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ABSTRACT: 

 

Fast and efficient detection and reconstruction of buildings have become essential in real-time applications such as navigation, 3D 

rendering, augmented reality, and 3D smart cities. In this study, a modern Deep Learning (DL)-based framework is proposed for 

automatic detection, localization, and height estimation of buildings, simultaneously, from a single aerial image. The proposed 

framework is based on a Y-shaped Convolutional Neural Network (Y-Net) which includes one encoder and two decoders. The input 

of the network is a single RGB image, while the outputs are predicted height information of buildings as well as the rooflines in three 

classes of eave, ridge, and hip lines. The extracted knowledge by the Y-Net (i.e. buildings’ heights and rooflines) is utilized for 3D 

reconstruction of buildings based on the third Level of Detail (LoD2). The main steps of the proposed approach are data preparation, 

CNNs training, and 3D reconstruction. For the experimental investigations airborne data from Potsdam are used, which were provided 

by ISPRS. For the predicted heights, the results show an average Root Mean Square Error (RMSE) and a Normalized Median Absolute 

Deviation (NMAD) of about 3.8 m and 1.3 m, respectively. Moreover, the overall accuracy of the extracted rooflines is about 86%. 

 

 

1. INTRODUCTION 

Buildings are the most prominent objects in urban scenes, thus 

measuring and analyzing 3D shapes and positions of buildings 

are essential for many applications such as 3D map updating, 

urban management, smart cities, monitoring, navigation and 

mapping, civil infrastructure inspection, and scene 

understanding. Hence, a considerable number of researches is 

dedicated to automatic building detection, localization, and 

reconstruction in photogrammetry and remote sensing.  

As a general categorization, current algorithms for 3D Building 

Reconstruction (3DBR) can be divided into three basic methods: 

data-driven (Awrangjeb et al., 2018; Cheng et al., 2011; Kim and 

Shan, 2011; Sampath and Shan, 2010; Yan et al., 2017), model-

driven (Huang et al., 2011; Partovi et al., 2015; Zhang et al., 

2014; Zheng et al., 2017), and hybrid methods (Wang et al., 2016; 

Xiong et al., 2015). The differences between the data-driven and 

model-driven methods have been discussed in previous studies 

(Tarsha-Kurdi et al., 2006; R. Wang et al., 2018).  

The remotely sensed data such as stereo aerial and satellite 

images or LiDAR data are the main sources to extract 3D 

information of urban objects using photogrammetry techniques. 

However, these data sources are not available everywhere and 

generation of updated Digital Surface Models (DSMs) needs a 

considerable amount of effort, time, and cost, especially for large 

areas. On the other hand, sometimes, it is not possible to capture 

images from different views to reconstruct 3D models because of 

obstacles and occluded areas or the limited acquisition time.  

To address this issue, many investigations are attempting to 

reconstruct 3D scenes from monocular images such as single 

satellite and aerial images as a low-cost solution for rapid 3D 

mapping and fast 3D visualization and rendering of urban scenes. 

As widely known 3D reconstruction from a single satellite or 

aerial image is a difficult ill-posed problem because of inherent 
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ambiguities related to the scale and shape of the object. However, 

it is possible to extract structural information of the objects or 

measure the topology and geometry constraints from a single 

image in order to generate 3D models.  

One of the state-of-the-art techniques to extract high-level 

information from a single remotely sensed image is based on 

deep learning-based algorithms and Convolutional Neural 

Networks (CNNs). The high-level information is semantic or 

geometric features such as depth or height of objects, land cover 

labels, textures, or camera exterior parameters that can be 

integrated to reconstruct the 3D shape of an object. However, 

buildings’ heights or footprints are not sufficient for 3D 

reconstruction of buildings and geometric structures of building 

roofs such as planes and linear elements of roofs are required for 

3DBR. 

In this paper, the proposed approach for 3DBR is based on 

extracting the high-level knowledge from an RGB image and 

forming them to generate parametric models. The required 

knowledge for 3DBR includes the location of buildings, the 

linear elements of building roofs (i.e. rooflines) such as eave, 

ridge, and hip lines as well as the heights of buildings (e.g. 

normalized DSMs), which are effective to reduce the complexity 

of reconstruction. However, extracting 3D information from a 

single 2D image is impossible and under constraint theoretically. 

