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ABSTRACT:

Detecting planar structures in point clouds is a very central step of the point cloud processing pipeline as many Lidar scans, in
particular in anthropic environments, present such planar structures. Many improvements have been proposed to RANSAC and
the Hough transform, the two major types of plane detection methods. An important limitation however is that these methods
detect planes running across the whole scene instead of more localized planar patches. Moreover, they do not exploit the sensor
information that often comes with Lidar point cloud (sensor topology and optical center position in particular). In this paper we
address both issues: we aim at detecting planar polygons that have a limited spatial extent, and we exploit sensor topology. The
latter is used to enhance a RANSAC framework on two aspects: to make seed points selection more local and to define more
compact sets of inliers through sensor space region growing.

1. INTRODUCTION

Plane detection in point clouds is a widely researched topic in
the geometry processing, photogrammetry, and computer vis-
ion communities. The problem is central to scene interpreta-
tion, polyhedral reconstruction and structure extraction (Pu et
al., 2011), as in many anthropic structures (inside and outsides
of all types of buildings in particular). Reconstruction of piece-
wise planar objects has thus received an important attention
over the past two decades. Recent approaches use either global
plane detection or more local planar patch segmentation. How-
ever both approaches are still limited. Global plane detection is
usually used to create a plane arrangement whose complexity
increases combinatorially with the number of planes, thus not
scaling up. Local approaches become a topological nightmare
when trying to reconnect all the individual pieces.

1.1 Previous Works

Detecting planar shapes in a point cloud is a problem of fitting
possibly multiple instances of given primitives to data points.
Historically, the two main approaches to solve this problem
have been the Hough transform and RANSAC.

The Hough transform (Borrmann et al., 2011) (Knopp et al.,
2010) uses a voting principle: it defines a parameter space (the
space of parameters of the primitive of interest) and find the
interesting primitives as accumulation maxima in this space.
It was applied to architectural modeling in (Chen and Chen,
2008).

RANdom SAmple Consensus (RANSAC) is a stochastic greedy
search where primitives are sampled by selecting the appropri-
ate number of points to define them from the point cloud. The
primitives with most inliers (sufficiently close supporting data
points) are selected in a greedy manner (Schnabel et al., 2007).
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RANSAC is very popular and used in a number of polyhed-
ral/building reconstruction approaches (Monszpart et al., 2015)
(Nan and Wonka, 2017) to detect planes used to build an ar-
rangement in which the final polyhedra will be searched. Such
methods do not scale up well in practice as the size of the plane
arrangement grows combinatorially when the number of detec-
ted planes increases.

To solve this problem, several works (including ours) have been
interested in finding compact planar primitives. This is usu-
ally done by region growing (Rabbani et al., 2006), inspired
by k-means for instance (Cohen-Steiner et al., 2004). More re-
cent approaches have suggested to adapt a graph clustering al-
gorithm (Landrieu and Obozinski, 2017) to find planar patches
in a more global optimization framework (Guinard et al., 2019).
Another way to use an optimization approach to the multi model
fitting is to pose the problem as a model selection (Isack and
Boykov, 2012). Finally, a method was recently proposed to ex-
plore structural scales by shape collapsing (Fang et al., 2018).

1.2 Data

The data used to experiment our method is a Mobile Lidar Scan
(MLS) acquired with the Stéréopolis II Mobile Mapping Sys-
tem (MMS) (Paparoditis et al., October 2012). Our method ex-
ploits the sensor topology inherent to such MLS acquisition,
that is often lost during export. This paper advocates that this
information is very useful to speed up and enhance the quality
of planar patches detection. To explain the concept of sensor
topology, we need to give some more details on the MLS ac-
quisition.

The used LiDAR scanner is a RIEGL VQ-250 that rotates at
100 Hz and emits 3000 pulses per rotation which corresponds
to an angular resolution around 0.12◦. For each emitted pulse,
0 to 8 echoes are recorded, producing an average of 250 000
points per second in typical urban scenes. The sensor records
information for each pulse (direction (θ, φ), time of emission)
and echo (amplitude, range, deviation).
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Figure 1. A view of the Mobile Laser Scan (MLS) used in this
study, colored with reflectance.

