
MIN-CUT BASED SEMANTIC BUILDING LABELING FOR AIRBORNE LIDAR DATA  
 

Serkan Urala,b, *  and  Jie Shana 
aLyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA - jshan@purdue.edu  

bInstitute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland - sural@phys.ethz.ch 

 

Commission II, WG II/3 

 

KEY WORDS: Building extraction, lidar, graph-cuts, semantic segmentation, local feature histogram 

 

ABSTRACT: 

 

Classification and segmentation of buildings from airborne lidar point clouds commonly involve point features calculated within a 

local neighborhood. The relative change of the features in the immediate surrounding of each point as well as the spatial relationships 

between neighboring points also need to be examined to account for spatial coherence. In this study we formulate the point labeling 

problem under a global graph-cut optimization solution. We construct the energy function through a graph representing a Markov 

Random Field (MRF). The solution to the labeling problem is obtained by finding the minimum-cut on this graph. We have employed 

this framework for three different labeling tasks on airborne lidar point clouds. Ground filtering, building classification, and roof-plane 

segmentation. As a follow-up study on our previous ground filtering work, this paper examines our building extraction approach on 

two airborne lidar datasets with different point densities containing approximately 930K points in one dataset and 750K points in the 

other. Test results for building vs. non-building point labeling show a 97.9% overall accuracy with a kappa value of 0.91 for the dataset 

with 1.18 pts/m2 average point density and a 96.8% accuracy with a kappa value of 0.90 for the dataset with 8.83 pts/m2 average point 

density. We can achieve 91.2% overall average accuracy in roof plane segmentation with respect to the reference segmentation of 20 

building roofs involving 74 individual roof planes. In summary, the presented framework can successfully label points in airborne 

lidar point clouds with different characteristics for all three labeling problems we have introduced. It is robust to noise in the calculated 

features due to the use of global optimization. Furthermore, the framework achieves these results with a small training sample size.  

 

 

1. INTRODUCTION 

Simpler representations derived from airborne lidar point clouds 

usually provide more practical and manageable input for 

efficient analysis in many applications. Attaining such useful 

simpler representations as final products usually demands 

extensive efforts for processing very large unstructured point 

cloud data (Yang et al., 2016; Guan et al., 2013). Labeling of 

point clouds either for classification or segmentation provides a 

level of organization which helps achieve such representations.  

 

Earlier research focuses more on handling lidar data as 2.5D by 

resampling the point clouds into raster grids. Such approaches 

may be convenient for employing a wide range of well-

established image processing algorithms, but loss of information 

is inevitable due to resampling. More recently, this limitation 

encouraged more research that exploited lidar data in 3D. 

Promising results have been reported in labeling 3D point clouds 

within the last decade. Among others, approaches employing 

features calculated for each point by considering nearby points 

within a spatial neighborhood are especially notable. Features 

suitable for discriminating various properties of points have been 

utilized for 3D point labeling using a broad range of methods 

(Guo et al., 2016). In this study, we present an approach for the 

labeling of lidar point clouds either for classification or 

segmentation with their 3D coordinates as the only input. 

 

While classification and segmentation are usually considered 

separately in numerous algorithms developed over the years for 

either task, some methods (Martinez et al., 2016; Carlberg et al., 

2009) also perform semantic classification of the segments after 

segmentation. Vilariño et al. (2017) employ a two-phase region 

growing algorithm for the segmentation of point clouds and then 

classify the segments by a rule-based classification method. In 

contrast to classification after segmentation, classification of 

individual points without segmentation (Weinmann et al., 2015a, 
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Blomley and Weinmann, 2017, Bauchet and Lafarge, 2019) and 

segmentation as a refinement step after point-wise classification 

(Weinmann et al., 2017) have also been explored. Polewski et al. 

(2014) similarly employ point classification as the initial step of 

segmentation for the detection of fallen trees. Considerably more 

recently, a shift towards achieving optimal labeling is observed 

in published research.  

 

While some approaches disregard any contextual information, 

significant amount of research also focus on considering local 

dependencies for the segmentation or classification of lidar point 

clouds while simultaneously relying on global conformance. Xu 

and Stilla (2019), as a recent example, use global graph-based 

clustering for an unsupervised automatic segmentation of point 

clouds to extract contours of planar elements of building facades.  

Markov random fields (MRF) and conditional random fields 

(CRF) provide a convenient structure for the formulation of point 

labeling problems by taking contextual information into 

consideration. An early example of research on labeling 3D point 

clouds with an MRF based approach by Anguelov et al. (2005) 

uses associative Markov networks (AMNs) coupled with linear 

programming inference for segmentation of objects and object 

classes from data acquired by a mobile laser scanning system. 