Therefore, a novel method including a Y-shaped Convolutional 

Neural Network (Y-Net) is employed to extract nDSM as well as 

segmented linear elements of building roofs, simultaneously, 

from single RGB images. This work’s contributions are as 

follows. 

 3D parametric models of buildings (LoD2) can be 

constructed from a single RGB image contributing to a 

better understanding and interpreting the 3D scenes in real-

time applications; 
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 Unlike the traditional photogrammetric techniques for 

3DBR from a single image, the proposed method can extract 

the height information from non-oblique and nearly vertical 

single images using a CNN; 

 Since nDSMs and rooflines share high-level features and 

representations of a building, the geometric structures of 

buildings can be learned efficiently during a two-stream 

network training.  

 

2. RELATED WORK 

There are several studies for 3D reconstruction of objects from a 

single image using photogrammetry techniques. These studies 

are mostly relying on detecting vanishing features (e.g. points 

and lines) as well as estimating the camera calibration parameters 

from oblique images. One of the earliest studies to restore 3D 

information from a single image is based on deriving geometric 

constraints such as image lines and object topologies during 

image interpretations (Van Den Heuvel, 1998). (Jizhou et al., 

2004) proposed a framework to extract the height of buildings 

from an oblique UAV-based image. Their framework is based on 

the extraction of parallel lines and view angles of buildings. 

However, they also employed digital maps to calculate the scale 

of 3D models. (González-Aguilera et al., 2005) developed a 

software to extract 3D models based on vanishing points 

geometry of an oblique image. Later, they improved the accuracy 

of extracting vanishing points and lines using the RANSAC 

algorithm (Gonzalez-Aguilera and Gomez-Lahoz, 2008). 

Nowadays, deep learning algorithms have shown remarkable 

performances in the automatic 3D reconstruction of objects from 

single RGB images in computer vision applications (Fan et al., 

2016; Henderson and Ferrari, 2019; J. Wang et al., 2018; Wu et 

al., 2017). In photogrammetry and remote sensing, CNNs can be 

employed to extract height information such as DSMs from 

single aerial or satellite-based images (Amini Amirkolaee and 

Arefi, 2019; Ghamisi and Yokoya, 2018), as well as building 

detection and footprints extraction (Aamir et al., 2019; Wu et al., 

2018; Xu et al., 2018; Yang et al., 2018). (Li et al., 2019) used 

two independent CNNs for land cover classification and building 

height estimation from single satellite images. The CNN for 

height estimation task is a fully connected network and estimates 

a fixed height value for each building block for 3D reconstruction 

in LoD1. (Tripodi et al., 2019) employed the U-Net to extract the 

building footprints from single satellite images. Since the 

footprints have no extra information about the shapes of the 

building roofs, the final 3D models are in LoD1 only.   

 
3. PROPOSED METHOD 

As shown in Figure 1, the proposed framework for 3DBR based 

on the Y-Net includes three main steps as data preparation, CNN 

training, and 3D reconstruction. First, a training dataset is 

generated for height prediction and roofline extraction. Next, a 

Y-shaped CNN is designed which includes one encoder block to 

extract features from input images and two decoder blocks to 

convert extracted features to nDSMs as well as rooflines. After 

training the Y-Net using the generated training dataset, it is 

applied to a test image to extract the essential knowledge of 

3DBR. In the third step of the proposed approach, predicted 

rooflines and nDSMs are combined together in order to generate 

parametric models of buildings in LoD2, according to the 

CityGML Standard. The summary of each step and their main 

components are given in the following sub-sections. 

 

 

Figure 1. The flowchart of the proposed method 

 

3.1 Data Preparation 

The main data used in this study include aerial orthophotos and 

the corresponding DSMs. On the other hand, the required training 

dataset for the proposed framework should be composed of RGB 

images (Figure 2, a) and corresponding nDSMs (Figure 2, b) as 

well as rooflines (Figure 2, c). Therefore, the Digital Terrain 

Models (DTMs) are first generated from DSMs by employing the 

progressive TIN densification algorithm (Axelsson, 2000), and 

then nDSMs are calculated by subtracting DTMs from DSMs. 

The nDSMs include the absolute height values of urban objects 

from the bare Earth. To generate corresponding rooflines, the 

aerial orthophotos are manually digitized for linear elements of 

individual roofs into three classes of eave, ridge, and hip lines. 

Next, the vector-based data are converted to raster images 

including three RGB channels for three classes of rooflines (i.e. 