The Stereopolis II mobile mapping system is also composed
of an Applanix POS-LV220 Inertial Navigation System (INS)
combining D-GPS, an Inertial Measurement Unit (IMU) and an
odometer. This system outputs the reference frame of the INS in
geographical coordinates at 100 Hz. However, the GPS masks
that frequently occur in urban areas induce drifts that can reach
one meter for a 2 minutes mask. This initial georeferencing is
corrected based on tie points with aerial photography, resulting
in around 10 cm standard deviation in planimetry, and 15 cm
in altimetry. The Lidar sensor is calibrated in order to recover
the transformation between the sensor and Applanix coordin-
ate systems which allows to transform the coordinates from the
sensor frame to the INS frame then to a world coordinate sys-
tem.

Combining all this information, a point cloud in world coordin-
ates can be constructed. In order to decrease memory footprint,
this point cloud is often expressed by (x, y, z) coordinates in a
local georeferenced frame, which allows storing them as 32 bit
floats without the loss of precision that would result if absolute
coordinates were used (often in the order of 106).

The resulting scan is very anisotropic because while points are
very dense along scanlines (a few millimeters on the road below
the sensor), scanlines can be separated by several centimeters
according to the vehicle speed (5 cm at a typical acquisition
speed of 5 m/s = 18 km/h). In addition to the (x, y, z) coordin-
ates (in sensor space), the sensor records multiple information
for each pulse (direction, time of emission) and echo (amp-
litude, range, deviation). The amplitude being dependent on
the range, it is corrected into a relative reflectance. This is the
ratio of the received power to the power that would be received
from a white diffuse target at the same distance expressed in
dB. The reflectance represents a range independent property of
the target and is used to color the MLS point cloud displayed in
Figure 1. This scan was performed in the city of Paris and the
resulting point cloud is stored in individual blocks consisting
of 1 second of acquisition each, whose moderate size (300 000
pulses, 250 000 echoes) is well suited to display and processing.

While standard export chains produce sets of (x, y, z) inform-
ation with per point attributes, we modified the export to keep
all the sensor information. Our data structure has two core ob-

Figure 2. A view of the same Mobile Laser Scan (MLS) colored
with reflectance in sensor space (horizontally: time, vertically:
θ). For multiple echoes, the last is used. For no returns, we keep

the white background color.

jects: pulses and echoes, each carrying its own attributes (time
of emission and θ, φ angle for pulses, range, amplitude, reflect-
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ance and deviation for echoes). Because pulses are emitted reg-
ularly (at 300 kHz) they can be stored in the regular structure
of a vector allowing to define for each pulse the next and previ-
ous pulses; whereas, since we have also access to the θ angle,
the angular position of the Lidar beam rotation, we can find
the neighbors in the previous and next scan rotations. In prac-
tice, the number ppr of pulses per full 2π rotation of the laser
beam is not an integer, so each pulse has two neighbors in each
neighbor rotation. A pulse of index p has thus six neighbors:
the previous and next pulses in the same rotation of respective
index p− 1 and p+1; two neighbors in the previous rotation of
index p − bpprc − 1 and p − bpprc; two neighbors in the next
rotation of index p+ bpprc+ 1 and p+ bpprc.

This means we can create a regular hexagonal 2D pulse struc-
ture for the point cloud, represented in Figure 2. Considering
echoes, our implementation allows to access the pulse corres-
ponding to each echo and the echoes corresponding to each
pulse. So, we define as neighboring echoes of an echo e all
the echoes whose pulse is a neighbor of the pulse of e. Note
that they are not necessarily geometric neighbors as adjacent
pulses can generate echoes at very different ranges. We call
these neighbors the sensor neighborhood, defining the sensor
topology, and we will make abundant use of it in the paper and
demonstrate its utility.