Research employing MRFs for point classification often employ 

point features derived from the eigenvalues of the covariance 

matrix of points within a neighborhood. Ural and Shan (2012) 

label points as surface or scatter via min-cut optimization using 

point features derived from the eigenvalues of the structure 

tensor. Similarly, Sun and Salvaggio (2013), classify trees by 

graph-cut optimization for which the data costs are calculated by 

thresholding the smallest eigenvalue.  Du et al. (2017) employ 

grid based features along with the flatness feature calculated with 

the eigenvalues to perform a graph-cut based point labeling for 

building extraction. Bae and Mekurjev (2017) employ their 

proposed convex relaxation and optimization framework on 
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graphs for labeling point clouds as ground, man-made structures, 

and vegetation using an energy function combining region and 

edge-based features. MRF formulation can also be applied to 

groups of points in an object-based manner rather than individual 

points. Zhu et al. (2017) first generate supervoxels by clustering 

points using homogeneity constraints and classify the 

supervoxels via graph-cut based energy minimization. Lafarge 

and Mallet (2012) employ an MRF based label propagation 

procedure for planimetric arrangement of geometric shapes and 

urban components with input from unsupervised classification of 

3D points using a five-parameter energy function and a Potts 

model for pairwise interactions. 

 

Along with MRF based methods, CRF formulation of point 

cloud labeling has also advanced within the last decade. As one 

of the earlier examples, Lim and Suter (2007) propose a method 

employing conditional random fields for the classification of 3D 

point clouds that are adaptively reduced by omitting 

geometrically similar features. Niemeyer et al. (2012) also utilize 

CRF formulation for the supervised classification of lidar point 

clouds using loopy belief propagation (LBP) for inference. In 

their later research, Niemeyer et al. (2014) employ random forest 

(RF) classification to calculate the pairwise potentials of CRF 

model for labeling airborne point clouds. Similarly, Weinmann 

et al. (2015b) label mobile laser scanning data in a CRF 

framework using LBP for inference with optimal neighborhood 

estimation. They use RFs to calculate association potentials in 

the CRF model but prefer a simpler Potts model for calculating 

interaction potentials. Lang et al. (2016) apply an adaptive graph 

down-sampling to reduce the computational burden of large 

datasets in their CRF model and LBP inference-based framework 

for point labeling with histogram of oriented residuals (HOR) as 

point features. Smooth classification of 3D points clouds can also 

be achieved through regularization based on structured 

optimization as proposed by Landrieu et al. (2017). 

 

In this study, we propose a framework which takes advantage of 

the contextual formulation capabilities of MRFs coupled with 

powerful graph-cut optimization for semantically labeling point 

clouds with focus on building extraction. We introduce a new 

approach for utilizing the point features for the calculation of 

data and smoothness costs of the energy function. 

 

2. GRAPH-CUT APPROACH FOR POINT LABELING 

We propose a graph-cut point labeling framework for various 

point labeling tasks. In the case of building extraction from 

airborne point clouds, different stages of the process can be 

formulated within this framework, separately or in combination: 

1) Ground filtering, in which the points are labeled as ground or 

off-ground. 2) Labeling surface vs non-surface points for 

extracting the points that fall on planar or curved surfaces like 

building roofs. 3) Segmentation of roof planes by labeling the 

points on the same roof facet. The generic workflow for semantic 

point labeling with this graph-cut based approach is given in 

Figure 1. 

Point labeling is achieved in each stage by formulating the 

individual problem on a graph with data cost and smoothness 

cost designed specific to its nature. In Ural and Shan (2016), we 

presented the details of our min-cut based filter for handling the 

ground filtering task as one of the main steps of this framework. 

This paper provides the details for the remaining two tasks, 

namely, building extraction, and roof segmentation through the 

proposed framework. They differ from the unsupervised ground 

filtering approach in Ural and Shan (2016) regarding the local 

point features and energy functions employed. We describe the 

implementation details of each stage including graph 

construction, energy functions, optimization methods, and local 

point features used for calculating data and smoothness terms of 

the energy function. We also introduce a novel feature, Multi-

level Local Feature Histograms (MLFH), used as a descriptor in 

the point labeling process for building extraction. 

 

Figure 1. Workflow for min-cut based semantic point labeling 

from airborne lidar data. 

