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ABSTRACT:

Point cloud datasets for perception tasks in the context of autonomous driving often rely on high resolution 64-layer Light Detection
and Ranging (LIDAR) scanners. They are expensive to deploy on real-world autonomous driving sensor architectures which usually
employ 16/32 layer LIDARs. We evaluate the effect of subsampling image based representations of dense point clouds on the
accuracy of the road segmentation task. In our experiments the low resolution 16/32 layer LIDAR point clouds are simulated by
subsampling the original 64 layer data, for subsequent transformation in to a feature map in the Bird-Eye-View(BEV) and Spherical-
View (SV) representations of the point cloud. We introduce the usage of the local normal vector with the LIDAR’s spherical
coordinates as an input channel to existing LoDNN architectures. We demonstrate that this local normal feature in conjunction with
classical features not only improves performance for binary road segmentation on full resolution point clouds, but it also reduces
the negative impact on the accuracy when subsampling dense point clouds as compared to the usage of classical features alone.
We assess our method with several experiments on two datasets: KITTI Road-segmentation benchmark and the recently released
Semantic KITTI dataset.

1. INTRODUCTION

Modern day LIDARs are multi-layer 3D laser scanners that en-
able a 3D-surface reconstruction of large-scale environments.
They provide precise range information while poorer semantic
information as compared to color cameras. They are thus em-
ployed in obstacle avoidance and SLAM (Simultaneous loc-
alization and Mapping) applications. The number of layers
and angular steps in elevation & azimuth of the LIDAR char-
acterizes the spatial resolution. With the recent development
in the automated driving (AD) industry the LIDAR sensor in-
dustry has gained increased attention. LIDAR scan-based point
cloud datasets for AD such as KITTI usually were generated
by high-resolution LIDAR (64 layers, 1000 azimuth angle pos-
itions (Fritsch et al., 2013)), referred to as a dense point cloud
scans. In recent nuScenes dataset for multi-modal object detec-
tion a 32-Layer LIDARs scanner has been used for acquisition
(Caesar et al., 2019). Another source of datasets are large-scale
point clouds which achieve a high spatial resolution by aggreg-
ating multiple closely-spaced point clouds, aligned using the
mapping vehicle’s pose information obtained using GPS-GNSS
based localization and orientation obtained using inertial mo-
ment units (IMUs) (Roynard et al., 2018). Large-scale point
clouds are employed in the creation of high-precision semantic
map representation of environments and have been studied for
different applications such as detection and segmentation of
urban objects (Serna, Marcotegui, 2014). We shall focus on
the scan-based point cloud datasets in our study.

Road segmentation is an essential component of the autonom-
ous driving tasks. In complement with obstacle avoidance,
trajectory planning and driving policy, it is a key real-time
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task to extract the drivable free space as well as determine the
road topology. Recent usage and proliferation of DNNs (Deep
neural networks) for various perception tasks in point clouds
has opened up many interesting applications. A few applica-
tions relating to road segmentation include, binary road seg-
mentation (Caltagirone et al., 2017) where the goal is classify
the point cloud set into road and non road 3D points. Ground
extraction (Velas et al., 2018) regards the problem of obtain-
ing the border between the obstacle and the ground. Finally,
recent benchmark for semantic segmentation of point clouds
was released with the Semantic-KITTI dataset by (Behley et al.,
2019). In Rangenet++ (Milioto, Stachniss, 2019) authors eval-
uate the performance of Unet & Darknet architectures for the
task of semantic segmentation on point clouds. This includes
the road scene classes such as pedestrians, cars, sidewalks, ve-
getation, road, among others.