1.3 Overview

In this paper, we propose several improvements to the basic
RANSAC approach to adapt it to planar polygon extraction and
increase both its quality and efficiency. Our main contributions
are:

• Adapting RANSAC to produce planar polygons instead of
planes, which are more compact and represent a better ab-
straction of the data, as we ensure that all the surface of an
extracted polygon is supported by data points.

• Exploiting the sensor topology to optimize the sampling
strategy, greatly improving performance.

• Proposing a dynamic criterion to automatically adapt the
number of iterations to the current best primitive.

• Exploiting sensor topology to define more compact sets of
inliers through region growing, also accelerating the inlier
computation, which is the bottleneck of RANSAC.

The paper is structured as follows: Section 2 presents the usual
RANSAC method and the various improvements we propose.
Experimentation and evaluation are provided in Section 3. Fi-
nally, conclusions are drawn and perspectives proposed in Sec-
tion 4.

2. METHOD

Our method is based on several improvements to the classical
RANSAC algorithm. We begin by recalling this simple al-
gorithm, then detail our improvements.

2.1 RANSAC

RANSAC is a very popular object extraction algorithm. It is
robust to noise and outliers, simple, efficient and very general.
It consists in sampling possible objects and greedily keeping
the best ones. What we detail here is its application to multiple
plane detection in point clouds.

1. Randomly select triplets of (non aligned) points Pi, Pj and
Pk (random samples) in the point cloud. Each point triplet
defines a plane P passing through the three points and ori-
ented by its normal:

~n(P) =
−−→
PiPj ∧

−−−→
PiPk

||
−−→
PiPj ∧

−−−→
PiPk||

(1)

2. Compute how many points (called inliers) are close to the
plane passing through these 3 points. More formally, the
condition for a point P to be an inlier is:

d(P,P) = |
−−→
PiP.~n(P)| < tin, (2)

where tin is the inlier distance threshold.

3. Iterate 1-2 nit times, add the best plane (with most inliers)
to the solution set, and remove the inliers from the point
cloud.

4. Iterate 1-3 while the number of inliers of the best plane
is above nmin, the minimum number of inliers to justify a
plane detection.

This simple version of plane RANSAC has only three paramet-
ers:

1. The inlier distance threshold tin. The choice of tin depends
on the noise but also the expected deviation of real planar
structures from perfect planes, or in other terms on the ex-
pected generalization level, as structures larger than this
threshold are lost.

2. The number of RANSAC iterations nit: the more iterations
the more likely we are to find the best plane in the remain-
ing points, but the longer the computation time.

3. The minimum number of points on a selected plane nmin,
the stopping criterion. This parameter controls how many
planes are output (the lower, the more planes) as it defines
the detection sensitivity.

These parameters should often be tuned for each dataset in or-
der to obtain satisfactory results. In particular:

1. nit should be constantly adapted since the first primitives
much larger than the stopping criterion nmin are found
easily in a few iterations while smaller ones closer to the
threshold may require many more iterations to be found.
However, the total number of points decreases as points
from previously found primitives are removed (see Sec-
tion 2.5).

2. nmin is hard to tune on point clouds with varying density
and on scenes with planar patches of very variable size, as
encountered in MLS. We propose in Section 2.2 a solution
to the first problem relying on sensor topology.

In addition to parameter tuning issues, we tackle specifically:

1. The sampling problem: planar patches are local, while the
default RANSAC sampling strategy samples points across
the whole scene, with low probability that the sampled
plane corresponds to a local planar structure of the scene.
We propose in Section 2.3 to solve this problem by a local
sampling in sensor topology.
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2. The locality problem: a plane is not a local structure, so
points anywhere in the scene can be attributed coincid-
entally to a planar structure localised in another part of
the scene. We propose in Section 2.3 a sensor space re-
gion growing strategy to ensure compactness of the planar
patches.