 

2.1. Graph-based Formulation of the Problem 

We construct a graph model for labeling the points in the lidar 

point cloud by considering each lidar point as a node of a graph. 

The edges between the nodes are defined such that each node is 

connected to its Voronoi neighbors with an edge. 2D 

neighborhood is used in case of ground filtering and roof 

segmentation, and 3D neighborhood for surface classification. 

The special nodes representing the labels are also connected to 

each node with an edge. Labels differ depending on the required 

outcome. They are determined as ground and off-ground in the 

case of ground filtering. Labels for differentiating the points 

sampling a surface vs. others are identified to be surface and non-

surface. Sequential integers are used as labels for each segment 

during the segmentation of the roof facets. Edges connecting 

each point to the label nodes are given the weights calculated as 

the costs for assigning the corresponding label to each point. 

These constitute the data cost term of the energy function. 

Smoothness costs between pairs of nodes connected with an edge 

on the graph are calculated and assigned as weights to the 

corresponding edges. The minimum-cut severs the edges on the 

graph corresponding to the minimum energy. Thus, points that 

remain connected to either the source (S) or the sink (T) node are 

labeled accordingly.  

2.2. Graph-cut Solution 

In this research, we employ the graph-cut interpretation of 

energy minimization that is commonly used for image pixel 

labeling as extended to the geometry of unstructured 3D point 

clouds. We adapt the fast approximate energy minimization 

algorithm via graph-cuts introduced by Boykov et al. (2001) to 

formalize the labeling problems of unstructured 3D point clouds. 

We employ the  -expansion move they proposed on graphs in 

our framework when more than two labels are involved (Boykov 

et al., 2011). 

 

2.3. Data Costs 

Calculating the data cost requires a distance measure between the 

proposed histogram of the multi-level local features of a point 

and the histogram representing the class label. The details of the 

point features involved and how these histograms are calculated 

are explained in section 3.2. A suitable distance measure for 

evaluating their similarity is the Jeffries-Matusita (JM) distance 

which is a measure commonly used to calculate the dissimilarity 

between two probability distributions (Richards and Jia, 2006; 

Dabboor et al., 2014), described by Jeffreys (1946) as one of the 

two “invariants expressing the difference between two 
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distributions of chance”. We calculate the data cost for surface 

vs. non-surface point classification as the JM distance between 

two histograms to measure their dissimilarity. The data cost is 

then 

𝐷(𝐻𝑖𝑝) = 𝑠√Σ
𝑏

[√𝐻𝑖(𝑏) − √𝐻𝑝(𝑏) ]
2

   (1) 

where 𝐻𝑖 is the feature histogram of the training points 

representing a class model, 𝐻𝑝 is the histogram of the local point 

features for point 𝑝, and 𝑏 refers to the histogram bins. Once 

calculated, we scale the data cost values between zero and 100 

to be utilized in graph-cut optimization (GCO) for labeling the 

points. The higher the data cost, the more dissimilar the points 

are to the surface class.  

 

Data cost function for the segmentation of the surface points 

considers the Euclidean distance 𝑑𝑓𝑝𝑖 in the feature space 

between the point’s feature vector 𝑓𝑝 and the label means 𝜇𝑓𝑖
. 

The labels here are the initial labels acquired as a result of a 

watershed segmentation of the 3D surface normal feature space.  

 

         𝑑𝑓𝑝𝑖
= ‖𝜇𝑓𝑖

− 𝑓𝑝‖    (2) 

 

2.4. Smoothness Costs 

Smoothness cost functions are defined such that a smoothness 

penalty is introduced when two nodes of the graph are labeled 

different than each other. This allows the parameter 𝜎 to control 

the range within which the cost will decrease rapidly with respect 

to the difference of the feature values of the two nodes. It 

regulates that any configuration which assigns different labels to 

two connected nodes having similar properties are less likely to 

be preferred over labeling them the same. We use a function of 

three parameters as the smoothness cost for the classification of 

surface vs. non-surface points in the point cloud. These three 

parameters are the smoothness parameter 𝜎, the feature distance 

measure 𝐷(𝐻𝑝𝑞) between the MLFHs of the two nodes 

connected with an edge on the graph calculated in the same way 

as in Equation 1, and the 3-D spatial Euclidean distance 𝑑(𝑝, 𝑞)  

between them. Smoothness energy for the classification of 

surface vs non-surface points is then calculated as 

 

𝑉𝑝,𝑞(𝑓𝑝 , 𝑓𝑞) =
1

𝑑(𝑝,𝑞)
𝑒𝑥𝑝 (−

(𝐷(𝐻𝑝𝑞))
2

 

2𝜎2 )  (3) 

where ( , )d p q  is the Euclidean distance between points p and q in 

the spatial domain.  