R for eave lines, G for ridge lines, and B for hip lines), as shown 

in Figure 2, c.  

In the pre-processing step, several image tiles are cropped from 

the generated training dataset and resized to the size of 

224×224×n, so that n is equal to 3 for orthophotos and rooflines, 

and 1 for nDSM tiles. Moreover, the number of training samples 

increases using different data augmentation techniques such as 

scaling, rotating, and flipping operations.  

 

 
a b c 

Figure 2. A sample of generated training data including a: the 

RGB image; b: the nDSM; c: rooflines 

 

3.2 CNN Training 

In this paper, a novel convolutional-deconvolutional network (Y-

Net) is proposed to extract the height data and rooflines, 

simultaneously from a single image. The network includes one 

encoder and two decoders. The structure of the Y-Net is shown 

in Figure 3. The encoder extracts the high levels of features from 

RGB images.  
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The first part of the encoder is an inception-based module with 

three different sizes of filters (i.e. 1×1, 3×3, and 5×5) which 

allows the network to take advantage of multi-level features 

extraction and improves the generalization capability of the 

network. For instance, it extracts general (5×5) and local (1×1) 

features at the same time. Next, there are 7 convolutional layers 

followed by Batch Normalization (BN) and Rectified Linear Unit 

(ReLU) layers to generate feature maps, as well as three max-

pooling layers to reduce the size of feature maps by a factor of 2. 

The convolutional layers include 3 × 3 kernels with a stride of 1 

and the max-pooling layers include 2 × 2 kernels with a stride of 

2. In the last part of the encoder, there are three modified residual 

blocks. The ideas of skip connections and residual blocks are first 

introduced in the study by (He et al., 2016). However, the ReLU 

layers perturb the data flowing through identity connections. 

Therefore, compared to the original residual block, in the 

proposed architecture, the ReLU layers are removed after 

addition in order to boost the performance of the network.  

Y-Net includes two decoders which are exactly the opposite of 

the encoder. One of the decoders contains the parameters of a 

regression-based model to convert high-level features into height 

values of objects (nDSMs), while the other one is for a 

segmentation-based problem and converts features into rooflines. 

Since nDSMs and rooflines share the same high-level features 

and representations of buildings, we applied a weight-sharing 

constraint between three convolutional layers of two decoders. 

By sharing features between two decoders, the network is able to 

estimate more accurate nDSMs for rooflines which are important 

for 3DBR. The size of the input is 224×224×3, while the output 

sizes are 224×224×1 and 224×224×3 for predicted nDSMs and 

rooflines, respectively.  

To train Y-Net, random initial values are considered for training 

parameters. Moreover, the berHu loss function (Laina et al., 

2016) is applied for nDSM prediction, given by Equation 1. 

While the logistic log loss is used for roofline segmentation, 

given by Equation 2. The combination of the loss functions is 

utilized as Equation 3 and the network is trained using the 

ADAM optimizer (Kingma and Ba, 2015). 

 

𝐿1(𝑥) = {

|𝑥|                 |𝑥| ≤ 𝑐

𝑥2 + 𝑐2

2𝑐
        |𝑥| > 𝑐

   
(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, x is the difference between the predicted and ground truth 

values, and c is 20% of the maximal per-batch error.  

 

𝐿2(𝑥, 𝑐) = log (1 + exp (−𝑐. 𝑥)) (2) 

 

where, c is a binary attribute of ground truth values in (+1, -1). 

Here, +1 denotes the presence of an attribute, and -1 denotes its 

absence. 

 

𝐿 = 𝐿1(𝑥) + 𝛼 𝐿2(𝑥, 𝑐)  (3) 

 

where,  is a scale factor for combining two loss functions and 

equals to 0.001, in this study.  

 

3.3 3D Reconstruction 

The proposed approach for 3DBR from a single image relies on 

extracting the essential geometrical knowledge of buildings such 

as nDSMs (Figure 6, b) and rooflines (Figure 6, c) by applying 

the trained Y-Net to a test image (Figure 6, a), as shown in Figure 

6. The predicted rooflines in three classes of eave, ridge, and hip 

lines are used to define the locations and orientations of 

individual building parts. In this approach, most of the building 

blocks are decomposed into the individual building parts 

including flat, gable or hip buildings by analysing of the 

predicted rooflines. In the first step of proposed approach for 

3DBR, the predicted rooflines are pre-processed to remove all 

small and noisy segments. Next, binary polygons of building 

blocks (Figure 6, e) are generated using the first channel of 

rooflines which is mostly composed of eave lines (Figure 6, d). 