2.2 Surface Weighting

The scan resolution or density (defined as points per m2 of
scene surface for instance) is varying in MLS, as the scanned
objects can be at very different distances and viewed under dif-
ferent angles. Moreover, the density depends on the speed of
the vehicle and its rotation. All this makes tuning the nmin

parameter very difficult, and requires this tuning to be adjus-
ted on each dataset. An easier approach would be to consider a
minimum patch surface, as this would only depend on the scene
geometry.

An obvious solution would be to use a surface mesh reconstruc-
tion algorithm, but this is often very time and memory consum-
ing. Instead, we propose a simple estimate of the scene sur-
face corresponding to each point using the sensor topology. We
use the 6 neighboring pulses to build 6 triangles around each
echo. In case of multiple echoes, we choose the closest. In
case the neighbor pulse has no return, we do not build the tri-
angles. To avoid very high weighting of depth discontinuities,
we also remove triangles with a circumradius above a threshold
set at 50 cm in our experiments as done in (Guinard and Vallet,
2018). Finally, because each triangle is shared by 3 echoes, we
divide the result by 3 to get a good estimate of the area of the
underlying planar patch.

Once these surface weights are computed, we simply replace
the score of each planar patch (number of inliers) with the sum
of inlier weights and replace the threshold nmin by a minimum
patch area Amin.

2.3 Neighborhood Sampling

The first improvement we propose is sensor topology sampling.
Most point cloud generation technologies allow defining a 2D
neighborhood (which point is after and before a point in lines
and columns). Image depth maps have this topology from the
image lines and columns. Fixed Lidar stations discretise their
surrounding in θ and φ also leading to a regular grid structure
(a depth map in spherical coordinates). Planar Lidars acquire
points with a rotating ray, allowing to define the previous and
next point, but also the corresponding point in the previous and
next rotations, as the point with the closest angle. If the in-
formation is not available, we can define a neighborhood based
on closest distance points, which only adds a computing cost,
which is rather limited thanks to acceleration structures such as
Kd-trees (Bentley, 1975).

Because we are looking for compact planar patches and not
planes across the whole point cloud, selecting our three samples
randomly will generate a large number of planes with few inli-
ers. Because we have local planar patches in the data, we only
need to sample points in a relatively small neighborhood in or-
der to find them. For 2D sensor neighborhoods, they can be
defined as rectangular windows in the grid structure, for dis-
tance neighborhoods, the kNN (k nearest neighbors) can be
used. In practice, we replace step (1) by first selecting a random
point in the whole cloud, then two other points in its neighbor-
hood.

2.4 Sensor Region Growing

An important limitation of RANSAC is that it does not scale
very well, as each iteration requires to compute the distances of
all the points of the cloud to the sampled plane. So if we con-
sider that the number of extracted planes grows as the number
of points, the computing time grows quadratically. It is in fact
even worse if we do not use neighborhood sampling because
RANSAC will require more iterations to find the same planes
when more data points are added. We propose to make this
step more local by growing a region from the first sample. We
use the same definition for neighborhood as before (possibly
with a different size) and only test the plane distance for the
seed neighbors, then iteratively adding neighbors only for inli-
ers. This way, points that fall by chance on this plane in another
part of the scan will not be affected to the plane. This allows
for both more compact planar point sets extraction (the inliers
of the returned planar patches) and faster computing times as
much less distance computation is required.

2.5 Dynamic Iteration

Choosing the number of RANSAC iterations is not easy. If
the compromise is clear (more iterations gives more optimal-
ity guarantees for more computing time), the choice is not easy
as larger structures require few iterations to be found, but the
smaller ones require more. Moreover, the number of points
evolves as the previous inliers of the best planes are removed
in the subsequent iterations. We propose to compute this num-
ber dynamically, with a single user parameter: the probability
to miss a minimum primitive, that is a primitive with the min-
imum number of points (which is our stopping criterion). Let
us call pmiss this probability. Without any prior information, a
minimum primitive with nmin points in a point cloud of npts

points is detected in a RANSAC iteration if the three points are
on the primitive, an event of probability (nmin/npts)