 

Smoothness costs for roof plane segmentation are calculated as 

a function of the Euclidean distance 𝑑(𝑝, 𝑞) between the two 

points connected to each other with an edge and the angle 

between their surface normals which replaces the term 𝐷(𝐻𝑝𝑞) in 

Equation 3. 

 

3. BUILDING CLASSIFICATION  

3.1. Labeling Building Points 

Identifying building roof points is an essential task for building 

extraction from airborne lidar point clouds. This task may be 

regarded as the identification of points that are on the same 

planar surface since most building roofs can be modeled as a 

combination of planar patches. This subsection describes the 

process of labeling surface and non-surface points using the 

proposed graph-cut labeling approach. Calculating data and 

smoothness costs for the framework as described in the previous 

section requires the calculation of point feature descriptors for 

each point. We calculate features for the local neighborhood of 

each point and then label the points using these calculated 

features. We employ the features calculated for each point as 

described below and introduce multi-level local feature 

histograms (MLFH) as a new approach for utilizing these 

features as point descriptors for labeling surface vs. non-surface 

points.  

We establish a feature vector for each point using all the points 

within their individual neighborhoods and then calculate the 

MLFH for each point from these feature vectors as described in 

the following section. Next, each point is labeled via graph-cut 

optimization using the costs calculated with the MLFH of the 

training samples collected for surface and non-surface classes.  

 

3.2. Multi-level Local Feature Histograms 

Eigenvalues of the covariance matrix of a point’s neighborhood 

have been investigated in various studies to understand the 

geometric properties and structure of the data. West et al. (2004) 

use a set feature descriptions, including structure tensor 

omnivariance (S.T.O.), structure tensor anisotropy (S.T.A.), 

structure tensor planarity (S.T.P.), structure tensor eigenentropy 

(S.T.E.), structure tensor linearity (S.T.L.), structure tensor 

sphericity (S.T.S.), all functions of the eigenvalues, (𝜆1, 𝜆2, 𝜆3) 

of the covariance matrix of the point’s local neighborhood where 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0. Among these, we employ the S.T.P. and 

S.T.S. features calculated for the local neighborhood of each 

point for labeling surface and non-surface points. Every point 

with enough number of points within their predefined 

neighborhood then has a feature vector with two elements which 

represents the geometric properties of that point. 

 

𝑆. 𝑇. 𝑃. = (𝜆2 − 𝜆3)/𝜆1 ;    𝑆. 𝑇. 𝑆 . = 1 − (𝜆1 − 𝜆3)/𝜆1   (4) 

 

Using point feature vectors allows a classifier to be trained and 

then each point can be assigned a label through a classification 

algorithm. One shortcoming of using local point features in this 

manner directly for labeling airborne lidar points is that the 

feature vectors may vary due to noise in the dataset. As a result, 

individual points may be labeled in contradiction with the labels 

of their neighboring points even though they are of the same 

nature.  

 

As a more robust approach, accumulating a histogram by 

counting various properties that are calculated based on the 

geometric relationships of points within a reference point’s 

neighborhood has been widely used as a method of generating 

point descriptors. Such histograms may be generated both by 

binning the spatial domain or the feature domain (Guo et al., 

2014). One popular method for binning the feature space is the 

Point Feature Histograms (PFH) by Rusu et al. (2008) which 

considers pairwise features among the points in the 

neighborhoods calculated with reference to a local reference 

frame. This allows the evaluation of pairwise geometric 

relationships of points through a histogram generated for all pair 

combinations in the neighborhood. Fast Point Feature 

Histograms (FPFH), a more computationally efficient version of 

this method was also introduced later (Rusu et al., 2009). This 

approach emerges as a solution to the weakness of single point 

features not being descriptive enough, and multi-valued point 

features not being robust enough in the existence of noise in the 

point clouds (Rusu et al., 2009).  Many other histograms have 

been proposed in literature as local point descriptors. A detailed 

review can be found in (Guo et al., 2014).  

 

We propose the use of histograms at multiple levels. As 

mentioned before, we employ a multi-valued feature vector as a 

descriptor for the geometry of points’ local neighborhoods. First, 
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we calculate the feature vector for a point of interest, 𝑝𝑖, using 

all the points in its predefined spherical neighborhood with 

radius 𝑅. Next, we calculate the feature vectors for each of the 

points 𝑝𝑖𝑗, that are within the neighborhood of point 𝑝𝑖, using the 

points 𝑝𝑗𝑘, in their respective predefined individual 

neighborhoods. Then, we divide the 2D feature space into 10x10 

bins and count the number of points which fall into each bin to 

generate a histogram of calculated feature vectors. Due to the 

involvement of point neighborhoods at multiple levels, we call 

these histograms multi-level local feature histograms (MLFH). 