1.1 Motivation & Contributions

We first observe that different LIDAR senor configurations pro-
duce different distribution of points in the scanned 3D point
cloud. The configurations refer to, LIDAR position & orient-
ation, the vertical field-of-view (FOV), angular resolution and
thus number of layers, the elevation and azimuth angles that the
lasers scan through. These differences directly affect the per-
formance of deep learning models that learn representations for
different tasks, such as semantic segmentation and object detec-
tion. Low-resolution 16 layer LIDARs have been recently com-
pared with 64 layer LIDARs (del Pino et al., 2017) to evaluate
the degradation in detection accuracy especially w.r.t distance.
From Table 1 we observe that the HDL-64 contains 4x more
points than VLP-16. This increases the computational time &
memory requirements (GPU or CPU) to run the road segmenta-
tion algorithms. Thus, it is a computational challenge to process
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LIDAR Velodyne HDL-64 Velodyne HDL-32 Velodyne VLP-16
Azimuth [0◦, 360◦)

step 0.18◦
[0◦, 360◦)

step 0.1◦ − 0.4◦
[0◦, 360◦)
step 0.2◦

Elevation
[−24.3◦, 2◦]

step 1-32 : 1/3◦

step 33-64 : 1/2◦

[+10.67◦,−30.67◦]
1.33◦ for 32 layers

[−15◦, 15◦]
2◦ for 16 layers

Price (as reviewed on 2019) ∼ 85 k$ ∼ 20 k$ ∼ 4 k$
Effective Vertical FOV [+2.0◦,−24.9◦] [+10.67◦,−30.67◦] [+15.0◦,−15.0◦]
Angular Resolution (Vertical) 0.4◦ 1.33◦ 2.0◦

Points/Sec in Millions ∼ 1.3 ∼ 0.7 ∼ 0.3
Range 120m 100m 100m
Noise ±2.0cm ±2.0cm ±3.0cm

Table 1. Characteristics of different LIDARs from (Velodyne LiDAR, Wikipedia, n.d.). The prices are representative.

a large amount of points in real-time.

The objective of this study is to examine the effect of reducing
spatial resolution of LIDARs by subsampling a 64-scanning
layers LIDAR on the task of road segmentation. This is done to
simulate the evaluation of low resolution scanners for the task
of road segmentation without requiring any pre-existing data-
sets on low resolution scanners. The key contribution and goal
of our experiment are: First, to evaluate the impact of the point
cloud’s spatial resolution on the quality of the road segment-
ation task. Secondly, determine the effect of subsampling on
different point cloud representations, namely on the Bird Eye
View (BEV) and Spherical View (SV), for the task of road seg-
mentation. For BEV representation we use existing LoDNN
architecture (Caltagirone et al., 2017), while for SV we use a
simple U-net architecture. In Fig. 1, we demonstrate a global
overview of the methodology used. Finally, we propose to use
surface point normals as complementary feature to the ones
already used in current state of the art research. Results are
reported on the KITTI road segmentation benchmark (Fritsch
et al., 2013), and the newly introduced Semantic KITTI dataset
(Behley et al., 2019).

1.2 Related Work

LoDNN (LIDAR Only Deep Neural Networks) (Caltagirone et
al., 2017) is a FCN (Fully Convolution Network) based bin-
ary segmentation architecture, with encoder containing sub-
sampling layers, and decoder with up-sampling layers. The ar-
chitecture is composed of a core context module that performs
multi-scale feature aggregation using dilated convolutions. In
the class of non-deep learning methods, authors in (Chen et al.,
2017) built a depth image in spherical coordinates, with each
pixel indexed by set of fixed azimuth values (φ) and horizontal
polar angles (θ), with intensity equal to the radial distances (r).
Authors assume for a given scanner layer (a given φ) all points
belonging to the ground surface shall have the same distance
from the sensor along the x axis.

Authors in (Lyu et al., 2018) propose a FCN based encoder-
decoder architecture with a branched convolutional block called
the ChipNet block. It contains filters with (1 × 1 × 64 × 64,
3× 3× 64× 64, 3× 3× 64× 64) convolutional kernels in par-
allel. They evaluate the performance of road segmentation on
Ford dataset and KITTI benchmark on a FPGA platform. The
work closest to our study is by authors (del Pino et al., 2017),
where they compare a high-resolution 64-layer LIDAR with a
low-resolution system, 16-layer LIDAR , for the task of vehicle
detection. They obtain the low resolution 16-layer scans by sub-
sampling the 64-layer scans. The results demonstrate that their
DNN architecture on low resolution is able outperform their
geometric baseline approach. They also show similar tracking

performance w.r.t their high-resolution HDL-64 sensor at close
range.