3. Such a
primitive will be missed in niter RANSAC iterations with prob-
ability pmiss = (1 − (nmin/npts)

3)niter , so if the user wants to
control this probability, the appropriate choice for the number
of iterations is:

niter =
log(pmiss)

log(1− (nmin/npts)3)
. (3)

As soon as we have found a primitive with more than nmin

points, we can update nmin to the number of inliers of our
best current candidate as we only aim at finding a better primit-
ive, with more points, which reduces niter as the iterations run.
Moreover, npts can also be updated each time a primitive is
selected. To take into account the surface weighting of Sec-
tion 2.2, we simply replace nmin with Amin and npts with the
sum of weights over the remaining points.

2.6 Alpha Shape

At this point, our sensor space RANSAC produces compact
planar sets of points. Approximating these sets by whole planes
is not a good data abstraction as only a local part of the plane
is supported by inliers. We want a compact localised represent-
ation instead, for which we propose a planar polygon. We do
this in these few steps:

1. Estimate the best fitting plane to the inliers in the least
squares sense, which is simply the plane passing through
the barycenter of the points and whose normal is given by
the eigenvector of the inertia matrix

∑
PP t correspond-

ing to the smallest eigenvector.
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Figure 3. A view of a result of our sensor space enhanced
polygonal RANSAC with a reference set of parameters. Point
attributed to a planar patch have a different hue for each patch,
unattributed points are in black. The extracted planar polygonal

outlines are in red.

2. Project each point on this plane.

3. Create a local 2D coordinate frame of this plane.

4. Compute the 2D α-shape of the points in this frame.

5. Extract the exterior border of the α-shape, resulting in a
set of 2D polygons lying on the plane.

6. Recover the 3D coordinates of the 2D polygon vertices.

The 2D α-shape is simply a 2D Delaunay Triangulation of the
2D points (Xiaobo et al., 1999), removing all the triangles of
circumradius larger than α and edges of length above α, allow-
ing to define a “border” for a point set at a given scale (α). For
α → ∞, the result is the convex hull of the points, whereas
for α → 0 the result is simply the point cloud itself with no
reconnection made as all triangles and edges are removed. The
result of this step is thus a planar polygon that is always close
to a supporting data point, with α defining this proximity in the
supporting plane of the polygon and din the orthogonal distance.
This parameter can be used to define the minimum point dens-
ity on a detected polygon as only points closer than α will be
reconnected to form a polygon.

3. EXPERIMENTS AND EVALUATIONS

3.1 Experiments and Parameter Influence

The improved RANSAC with all enhancements proposed above
has been tested on the dataset described in Section 1.2 with a
reference set of parameters:

1. pmiss = 0.1%, meaning we ensure to find the best planar
patch with 99.9% certainty, and the number of iterations is
adapted automatically.

2. nmin = 2000, meaning we ask our method to produce only
planar patches containing more than 2000 points.

3. din =3 cm, meaning we generalize our data and lose de-
tails smaller than 3 cm.

Figure 4. Results of SSP-RANSAC for varying inlier threshold:
top din =1 cm, bottom din =10 cm.

4. Sample window width=20: samples will be taken in a win-
dow of radius 20 pulses in sensor topology.

5. Growing window width=4: samples up to a distance of
4 pulses in sensor topology will be added to the region
growing, making it able to overcome small gaps or holes.

6. α = 5 cm, which means we create a polygonal border for
our planar patches encompassing all inliers with this level
of detail.

We display a result with this parameterization in Figure 3. We
can see that the scene is abstracted by a low number of polygons
properly delineating the planar point patches. The road being
not perfectly planar but curved across its main direction, it is
split in this direction. We now analyse the influence of the main
parameters.

3.1.1 Inlier Threshold The level of detail of the resulting
patches depends on the inlier threshold. As shown in Figure 4, a
higher threshold loses details, mistaking the road and sidewalk
surface for instance, while a smaller threshold captures more
detail.