The Minimum Bounding Rectangle (MBR)-based technique 

(Arefi and Reinartz, 2013) is then employed to enhance the 

binary polygons and convert them to the regularized and 

approximated polygons (Figure 6, f). The approximated binary 

polygons are initial primitives for the prismatic models of 

building blocks (i.e. LoD1). Next, a rule-based search technique 

(Alidoost et al., 2019) is utilized to decompose the building 

blocks into individual buildings (Figure 6, g). To this end, the 

approximated binary polygons and eave lines are rotated based 

on the main orientation of the building block. Next, for each 

binary polygon, all vertical or horizontal eave lines inside the 

polygon and with the endpoints on the boundary of the polygon 

 

Figure 3. The proposed Y-Net 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-321-2020 | © Authors 2020. CC BY 4.0 License.

 
323



 

are searched. These lines are separator lines which divide 

building blocks into the individual roofs (Figure 4).  

The second channel of the predicted rooflines contains the ridge 

lines (Figure 6, h), which is utilized to generate parametric 

models of buildings (i.e. LoD2). The individual ridge line for 

each individual building is extracted by analyzing the predicted 

ridge lines inside each binary polygons (Alidoost et al., 2019). A 

polyline that is parallel to the main orientation of the individual 

roof and crossing the center of the polygon is the main ridge line, 

as shown in Figure 5, b. Then, an optimized line is fitted to the 

candidate polyline to generate the regularized ridge line for the 

roof (Figure 5, c). The ridge line is extended if the distances 

between the endpoints and the eave lines are less than 3 m. 

Finally, the hip lines can be reconstructed by connecting the 

endpoints of ridge lines to the vertexes of approximated polygons 

and the median height values of the eave, ridge and hip lines are 

then extracted from the predicted nDSMs to generate the final 3D 

models (Figure 6, k). 

 

 
a b c d 

Figure 4. The rule to detect individual building roofs: a: the 

predicted rooflines; b: the binary polygon of eave lines; c: The 

approximated binary polygon, corresponding eave lines, and 

horizontal and vertical lines; d: individual building parts 

 

 
a b c 

Figure 5. The ridge line detection strategy: a: original ridge lines; 

b: the ridge line parallel to the main orientation of the polygon; 

c: the best fitted ridge line 

 

 

Figure 6. 3D reconstruction of individual building parts: a: the 

RGB image; b: the predicted rooflines; c: the predicted nDSM; 

d: the predicted eave lines, e: the binary polygon; f: the 

approximated polygon; g: the decomposed polygons; h: the 

predicted ridge lines; i: the best fitted ridge line; j: The final roof 

elements; k: 3D models of building parts 

4. EXPERIMENTS AND RESULTS 

To evaluate the performance of the proposed approach, an 

airborne dataset from Potsdam, Germany, provided by ISPRS 

(ISPRS, 2018), is used which consists of very high-resolution 

true orthophoto tiles with a ground sampling distance (GSD) of 

5 cm and corresponding DSMs derived from dense image 

matching techniques. Two non-overlapping areas of this dataset 

are selected for training the Y-Net and 3D reconstruction, as 

shown in Figure 7. The training dataset includes 4,800 tiles of 

RGB images, nDSMs, and rooflines which are increased to 

24,000 tiles with a size of 224×224 after data augmentation. The 

Y-Net was trained using the training dataset on a single NVIDIA 

GTX 1080 Ti with a batch size of 10 for 100 epochs. The learning 

rate, beta 1, beta 2, and epsilon parameters are selected as 0.01, 

0.9, 0.999, and 1 × 10−8 for the Adam optimizer. 

 

 

Figure 7. Overview of training and testing datasets 

 

In addition to test data from Potsdam (e.g. Areas 1-4 in Table 1), 

the second dataset from Zeebrugge, Belgium (IEEE, 2015)  

consisting of a true ortho-photo with a GSD of 5 cm and LiDAR 

data with a 10 cm point spacing is also employed to assess the 

transferability of the trained network (e.g. Area 5 in Table 1). 