For each point with enough neighbors in the dataset, we calculate 

the features in their respective neighborhoods. Points which 

don’t have a sufficient number of neighbors are excluded from 

processing. The histogram is normalized with respect to the 

points falling into each bin over the total number of points. 

 

We also generate MLFH to serve as models for the training 

samples we collect from the point clouds that are representative 

of the semantic classes that we’d like to extract. In our building 

extraction framework, the two classes are: i) the surface class, 

which includes the points on the surfaces of man-made structures 

like building roofs as well as natural surfaces like the ground, ii) 

non-surface class which includes the points that are not on a 

surface, such as the trees. Figure 2 below presents examples of 

mean MLFH generated for these two classes. 

 
Figure 2. Examples of mean MLFH for training samples of the 

non-surface and surface classes. The horizontal axis is the bins 

in the feature space, while the vertical axis is the ratio of points 

in each bin to the number of points in the entire neighborhood. 

 

4. BUILDING AND ROOF SEGMENTATION  

 

4.1. Labeling Individual Buildings 

Once off-ground surface points are acquired by GCO labeling, 

we identify individual buildings with the assumption that off-

ground surface points mainly constitute buildings. We then 

remove the points that are aligned vertically (e.g. building walls) 

as well as the noise, points that are not considered as buildings, 

from building extraction results. At this stage, the focus is on the 

building points. The result includes noise-free building points.  

We calculate the surface normal for each points’ spherical 

neighborhood with radius 𝑅 to obtain the angular divergence of 

each point’s surface normal from the horizontal vector at that 

point. Each point with a divergence angle smaller than a 

threshold of 10º is then removed from the dataset since they 

mainly constitute the building walls. Next, we employ DBSCAN 

(Density Based Spatial Clustering of Applications with Noise) 

clustering algorithm to label individual buildings. 

 

4.2. Labeling Individual Roof Planes 

Until this stage, our framework addressed two common point 

cloud labeling tasks; ground filtering and building extraction. As 

a third common task, we employ our framework for the 

segmentation of roof planes by labeling the building points. Our 

approach for roof plane segmentation relies on the optimization 

of a noisy over-segmentation achieved by watershed 

segmentation of the normal feature space. After the labelling, 

each remaining segment corresponds to a roof facet. We first 

remove all points with less than two neighbors within a 

predefined spherical neighborhood. Then, we calculate the 

surface normal for each point and ensure the consistency of their 

orientations (up/down). After the reorientation of the normals, 

we divide the 3D surface normal feature space into bins and 

generate a 3D histogram of bin counts. Then we apply watershed 

segmentation (Meyer, 1994) on the inverse of this histogram and 

assign each point the labels that are the result of this 

segmentation. This labeling serves as the initialization which is 

later optimized via graph-cut optimization to acquire the final 

roof plane labels. 

 

5. EXPERIMENTS AND RESULTS 

5.1. Test Data 

The first dataset we used in this research is the lidar point cloud 

of part of Bloomington, Indiana of USA obtained from the 

Indiana Spatial Data Portal. It was collected as part of Monroe 

County orthophotography and lidar data acquisition carried out 

by MJ Harden on April 11-12, 2010 with an Optech Gemini 

system. The size of the study area is approximately 4200 x 2080 

sq ft (1280 x 634 sq m). It spans a typical U.S. Midwest suburban 

area with residential settlement including houses and apartment 

buildings of various types and sizes as well as vegetation with 

varying density. There is no abrupt elevation change in this 

noticeably flat area. Reported vertical RMSE is 0.347 ft/10.58 

cm. The point coordinates are in NAD 1983 HARN horizontal 

datum and NAVD 88 vertical datum projected on the Indiana 

West State Plane Coordinate System. The point cloud includes 

approximately 930K points and is provided in LAS 1.2 format. 

The average point density is 1.13 pts/m2 when calculated for all 

points in the study area, and 0.97 pts/m2 for the last returns only. 

Data specifications close to these values are more common 

typically for lidar acquisitions with the purpose of generating 

base topographic products in the U.S. for counties or larger 

geographic areas. Figure 3a shows the study area which covers 

approximately 2.25 km2. 