3.1.2 Minimum Patch Size The minimum patch size is a
detection threshold. A small value capture most planar struc-
tures including inside the buildings (Figure 5 top) while a large
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Figure 5. Results of SSP-RANSAC for varying minimum patch
size: top nmin = 500, bottom nmin = 10 000.

value allow to focus on the most prominent structures such as
the road, sidewalk and facades (Figure 5 bottom).

3.1.3 Alpha Shape Radius The alpha shape radius is a gen-
eralization parameter for the polygonal borders. A small value
makes the polygon border very detailed (Figure 6 top) while a
large value yields simpler polygons (Figure 6 bottom).

3.1.4 Region Growing Region growing is not a parameter
but an enhancement that modifies the nature of the algorithm:
instead of looking for complete planes, it looks for more loc-
alized and compact planar patches. This is exhibited on Fig-
ure 7 where region growing was disabled, inducing confusion
between non adjacent regions, such as a part of the road ad-
jacent to a sidewalk being in the same patch as the opposite
sidewalk.

3.2 Evaluation

We now evaluate the various enhancements to RANSAC pro-
posed in this paper. Evaluation of the compactness will be
qualitative as it is not the objective of planar RANSAC itself so
comparing quantitatively would make no sense. For the other
evaluation metrics, we propose to see RANSAC as an optimiz-
ation heuristic, aiming at finding a compromise between max-
imizing the number of inliers while minimizing the number of

Figure 6. Results of SSP-RANSAC for varying apha shape
radius: top α =2 cm, bottom α =20 cm.

primitives so our main metrics will be the number of primitives
(the lower the better) and number of inliers (the higher the bet-
ter). Moreover, the computing time will also be given as most
enhancements aim at better performance.

3.2.1 Evaluation of Sensor Space Region Growing In or-
der to evaluate the effectiveness of sensor space sampling, we
provide the numbers of inliers and extracted polygons for a
fixed number of RANSAC iterations (for easier interpretation)
as well as the computing time on an Intel Core i7 CPU @
3.33 GHz. The point cloud used is a single one-second block
of acquisition containing 270 000 points. Because RANSAC is
a randomized algorithm, we give the results as minimum and
maxium values over 10 runs of the algorithm with the same
parameterization: with/without Sensor Space Sampling (SSS),
with/without Region Growing (RG) and with the number of
RANSAC iterations nit = 500 or 2000. The results are given in
Table 1.

First we note that SSS is purely an optimization enhancement,
allowing a better sampling thus a better solution achieved for
the same number of iterations, or equivalently requiring fewer
iterations and less computing time for the same result quality.
This is clearly supported by the evaluation that shows always
more inliers with SSS than without, but the same computing
time for the same number of RANSAC iterations. For SSRG,
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Figure 7. Results of SSP-RANSAC without Sensor Space
Region Growing (SSRG) exhibiting more confusion due to long

range interactions.

SSS SSRG nit inliers polygons time (s)
no no 500 90–111k 5–8 11
yes no 500 135–145k 9–11 11
no yes 500 75–106k 4–7 2.1–2.8
yes yes 500 115–128k 7–10 2.1–2.8
no no 2000 109–131k 7–9 42–49
yes no 2000 145–153k 10–12 42–49
no yes 2000 87–111k 4–7 7–8
yes yes 2000 128–137k 9–11 7–8

Table 1. Evaluation of the influence of Sensor Space Sampling
(SSS) and Sensor Space Region Growing (SSRG) on the number

of inliers and planar polygons found by RANSAC for 500 and
2000 RANSAC iterations (min-max values over 10 runs).

the objective is different as the extracted patches are compact
with SSRG whereas this is not enforced without. This addi-
tional constraint explains that there are fewer inliers with SSRG
than without. In terms of computing time, we see the benefit of
region growing that requires much less distance computation,
close to a factor 4.

3.2.2 Evaluation of Dynamic Iteration To evaluate the ef-
fectiveness of dynamic iteration adjustment, we use the same
metrics as in the previous section on the same point cloud, but
now compare a set of experiments without dynamic iteration
and tuning nit with dynamic iteration and tuning pmiss, also on
batches of 10 runs and on the same point cloud. The results are
provided in Table 2.

