Here, we rewrite Equation 1 as follows.  
 

*𝑢𝑣+ = 3𝑓
(𝑢#, 𝑣#)
𝑔(𝑢#, 𝑣#)5                                     (2) 

 
Then (𝑢#' , 𝑣#') can be calculated using the following optimization 
function. 
 

{𝑓(𝑢#' , 𝑣#') − 𝑢'}" + ;𝑔(𝑢#' , 𝑣#') − 𝑣(< → min        (3) 
 
We solve this function using the Quasi-Newton method with the 
initial values A𝑢' , 𝑣(B. 
 
6.2 Reconstruction of Cable Lines in 3D Space 

Points from a point cloud and an image are unified on the cable 
plane. However, points from the image may deviate from 3D 
cable points due to calibration errors.  Therefore, 3D points from 
the image are aligned to the points from the point cloud. 
 
First, points from the image are approximated to a catenary curve 
defined as: 
 

𝑓(𝑥) =
𝑎
2 Eexp

𝑥 − 𝑏
𝑎 + exp

−(𝑥 − 𝑏)
𝑎 J + 𝑐 (4) 

 
where 𝑎, 𝑏, 𝑐 = parameters for a catenary curve. 
For fitting a catenary curve to points, first, the parabola is fitted 
to points as: 
 

𝑔(𝑥) = 𝛼𝑥" + 𝛽𝑥 + 𝛾 (5) 
 
and the initial values 𝑎), 𝑏), 𝑐)	for 𝑎, 𝑏, 𝑐 are calculated as: 
 

𝑎) =
1
2𝛼 , 𝑏) = −𝛽𝑎, 𝑐) = 	𝛾 −

𝑏"

𝑎 − 𝑎 (6) 

 
Then the catenary curve is calculated using the non-linear least-
squares method, such as the Gauss-Newton method. 
 
The catenary curve is moved to fit the maximum number of 3D 
cable points on the cable plane. In our method, an angle 
resolution 𝜃 and a positional resolution 𝑑 are specified, and the 
catenary curve is rotated 𝑙𝜃  and shifted (𝑚𝑑, 𝑛𝑑)  around the 
center position, where 𝑙 , 𝑚 , and 𝑛  are integers. By substitute 
various integers for 𝑙, 𝑚, and 𝑛 within the specified range, the 
optimal transformation matrix can be obtained for the catenary 
curve.  
 
Finally, points on the catenary curve are transformed using the 
optimal transformation matrix. In Figure 18, 2D cable lines 
extracted from an image were merged to 3D cable points on the 

cable plane. 3D cable points are shown in red, and 2D cable lines 
are shown in black. While there are missing portions in the initial 
3D cable points, the merged points become continuous cable 
lines. 
 

7. EXPERIMENTS 

We evaluated our method using actual MMS data. Point clouds 
and images were measured in Fukuoka and Tokyo in Japan.  By 
using the proposed method, we extracted and reconstructed road-
crossing cables. As corresponding images, we used images taken 
within 5 seconds from the GPS time of a point cloud.   
Figure 19 shows some of experimental results. On the left of the 
figure, the image corresponding to the point cloud is shown. On 
the right, the point cloud and the reconstructed road-crossing 
cables are shown. Reconstructed cables are shown in magenta. 
The lowest road-crossing cables are shown in red arrows in point 
clouds. In these examples, all of the lowest road-crossing cables 
could be successfully reconstructed. This is because the distance 
between the cables and the MMS was relatively small and dense 
point clouds could be obtained from the lowest cables. However, 
some cables could not be reconstructed due to too sparse points 
or too far distance. 
 
We displayed all the point clouds in the evaluation data on the 
screen and visually recognized 57 road-crossing cables. Our 
method could reconstruct 40 road-crossing cables from 57 ones. 
The success rate was 70%.  
 

 
Figure 19. Reconstructed road-crossing cables 
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Our method could sufficiently detect the lowest cables closest to 
vehicles, but there are limitations to reconstruct all road-crossing 
cables. There were the following reasons why the cable could not 
be reconstructed: (1) Very few points could be captured from 
some cables because cables were far from the road or very thin. 
(2) 2D cable lines could not be detected from the image due to 
poor contrast or too thin cable lines. (3) Catenary curves could 
not be fitted due to inadequate 2D line extraction.  
 
The experimental results show that our approach is effective for 
reconstructing road-crossing cables, which cannot be 
reconstructed using existing methods. In order to further improve 
the success rate of our method, it would be required to develop 
more robust methods for detecting cables from a very sparse 
point cloud and extracting cable lines from images captured 
under various conditions. 
 

8. CONCLUSION 

Extraction of road-crossing cables are important to avoid 
interference between vehicles and cables. However, when road-
crossing cables are measured by the MMS, large portions of 
points on cables may be lost. In this paper, we proposed a new 
method for reconstructing road-crossing cables using point 
clouds and camera images. In our method, points on cables were 
extracted from a point cloud and the vertical cable plane was 
calculated as the projection plane for 2D lines on the image. From 
images, line segments were extracted and continuous cable lines 
were detected. Then correspondences between 3D cable points 
and 2D cable lines were detected, and 2D cable lines were 
projected on the cable plane. 3D points and 2D cable lines were 
merged on the cable plane, and they were fitted to a catenary 
curve. In our experiments, our method could sufficiently 
reconstruct road-crossing cables.  
 
In future work, we would like to develop a robust method for 
detecting cables from a very sparse point cloud. We would also 
like to investigate machine learning techniques for robustly 
extracting cable lines from images.  
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