Additionally (Jaritz et al., 2018) studies joint sparse-to-dense
depth map completion and semantic segmentation using NAS-
Net architectures. They work with varying densities of points
reprojected into the Front View (FV) image, that is the image
domain of the camera sensor. Authors achieve an efficient inter-
polation of depth to the complete FOV using features extracted
using early and late fusion from the RGB-image stream.

2. METHODOLOGY

A point cloud is a set of points {xk}Nk=1 ∈ R3. It is usu-
ally represented in the cartesian coordinate system where the
3-dimensions correspond to the (x, y, z). A LIDAR scan usu-
ally consists of a set of such 3D-points obtained with the sensor
as origin. In this paper each LIDAR scan is projected on an
image. The two projections we study are the Bird Eye View
(BEV) and Spherical View (SV).

The BEV image is a regular grid on the x, y plane on to which
each point is projected. Each cell of the grid corresponds to
a pixel of the BEV image. As in (Caltagirone et al., 2017)
we define a grid of 20 meters wide, y ∈ [−10, 10], and 40
meters long, x ∈ [6, 46]. This grid is divided into cells of size
0.10 × 0.10 meters. Within each cell we evaluate six features:
number of points, mean reflectivity, and mean, standard devi-
ation, minimum, and maximum elevation. Each point cloud is
thus projected and encoded in a tensor of 400× 200× 6, where
400, 200 are the BEV image height and width. We refer to the
set of these six features as BEV Classical Features (see Fig. 6).

In SV image, each point x = (x, y, z) is first represented using
spherical coordinates (ρ, ϕ, θ):


ρ =

√
x2 + y2 + z2,

ϕ = atan2(y, z),

θ = arccos(z/ρ),

and then projected on a grid over the sphere S2 = {x2 + y2 +
z2 = 1}. The size of the cells in the grid is chosen accordingly
to the Field Of View (FOV) of scanner. For instance, (Behley
et al., 2019) project point clouds to 64 × 2048 pixel images by
varying the azimuth angle (θ) and vertical angle (ϕ) into two
evenly discretised segments. In our case, we use a slightly dif-
ferent version of the SV. Instead of evenly dividing the vertical
angle axis and associating a point to a cell according to its ver-
tical and azimuth angles, we retrieve for each point the scanner
layer that acquired it and we assign the cell according to the
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Figure 1. Overall methodology to evaluate the performance of road segmentation across different resolutions. See Figures 3 for more
details on the architectures used.

position of the layer in the laser stack and the value of the azi-
muth angle. Basically, for a scanner with 64 layers we assign
the point x to a cell in row i if x has been acquired by the i-th
layer starting from the top. We decided to use this approach
because in the scanner the layers are not uniformly spaced and
using standard SV projection causes that different points col-
lide on the same cell and strips of cells are empty in the final
image as illustrated in Fig.2. In subsection 2.2, we describe how
we associate each point at the layer that captured it. However,
we underline that our method relies on the way the points are
ordered in the point cloud array.

Finally, following (Velas et al., 2018), in each grid cell we com-
pute the minimum elevation, mean reflectivity and minimum ra-
dial distance from the scanner. This information is encoded in a
three-channel image. In Fig. 7, an example of the SV projection
is shown in the first three images from the top. Since these three
features are already used in the state of the art for the ground
segmentation task, in SV we refer to SV Classical Features, as
the set of SV images composed by minimum elevation, mean
reflectivity and minimum radial length.

Standard Projection

Our Projection

Figure 2. SV projection: two cropped images showing
difference between the standard projection, and our projection.

Once extracted these feature maps we use them as input to train
DNNs for binary segmentation. We trained LoDNN model for
the case of BEV projection, and U-Net model in the case of SV
projection.