This experiment exhibits clearly RANSAC’s nature to guaran-
tee better results for more iterations/computing time. For an
equivalent computing time, dynamic iteration is always better
than static. We also see that dynamic allows this increase in
performance on two fronts: having better results for the same
number of iterations as they are used more wisely, and hav-
ing lower computing time for the same number of iterations
because more iterations are used later in the process when the
cloud has fewer points (because large primitives have already
been found) thus iterations are faster but primitives are smal-
ler, hence harder to find. Moreover, parameter tuning is easier
with dynamic iteration as it will be automatically adapted to the
scene and primitive sizes.

Fixed number of iterations
nit inliers polygons # it time (s)
100 93–114k 5–7 500–700 2.9–3.3
200 109–126k 7–10 1400–2000 6.2–7.1
500 125–130k 9–10 4500–5000 16–17

1000 127–136k 9–10 9000–10000 29–33
Dynamic number of iterations

pmiss inliers polygons # it time (s)
0.3 103–124k 7–10 647–978 1.7–2.5
10−1 118–130k 8–11 1.4–2.2k 3–4.1
10−2 118–132k 8–11 2.7–4.1k 5.9–7.8
10−3 118–136k 8–11 4.2–6.9k 8.4–11
10−4 120–137k 8–11 5.5–7.7k 11–14
10−5 130–137k 10–11 8.8–9.7k 15–17

Table 2. Evaluation of the interest of dynamic iteration on the
number of inliers and planar polygons found by RANSAC for a

varying parameterization (min-max values over 10 runs).

4. CONCLUSIONS AND FUTURE WORK

This paper presented a method for planar polygon extraction
from a point cloud for which the sensor topology is available.
This condition is not very restrictive as most Lidars have this
characteristic: MLS as demonstrated in this paper, Aerial Lidar
Scanning (ALS) has the exact same topology, and TLS often
have an array topology (in spherical coordinates) that is often
available. The problem is more of a procedural nature, that is
not losing this information when exporting the point cloud from
the raw data.

We demonstrated clearly the advantage of exploiting sensor to-
pology, even if some of the proposed enhancements could have
been possible using a k Nearest Neighbors (kNN) topology
or even a Delaunay Triangulation (DT). Future works could
consist in comparing sensor topology with these other choices.
However, sensor topology will always have the advantage of be-
ing free, requiring no computing time as long as it was stored,
while kNN and DT have an important computing cost on large
point clouds.

A comparison between our enhanced RANSAC and Hough vot-
ing based or graph based methods would be interesting, in par-
ticular the latter that also aims at patch compacity.

Finally, we aim at exploiting this very efficient planar polygon
extraction method for three main applications:

• Point cloud registration (Takai et al., 2013), as these poly-
gons should be easy to match between unregistered point
clouds as they accurately abstract a large number of points
with few primitives. Moreover, they average the sensor
noise over a large number of points so they might even al-
low to achieve a registration accuracy better than the noise
level. Our method would obviously be applicable to point
cloud registration on 3D city models as proposed in (Mon-
nier et al., 2013) as planar polygons are the only structures
that can be put in correspondence in this case.

• Polyhedral/3D reconstruction (Boulch et al., 2014), (Nan
and Wonka, 2017): many man made structures are poly-
hedral, such as roofs and urban furniture, and most are hy-
brid, mixing planar areas with more freeform areas, which
could be represented by a hybrid mesh mixing triangle
mesh and large planar polygons. In both cases, our planar
polygon extraction method should prove a very useful pre-
processing.
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• Façade, sidewalk and road surface extraction (Nurunnabi
et al., 2013), (Hervieu and Soheilian, 2013) as they are
caracterised as large horizontal or vertical planar patches,
but also the detection of road curb (El-Halawany et al.,
2011), (Zhao and Yuan, 2012) and building footprints as
the limits of sidewalk polygons.
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