  
Figure 3. DSMs of (a) Bloomington with 5ft/1.5m and (b) 

Vaihingen with 0.3m GSD. Blue-to-red color ramp represents 

low-to-high elevation values relative for each dataset.  

The second dataset is the airborne lidar point cloud over 

Vaihingen in Germany, part of the test dataset for ISPRS Test 

Project on Urban Classification and 3D Building Reconstruction 

(Niemeyer et al., 2014). It was provided by the German Society 

for Photogrammetry, Remote Sensing and Geoinformation 

(DGPF) (Cramer, 2010). The dataset was acquired using a Leica 

ALS50 system at a mean flying height of 500 m above ground 

on August 21, 2008. The part of the dataset we used to test our 

method includes approximately 750K points in UTM Zone 32N 

horizontal coordinate system. Average point density we 

calculated for the study area is 8.83 pts/m2 for all points and 8.61 

pts/m2 for last returns. The point cloud is provided in ASCII 

a b 
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format including labels for each point corresponding to one of 

eight classes including, powerline, low vegetation, impervious 

surfaces, car, fence/hedge, roof, facade, shrub, and tree. The 

terrain is considerably flat. The scene as presented in Figure 3b 

is a built-up urban area covering approximately 83,700 m2. It 

includes buildings of various sizes and styles along with 

moderate number of trees and low vegetation. 

5.2. Labeling of Building Points 

We calculated the S.T.P. and S.T.S. local point features using a 

spherical neighborhood with radius R. It was determined as the 

approximate radius of a circle which would cover an n x n grid 

around each point. Given the point density 𝑑𝑝 of a dataset, the 

grid size Δ𝑔 is calculated as Δ𝑔 = 1/√𝑑𝑝 , so that there are 

approximately the same number of grid cells in an area as the 

number of points (Kim and Shan, 2011). We used 𝑅 = 3.6 m (~12 

ft) for Bloomington dataset which corresponds to a 5x5 

neighborhood around each point and 𝑅 = 1.7 m for the Vaihingen 

dataset which corresponds to a 7x7 neighborhood. 

 

We then generated the MLFH for each point’s neighborhood 

using the local point features. We also calculated the MLFH for 

the training samples we collected representing surface and non-

surface features. Bloomington and Vaihingen training datasets 

include 22 and 5 samples of surface patches having 7658 and 

1655 points along with 34 and 6 samples of non-surface point 

clusters of 12199 and 7780 points respectively. We excluded the 

training data from the dataset when evaluating the results. Using 

the MLFH of off-ground points and the training datasets for 

surface and non-surface classes, we calculated the data costs for 

each point. We also calculated the smoothness costs for point 

pairs connected with an edge on the graph generated using the 

Voronoi neighborhood of points with each other. Smoothness 

parameter 𝜎 = 0.8 was used for both datasets. We assigned the 

weight 𝜆 = 1 for the smoothness cost term of Bloomington 

dataset and 𝜆 = 5 for the Vaihingen dataset. Each point in either 

dataset was then assigned one of two labels: surface or non-

surface as a result of GCO. Final labeling of surface and non-

surface points in Bloomington and Vaihingen datasets as are 

presented in Figure 4. 

 

 
Figure 4. Bloomington lidar point cloud (top) and Vaihingen off-

ground lidar points (bottom) labeled as surface (blue) and non-

surface (green) points.  

 

5.3. Labeling of Individual Buildings 

The distance thresholds we used for clustering the building 

points with DBSCAN were 3 m and 1 m for Bloomington and 

Vaihingen datasets respectively. These values were determined 

approximately based on the n x n grid neighborhood around the 

points. Since along and cross-track point spacing may be 

different in airborne lidar data, neighborhood is identified to be 

large enough to provide the connection between the scan lines. 

Minimum number of points we required to exist in a cluster was 

four points for both datasets. The labels which consist of less 

than a minimum number of points that would not constitute a 

building roof were removed from the building points once all 

clustering was done and all tiles were combined in one dataset. 

We set the minimum number of building points to 20 for the 

Bloomington dataset and 30 for the Vaihingen dataset. Finally, 

any remaining point with less than the desired number of 

minimum neighbors within a distance 𝑅 to the point were 

removed as the post process noise removal step. Figure 5 below 

shows the final labeling of individual buildings for Bloomington 

and Vaihingen datasets respectively. Surface points in the 

Bloomington dataset include the ground points since ground 

filtering is applied after this classification. 