2.1 DNN models

The LoDNN architecture from (Caltagirone et al., 2017) is a
FCN designed for semantic segmentation, it has an input layer
that takes as input the BEV images, an encoder, a context mod-
ule that performs multi-scale feature aggregation using dilated
convolutions and a decoder which returns confidence map for
the road. Instead of Max unpooling layer 1 specified in (Calta-
girone et al., 2017), we use a deconvolution layer (Zeiler et al.,
2010). Other than this modification, we have followed the au-
thors implementation of the LoDNN. The architecture is repor-
ted in Fig. 3a.

The U-Net architecture (Ronneberger et al., 2015), is a FCN
designed for semantic segmentation. In our implementation of
U-Net, the architecture is made of three steps of downsampling
and three steps of upsampling. During the downsampling part
1× 2 max pooling is used to reduce the features spatial size. In
order to compare the different cases (64/32/16 scanning layers)
among them, the 64 scanning layers ground truth is used for all
the cases. For this purpose an additional upsampling layer of
size 2×1 is required at the end of the 32-based architecture and
two upsampling layers at the end of the 16. In fact the size of SV
images for the 32 scanning layer is 32× 2048. Thus without an
additional upsampling layer we would obtain an output image
whose size is 32 × 2048. Similarly, for the 16 scanning layer,
we add two upsampling layers of size 2×1 to go from 16×2048
to 64 × 2048 pixels output images. Fig. 3b, 3c & 3d illustrate
the three architectures used.

In both cases a confidence map is generated by each model.
Each pixel value specifies the probability of whether corres-
ponding grid cell of the region belongs to the road class. The
final segmentation is obtained by thresholding at 0.5 the confid-
ence map.

1In the context of DNN, a layer is a general term that applies to a
collection of ’nodes’ operating together at a specific depth within a neural
network. In the context of LIDAR scanners, the number of scanning layer
refers to the number of laser beams installed in the sensor.
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(a) LoDNN Architecture by authors (Caltagirone et al., 2017) in our experiments on BEV.
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(b) U-Net architecture used for the 64 layer.
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(c) U-Net architecture used for the 32 layer.
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(d) U-Net architecture used for the 16 layer.

Figure 3. (a) LoDNN Architecture used on BEV images. (b-d) U-Net Architectures used on SV images.
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2.2 Sub-sampling point clouds to simulate low resolution
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Figure 4. Plot containing the azimuths and vertical angles for a
single point cloud.

Currently there are no dataset available containing scans of the
same environment taken simultaneously with scanners at dif-
ferent resolutions, we simulated the 32 and 16 layer scans re-
moving layers from 64 scans. To achieve this, we first need to
associate each point within each 64 scan to the scanning layer
it was captured from. We exploit the special ordering in which
point clouds have been stored within the KITTI datasets. Fig.
4 shows the azimuth and polar angles of the sequence of points
of a single scan. We observe that the azimuth curve contains
64 cycles over 2π degrees, while polar curve globally increase.
Thus a layer corresponds to a round of 2π degrees in the vector
of azimuths. Scanning layers are stored one after another start-
ing from the uppermost layer to the lowermost one. As we step
through sequentially 2π in the azimuth angle (two zero cross-
ings), we label each point to be within the same layer. Once re-
trieved the layers, we can obtain a 32 scan removing one layer
out of two from the 64 scan, and obtain a 16 scan removing
three layers out of four. The size of SV input images changes
when we remove layers. We move from 64 × 2048 pixels for
a 64 layer scanner to 32 × 2048 pixels for the 32 layer and to
16× 2048 pixels for the 16 layer.

2.3 Surface normal extraction

Along with features used in the state of the art, we estimate sur-
face normals from the image containing radial distances in the
SV. Our method is inspired by the work of (Nakagawa et al.,
2015) where the authors estimate surface normals using depth
image gradients. Let p = (ϕ, θ) a couple of angles in the spher-
ical grid and let R be the image containing the radial distances.
We can associate to p a point P in the 3D space using the for-
mula

Ψ(ϕ, θ) =


x = R(ϕ, θ) cos(ϕ) sin(θ),

y = R(ϕ, θ) sin(ϕ) sin(θ),

z = R(ϕ, θ) cos(θ).