The trained Y-Net is applied to the testing RGB images and the 

predicted nDSMs and rooflines are shown in Figure 8, compared 

to the ground truth data. The accuracy of the estimated nDSMs is 

evaluated based on standard metrics such as Mean Error (ME), 

Standard Deviation (SD), Root Mean Square Error (RMSE), 

Relative Error (REL), and Root Mean Squared Logarithmic Error 

(RMSLE), as well as robust statistical metrics such as Median 

Error (MeE), Normalized Median Absolute Deviation (NMAD), 

Quantile 68.3% (Q68.3), and Quantile 95% (Q95), as reported in 

Table 1. Also, the results are compared to other studies for the 

nDSM prediction task for testing areas in Table 2. Since there are 

random noises, outliers, and systematic errors in the predicted 

nDSMs, robust metrics are useful to have accurate and reliable 

assessments.   

 

Metric [m] Testing Areas Ave. 

 Area1 Area2 Area3 Area4 Area5 All 

ME  1.62 1.59 1.49 2.27 1.95 1.78 

SD  1.48 1.15 1.39 1.46 1.09 1.31 

RMSE 3.84 3.46 3.75 4.24 3.51 3.76 

RMSLE 0.03 0.03 0.03 0.04 0.34 0.09 

REL [%] 0.07 0.07 0.07 0.08 0.72 0.20 

MeE 1.15 1.38 1.02 2.02 1.92 1.50 

NMAD 1.25 1.14 1.00 1.66 1.32 1.27 

Q68.3 2.00 1.99 1.66 2.99 2.58 2.24 

Q95 4.86 3.95 4.67 4.95 3.74 4.43 

Table 1. The accuracy of the predicted nDSMs  
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According to the Table 1, the average RMSE of the predicted 

nDSMs for all areas is about 3.76 m, while the SD is about 1.31 

m. As a result, the distribution of errors is not normal and there 

are outliers or systematic errors in the predicted nDSMs. 

Therefore, the NMAD, which is about 1.27 m, is more reliable 

metric to report the accuracy of the results.  

 

Methods Metrics 

 
RMSE 

[m] 

RMSLE 

[m] 

REL  

[%] 

GAN (Ghamisi and 

Yokoya, 2018) 
3.89 - - 

FCRN (Amini Amirkolaee 

and Arefi, 2019) 
3.47 0.26 0.57 

Proposed Y-Net 3.76 0.09 0.20 

Table 2. Comparison between the proposed Y-Net and the state-

of-the-art methods for nDSM prediction over Potsdam dataset  

 

As shown in Figure 8, not only the linear elements of roofs are 

extracted appropriately, but the buildings are also classified and 

distinguished from non-building objects such as trees and roads. 

The accuracy and quality of the predicted rooflines are calculated 

using the standard quality measures of completeness (or recall), 

correctness (or precision), quality (McGlone and Shufelt, 1994; 

McKeown et al., 2000), the F1 score, and Overall Accuracy 

(OA), given by Equation (4). 

 

𝐶𝑜𝑚𝑝. =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
;  𝐶𝑜𝑟𝑟. =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
;  

𝑄𝑢𝑎𝑙. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
;  𝐹1 = 2.

𝐶𝑜𝑟𝑟.  ×  𝐶𝑜𝑚𝑝.

𝐶𝑜𝑟𝑟. + 𝐶𝑜𝑚𝑝.
 

(4) 

 

where, TP is the true positive, FP is the false positive, and FN is 

the false negative. The quality measures of testing areas for each 

class of rooflines (e.g. eave, ridge, and hip lines) are presented in 

Table 3.  

 

Metric Roof

-line 
Testing Areas Ave 

  Area1 Area2 Area3 Area4 Area5 All 

TP eave 395882 116240 398803 251229 88667 - 

ridge 67239 32620 58738 38707 21643 - 

hip 29282 19068 19919 32301 7191 - 

FN eave 28715 5486 36367 20055 5057 - 

ridge 49265 4966 66074 21705 6400 - 

hip 10311 2857 14446 11276 5640 - 

FP eave 24945 6690 43957 21705 6357 - 

ridge 15497 4946 20052 11335 4072 - 

hip 47849 1673 52878 23625 6668 - 

Comp. 

[%] 

eave 93.2 95.5 91.6 92.6 94.6 93.5 

ridge 57.7 86.8 47.1 64.1 77.2 66.6 

hip 73.9 86.9 57.9 74.1 56.0 69.8 

Corr. 