 

 

   
Figure 5. Building extraction result for Bloomington (a,b) and 

Vaihingen (c,d) datasets. (a,c): Points randomly colored for each 

individual building. (b,d): Points depicted as ground (brown), 

off-ground non-building (green), and building (red) classes. 

 

5.4. Labeling of Individual Roof Planes 

For the Bloomington and Vaihingen datasets, we have calculated 

the surface normal for each point within the spherical 

neighborhood with 𝑅 = 3.6m and 𝑅 = 1.2m respectively which 

correspond to a 5x5 neighborhood based on point density. 

Smoothness cost parameter was set to be 𝜎 = 5 for both datasets. 

a 

b 

c d 
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We applied the smoothness costs weights as twice and four times 

the data cost weights for Bloomington and Vaihingen datasets 

respectively. Several examples comparing the initial watershed 

segmentation and the GCO optimization results for Bloomington 

and Vaihingen datasets are presented in Figure 6. 

 

 

 
Figure 6. Examples of the initial watershed segmentation (a, c) 

and GCO (b, d) results for roof plane segmentation of the 

Bloomington (a,b) and Vaihingen (c,d) datasets. 

 

6. EVALUATION AND DISCUSSION 

6.1. Building Classification 

Each point in the Vaihingen dataset provided by the ISPRS are 

labeled with one of nine different classes including a “Roof” 

class. We merged all the classes except the “Roof” class into one 

“Not Building” class and validated our results with these labels 

excluding the training samples. For the Bloomington dataset, we 

labeled all the roof points in the dataset manually for validation 

excluding the points used in training. We counted the true 

positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) number of points and calculated the true positive 

rate (TPR) - sensitivity/recall-, true negative rate (TNR) –

specificity-, false positive rate (FPR), false negative rate (FNR), 

overall accuracy, and Kappa values. Validation results are 

provided in Table 1. Figure 7 presents the building points that 

are missed during classification and points that are actually not 

building but misclassified as such for Vaihingen and 

Bloomington datasets. 

  Reference  

 Bloomington Building Not Building Σ 

C
la

ss
if

ic
a
ti

o
n

 

Building 115342 0.934 11556 0.014 126898 

Not Building 8139 0.066 794766 0.986 802905 

Σ 123481 806322 929803 

Accuracy: 0.979 Kappa: 0.909 

      
Vaihingen      

Building 134257 0.931 12599 0.023 146856 

Not Building 9883 0.069 540543 0.977 550426 

Σ 144140 553142 697282 

Accuracy: 0.968 Kappa: 0.902 

Table 1. Confusion matrix presenting the TP, FP, TN, and FN 

number of points, TPR (sensitivity/recall), TNR (specificity), 

FPR, FNR, accuracy, and Kappa values for the Bloomington 

(top) and Vaihingen (bottom) building extraction results.   

Typical mislabeling that we have observed were mainly due to i) 

trees that are too close to the rooftops, ii) dense treetops that 

resemble surfaces, iii) variable vertical sampling of the trees 

which results with insufficient points in the points’ 

neighborhoods to reflect the non-surface nature of the trees. The 

first two issues are closely related to the physical properties of 

the environment. For the third issue where the neighborhood is 

not large enough to define the geometric properties of the trees 

that are relatively sparsely sampled, one may choose to expand 

the neighborhood as long as this expansion doesn’t exceed the 

distances that affect the separation of the objects in the spatial 

domain. One may expand the neighborhood if the average point 

density is high enough. Then, the neighborhood will cover the 

3D structure of relatively sparsely sampled trees when expanded. 

Also, it won’t be exceeding the distance that two objects may 

comfortably be separated from each other. One potential solution 

to the neighborhood size problem even for sparse sampling 

would be adjusting it to the local characteristics of the point 

cloud. This would in return add to the computational cost. 

 

           

   

   
Figure 7. Building extraction results for Vaihingen (top) and 

Bloomington (middle &bottom) datasets with reference labeling. 

 

6.2. Roof Plane Segmentation 

We have selected 20 buildings from the reference dataset each 

with at least two roof planes and manually labeled each roof 

plane. Then we have calculated a confusion matrix for each 

building roof by comparing the hand labeled roof planes and the 

roof plane segmentation results. Table 2 below provides overall 

accuracy values calculated for each building and the average 

accuracy for 20 buildings. Accuracy value for each building is 

calculated as the ratio of the points identified on the correct 

reference plane to the total number of points. A visual inspection 

of the results shows that there is a trade-off between smoothness 

and the level of detail that needs to be preserved. This trade-off 

varies based on the point density. The two attachments as seen 

a 

d 

b 

c 
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in Figure 8 that are circled in red were not identified as different 

roof planes mainly due to their scale considering the point 

density of the dataset. Further investigation with more labeled 

reference data would be needed for a more robust evaluation that 

would provide better insight on the generalization potential of 

the approach. It should also be noted that the accuracy values in 

Table 2 is expected to be biased towards higher accuracies since 

larger planes with higher number of points are likely to be well 

detected.  