(1)

Now, let pϕ = (ϕ+ ∆ϕ, θ) and pθ = (ϕ, θ + ∆θ) respectively
the vertical and the horizontal neighbouring cells. They have
two corresponding points Pϕ and Pθ in the 3D space, as well.
Since P , Pϕ and Pθ compose a local 3D plane, we can estimate
the normal vector ∂Ψ

∂ϕ
× ∂Ψ

∂ϕ
at P using the two vectors vϕ, vθ

spanning the local surface containing P , Pϕ and Pθ , as in Fig.
5. We compute vϕ using the values of the radial distance image

Figure 5. Relationship between adjacent pixels in the radial
distance image R and adjacent points in the 3D space. Pixels p,
pϕ and pθ are associated to 3D points P , Pϕ and Pθ . Since P ,
Pϕ and Pθ compose a local plane, we compute their 3D

gradients as tangent vectors vϕ, vθ from a radial distance value
at p, pϕ and pθ .

R at pixels p, pϕ as

vϕ(ϕ, θ) =

dϕR(ϕ, θ) cos(ϕ) sin(θ) + R(ϕ, θ) cos(ϕ) cos(θ)
dϕR(ϕ, θ) sin(ϕ) sin(θ) + R(ϕ, θ) sin(ϕ) cos(θ)

dϕR(ϕ, θ) cos(θ)− R(ϕ, θ) sin(θ)


where

dϕR(ϕ, θ) =
R(ϕ+ ∆ϕ, θ)− R(ϕ, θ)

∆ϕ

=
R(pϕ)− R(p)

∆ϕ
≈ ∂R

∂ϕ
(ϕ, θ).

(2)

Similarly vθ is obtained using values at p and pθ as:

vθ(ϕ, θ) =

dθR(ϕ, θ) cos(ϕ) sin(θ)− R(ϕ, θ) sin(ϕ) sin(θ)
dθR(ϕ, θ) sin(ϕ) sin(θ) + R(ϕ, θ) cos(ϕ) sin(θ)

dθR(ϕ, θ) cos(θ)


where

dθR(ϕ, θ) =
R(ϕ, θ + ∆θ)− R(ϕ, θ)

∆θ

=
R(pθ)− R(p)

∆θ
≈ ∂R

∂θ
(ϕ, θ).

(3)

The approximated normal vector is n = vϕ × vθ . Once the sur-
face point normals are estimated in the SV, we get them back to
3D-cartesian coordinates, and subsequently project them onto
the BEV. This adds three supplementary channels to the input
images. Fig. 7 shows the results obtained on SV image with
64 layer. For each pixel we mapped the coordinates (x, y, z)
of the estimated normals to the RGB color map, so x → R,
y → G and z → B. Please remark that a FCN can not extract
this kind of features through convolutional layers starting from
SV classic features. In fact, to extract this kind of information
using convolution the FCN should be aware of the position of
the pixel inside of the image, i.e. know the angles (ϕ, θ), but
this would break the translational symmetry of convolutions.
This enforces prior geometrical information to be encoded in
the features maps that are the input of the DNN. Finally, we
also remark that the normal feature maps are computationally
efficient since its a purely local operation in the spherical co-
ordinates.

3. EXPERIMENTS & ANALYSIS

The binary road segmentation task is evaluated on two datas-
sets : 1. the KITTI road segmentation (Fritsch et al., 2013),

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-335-2020 | © Authors 2020. CC BY 4.0 License.

 
339



Count

Max

Elevat ion

Mean

Elevat ion

Surface

normals

Mean

Reflectance

Min

Elevat ion

Std

Elevat ion

Ground

Truth

Figure 6. An example of features projected on the BEV in case
of a 64 layers scanner. Surface normals are computed on SV and

projected to BEV.
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Figure 7. A crop example of features projected on the SV in case
of a 64 layers scanner. Surface normals are estimated from

radial distance image. The last image below is the ground truth
for this case.