[%] 

eave 94.1 94.5 90.0 92.0 93.3 92.8 

ridge 81.3 86.8 74.5 77.3 84.2 80.8 

hip 37.9 91.9 27.4 57.7 51.9 53.4 

Qual. 

[%] 

eave 88.1 90.5 83.2 85.7 88.6 87.2 

ridge 50.9 76.7 40.5 53.9 67.4 57.9 

hip 33.5 80.8 22.8 48.1 36.9 44.4 

F1 

[%] 

eave 93.6 95.0 90.8 92.3 93.9 93.2 

ridge 67.5 86.8 57.7 70.1 80.5 72.5 

hip 50.2 89.4 37.2 64.9 53.9 59.1 

OA 84.8 92.6 85.0 80.3 87.3 86.0 

Table 3. The accuracy of the predicted rooflines  

 

The results in Table 3 show that the eave lines are estimated with 

higher precision (about 92.8%) than ridge and hip lines (about 

80.8% and 53.4%, respectively). Accordingly, the trained Y-Net 

is able to distinguish between building and non-building objects 

better and there are some misclassification errors in ridge and hip 

lines. 

Finally, the extracted nDSMs and rooflines are employed for 3D 

reconstruction of buildings. Since the predicted nDSM includes 

some outliers as well as systematic errors, the median of height 

values is considered for modeling of each individual roof. On the 

other hands, the rooflines, which are extracted completely and 

correctly, are only utilized to generate approximated binary 

polygons. Accordingly, the 3D parametric models of buildings 

can be reconstructed by assigning the height values to the binary 

polygons and ridge lines, as shown in Figure 9. The geometrical 

accuracy of generated 3D models is measured based on the 3D 

coordinates of roof planes’ vertexes, compared to the ground 

truth, and reported as RMSxy and RMSz measures. 

Experimentally we found that the RMSxy value of 3D models is 

less than 0.5 m, while the RMSz value is about 3.8 m which is 

within the accuracy range of the predicted nDSMs. In addition, 

the quality measures of building footprints in Figure 9 are 

reported in Table 4, inspired by the ISPRS guideline for 

evaluation of building reconstruction (Rottensteiner, 2013). The 

average values for completeness, correctness, quality and F1 

score are 97.4%, 91.8%, 89.3%, and 81.9%, respectively. 

 

Metric Testing Buildings 

 B1 B2 B3 B4 B5 B6 B7 

TP 446263 239275 80112 241759 124842 44612 175248 

FN 19445 6199 1364 0 13831 0 4 

FP 11325 23422 12009 54927 631 2997 14209 

Comp. 

[%] 
95.8 97.5 98.3 100 90.0 100 100 

Corr. 

[%] 
97.5 91.1 86.9 81.5 99.5 93.7 92.5 

Qual. 

[%] 
93.5 88.9 85.7 81.5 89.6 93.7 92.5 

F1 

[%] 
96.7 94.2 92.3 89.8 94.5 96.7 96.1 

Table 4. The accuracy of the building footprints 

 

Although the accuracy of the predicted nDSMs from single 

images using deep learning techniques such as the Y-Net is not 

comparable to the high- resolution DSMs extracted from LiDAR 

data or image matching techniques, they are valuable information 

for specific applications such as real-time navigation, rapid 3D 

rendering, land cover classification using RGB-depth fusion 

techniques, urban growing, change detection and so on. 

 

5. CONCLUSION 

In this study, we presented a novel approach based on supervised 

deep learning techniques to extract nDSMs and rooflines of 

buildings from a single aerial image and generate the parametric 

models in LoD2.Unlike existing methods in photogrammetry and 

remote sensing that require both ortho images and high-

resolution DSMs, the proposed method uses the single RGB 

images and the power of CNNs to extract the valuable 

information which is essential for 3D representations of 

buildings. Although we have some limitations to produce the 

proper training dataset for rooflines, the results show the 

reasonable performance of the proposed Y-Net to predict 

rooflines with the overall accuracy of 86%, and predict the 

nDSMs with the RMSE of 3.8 m for different test datasets.  
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a b c d e 

Figure 8. The results of the predicted nDSMs and rooflines: a: the input RGB images from two test datasets; b: the 

reference nDSMs; c: the predicted nDSMs; d: the reference rooflines; e: the predicted rooflines 
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