 

 
Figure 8. Example of a partially failed case of roof plane 

segmentation in the Vaihingen dataset due to the scale of the 

detail to be preserved. Left: Initial watershed segmentation 

result. Right: Final segmentation after GCO optimization. 

 

Building 

ID 
# Points 

# Planes 

(Reference) 

# Planes 

(Segmentation) 
% Accuracy 

1 1672 3 7 97.0 

2 1280 4 5 83.8 

3 805 2 3 97.5 

4 1413 2 2 98.4 

5 5854 2 4 94.6 

6 2406 3 6 94.6 

7 2198 3 7 87.5 

8 2250 3 7 99.5 

9 4200 4 8 67.4 

10 1961 4 6 93.7 

11 3728 2 6 97.9 

12 2436 4 8 96.1 

13 988 10 13 88.7 

14 6648 3 7 94.9 

15 1620 5 5 97.5 

16 1390 3 5 94.8 

17 687 6 7 66.8 

18 3675 3 7 96.0 

19 774 5 5 84.2 

20 2613 3 8 93.3 

  Avg. Accuracy: 91.2 

Table 2. Roof plane segmentation accuracies for 20 reference 

building roofs in the Vaihingen dataset. 

 

7. CONCLUSION 

This study has established a methodology for the point labeling 

problem based on the MRF formulation coupled with graph-cut 

optimization with the final objective of building extraction. We 

specified three different labeling tasks, namely, ground filtering, 

surface and non-surface classification, and roof plane 

segmentation, framed as an optimization problem on graphs and 

employed an efficient graph-cut algorithm to determine 

buildings using only 3D coordinates of airborne lidar points. At 

each labeling stage, we identified relevant point features and 

used these features to calculate the data costs and smoothness 

costs that are designed to calculate the global cost of labeling all 

points according to the nature of each labeling problem. Finally, 

we have labeled each point by minimizing the overall cost via 

graph-cut optimization on the graphs that we have formulated 

our labeling problems with. 

 

Our framework could successfully label points in point clouds 

with different characteristics for all three labeling problems we 

have introduced. We have tested our approach for building 

extraction in two airborne lidar point cloud datasets with 

different point densities. Test results for building vs. non-

building point labeling show that we could achieve a 97.9% 

overall accuracy with a kappa value of 0.91 for the lower point 

density dataset (1.18 pts/m2) and a 96.8% accuracy with a kappa 

value of 0.90 for the higher point density dataset (8.83 pts/m2). 

Roof plane segmentation results provided 91.2% overall 

accuracy calculated with reference to the manually labeled roof 

planes of 20 buildings. 

 

In surface and non-surface point classification, we have used 

feature vectors that represent the most fundamental geometric 

properties we were interested in. Even though training data were 

used to calculate data costs, distinctive class separation that we 

have observed in our tests suggests the possibility of using the 

same training data for similar datasets. Instead of directly using 

features extracted in each point’s neighborhood for 

classification, we introduced Multi-level Local Feature 

Histograms (MLFH), as more robust descriptors in the point 

labeling process. MLFHs consider the distribution of the features 

calculated for each point in a point’s neighborhood instead of 

relying only on one multi-valued feature vector for that point. 

 

MRF formulation coupled with graph-cut optimization enabled 

the points to be labeled with the consideration of spatial 

coherence. Points which would otherwise be mislabeled were 

penalized to conform to their surrounding points’ labeling within 

determined smoothness criteria. 

 

Several issues arise in our framework regarding its labeling 

performance. In surface classification, misclassifications 

occurred for both surface and non-surface classes. Some of these 

misclassifications were due to insufficient sampling. Some 

others were due to a combination of point neighborhood radius 

selection and proximity of surface and non-surface features. 

Incorporating an adaptive neighborhood in our framework can 

possibly eliminate part of these misclassifications. Another 

adjustment to our method with potential improvement prospect 

is using additional point features which can help identify 

additional properties of the local neighborhood like edges and 

corners. In the next stage, we also plan to make a thorough 

quantitative evaluation in comparison with other approaches. 
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