2. Semantic-KITTI dataset (Behley et al., 2019). The input
information to the DNNs comes purely from point clouds and
no camera image information was used. The BEV and SV rep-
resentations were used over the point clouds from KITTI road-
dataset, while only the SV representation over Semantic-KITTI.
The BEV ground truth information for semantic-KITTI did not
currently exist during the redaction of this article, and thus no
evaluation was performed. The projection of the 3D labels to
BEV image in semantic-KITTI produced sparsely labeled BEV
images and not a dense ground truth as compared the BEV
ground truth in Fig. 6. The SV ground truth images have been
generated by projecting 3D labels to 2D pixels. We consider a
pixel as road if at least one road 3D point is projected on the
pixel.

Training : Adam optimiser with initial learning rate of 0.0001
is used to train the models. The models were trained using an
Early-Stopping. We used the Focal loss with gamma factor of
γ = 2 (Lin et al., 2017), thus the resulting loss is L(pt) =
−(1− pt)γ log(pt), where

pt =

{
p if y = 1,

1− p otherwise.

The focal loss was useful in the KITTI Road segmentation
benchmark. The road class was measured to be around 35%
of the train and validation set, in the BEV, while around 5% for
the SV. This drastic drop in the road class in SV is due to the
restriction of the labels to the camera FOV. While for Semantic-
KITTI we observed lesser level of imbalance between road and
background classes.

Metrics : We use the following scores to benchmark our ex-
periments. The F1 -Score and Average Precision are defined
as

F1 = 2 ∗ P ∗R
P +R

, AP =
∑
n

Pn(Rn −Rn−1) (4)

where, P = TP
TP+FP

R = TP
TP+FN

and Pn, Rn are precision
and recall at n-th threshold. In all the cases the scores have been
measured on the projected images, and we report them in Table
2.

Evaluating different resolutions: When subsampling point
clouds, the input SV image size changes accordingly. For ex-
ample, after the first subsampling the input SV image now has a
size of 32×2048. In order to get fair comparison, the evaluation
of all results is made at the original full resolution at 64×2048.
In such as case the number of layers in the U-Net architectures
has been increased to up-sample the output segmentation map
to the full resolution. This lead to 3 different architectures for
16, 32 and 64 layers, see Fig. 3b, 3c & 3d. Three different mod-
els were trained on the different SV images. In the Semantic
KITTI dataset the evaluation has been done over the road class.
The BEV image on the other hand remains the same size with
subsampling. Though subsampling in BEV introduces more
empty cells as certain layers disappear.

3.1 KITTI road estimation benchmark

The KITTI road segmentation dataset consists of three categor-
ies: urban unmarked (UU),urban marked (UM), and urban mul-
tiple marked lanes (UMM). Since the test dataset’s ground truth
is not publicly available, 289 training samples from the dataset
is split into training, validation and test sets for the experiments.
Validation and test sets have 30 samples each and the remaining
229 samples are taken as training set.

Ground truth annotations are represented only within the cam-
era perspective for the training set. We use the ground truth an-
notations provided by authors (Caltagirone et al., 2017) in our
experiments. The BEV groudtruth was generated over the xy-
grid within [−10, 10]× [6, 46] with squares of size 0.10× 0.10
meters.

Figures 8, 9 illustrate the Precision-Recall (PR) curves obtained
on BEV images and SV images. The performance metrics
for the different resolutions (64/32/16 scanning layers) of the
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scanners are reported, for both the classical and classical-with-
normal features. At full resolution the classic features obtain
state of the art scores as reported by authors (Caltagirone et al.,
2017). In Table 2, we observe that with subsampling and re-
duction in the number of layers, there is a degradation in the AP
along with metrics. With the addition of the normal features, we
observe and improvement in AP across all resolutions/number
of layers.
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Figure 8. KITTI Road Segmentation with BEV images:
Precision-Recall Curve for various features with and without

sub-sampling.
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Figure 9. KITTI Road Segmentation with SV images:
Precision-Recall Curve for various features with and without

sub-sampling.

3.2 Semantic-KITTI

The Semantic-KITTI dataset is a recent dataset that provides a
pointwise label across the different sequences from KITTI Odo-

KITTI Road-Seg, BEV AP F1 Rec Prec
Classical (64) 0.981 0.932 0.944 0.920
Classical + Normals (64) 0.983 0.935 0.945 0.926
Classical (32) 0.979 0.920 0.926 0.914
Classical + Normals (32) 0.984 0.934 0.937 0.930
Classical (16) 0.978 0.918 0.920 0.915
Classical + Normals (16) 0.981 0.927 0.936 0.919
KITTI Road-Seg, SV AP F1 Rec Prec
Classical (64) 0.960 0.889 0.914 0.889
Classical + Normals (64) 0.981 0.927 0.926 0.929
Classical (32) 0.965 0.896 0.915 0.878
Classical + Normals (32) 0.981 0.927 0.928 0.927
Classical (16) 0.960 0.888 0.900 0.875
Classical + Normals (16) 0.974 0.906 0.914 0.899

Table 2. Results obtained on the test set of the KITTI road
segmentation dataset in the BEV and SV.

metry dataset, for various road scene objects, road, vegeation,
sidewalk and other classes. The dataset was split into train and
test datasets considering only the road class. To reduce the
size of the dataset, and temporal correlation between frames,
we sampled one in every ten frames over the sequences 01-10
excluding the sequence 08, over which we reported the our per-
formance scores. The split between training and test has been
done following directives in (Behley et al., 2019).

With the decrease in vertical angular resolution by subsampling
the original 64 layer SV image we observe a minor but defin-
ite drop in the binary road segmentation performance (in vari-
ous metrics) for sparse point clouds with 32 and 16 scanning
layers. This is decrease is visible both in Table 3 but also in
the Precision-Recall curve in Fig. 10. With the addition of
our normal features to the classical features we do observe a
clear improvement in performance across all resolutions (16,
32 and 64 scanning layers). Geometrical normal features chan-
nel as demonstrated in Fig. 7 show their high correlation w.r.t
the road class region in the ground-truth. Road and ground re-
gions represent demonstrate surfaces which are low elevation
flat surfaces with normal’s homogeneously pointing in the same
directions.

Semantic KITTI-SV AP F1 Rec Prec
Classical (64) 0.969 0.907 0.900 0.914
Classical + Normals (64) 0.981 0.927 0.927 0.927
Classical (32) 0.958 0.897 0.902 0.892
Classical + Normals (32) 0.962 0.906 0.906 0.906
Classical (16) 0.944 0.880 0.879 0.882
Classical + Normals (16) 0.948 0.889 0.894 0.883

Table 3. Results obtained on the test set of the Semantic-KITTI
dataset in the SV.

4. CONCLUSION

In view of evaluating the performance of low-resolution LID-
ARs for segmentation of the road class, in this study we eval-
uate the effect of subsampled LIDAR point clouds on the per-
formance of prediction. This is to simulate the evaluation of low
resolution scanners for the task of road segmentation. As expec-
ted, reducing the point cloud resolution reduces the segmenta-
tion performances. Given the intrinsic horizontal nature of the
road we propose to use estimated surface normals. These fea-
tures cannot be obtained by a FCN using Classical Features as
input. We demonstrate that the use of normal features increase
the performance across all resolutions and mitigate the deteri-
oration in performance of road detection due to subsampling in
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Figure 10. SemanticKITTI with SV images: Precision-Recall
Curve for various features with and without sub-sampling.

both BEV and SV. Normals features encode planarity of roads
and is robust to subsampling.

4.1 Future work

In future works we aim to study the effect of temporal aggreg-
ation of LIDAR scans on reduced spatial resolution due to sub-
sampling the vertical angle. Furthermore, in SV we upsampled
the information inside the network, just before the prediction
layer. In future works we would like to upsample the input
SV range images, and evaluate the performance of the U-Net
model on the original 64 × 2048 sized SV range image. The
up-sampling can be trained end-to-end to achieve successful re-
construction of 64× 2048 image from sub-sampled 32× 2048
or 16× 2048 images.

We have focused our study on road segmentation mainly to limit
and understand the effect of subsampling on a geometrically
simple case. In our future study we aim to evaluate performance
of key classes i.e. cars, pedestrians, to determine the loss in
accuracy on account of subsampling of pointclouds.
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