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ABSTRACT:

The recent development of 3D scanning technologies has made it possible to quickly and accurately record various 3D objects in
the real world. The 3D scanned data take the form of large-scale point clouds, which describe complex 3D structures of the target
objects and the surrounding scenes. The complexity becomes significant in cases that a scanned object has internal 3D structures,
and the acquired point cloud is created by merging the scanning results of both the interior and surface shapes. To observe the
whole 3D structure of such complex point-based objects, the point-based transparent visualization, which we recently proposed, is
useful because we can observe the internal 3D structures as well as the surface shapes based on high-quality see-through 3D images.
However, transparent visualization sometimes shows us too much information so that the generated images become confusing. To
address this problem, in this paper, we propose to combine “edge highlighting” with transparent visualization. This combination
makes the created see-through images quite understandable because we can highlight the 3D edges of visualized shapes as high-
curvature areas. In addition, to make the combination more effective, we propose a new edge highlighting method applicable to 3D
scanned point clouds. We call the method “opacity-based edge highlighting,” which appropriately utilizes the effect of transparency
to make the 3D edge regions look clearer. The proposed method works well for both sharp (high-curvature) and soft (low-curvature)
3D edges. We show several experiments that demonstrate our method’s effectiveness by using real 3D scanned point clouds.

1. INTRODUCTION

The recent development of 3D scanning, that is, photogram-
metry and laser scanning, has enabled us to quickly and accur-
ately record complex 3D objects in the real world. The com-
plexity becomes significant in cases in which the scanned ob-
jects have internal 3D structures and the acquired point clouds
describe both the interior and surface shapes. To observe the
whole 3D structure of such complex point-based objects, the
point-based transparent visualization, which we recently pro-
posed and named “stochastic point-based rendering (SPBR)”
(Tanaka et al., 2016), is useful. By using SPBR, we can ob-
serve the internal 3D structures as well as the surface shapes by
high-quality see-through 3D images.

However, transparent visualization sometimes shows us too
much information so that the generated images become con-
fusing. To address this problem, in this paper, we propose com-
bining edge highlighting with transparent visualization based
on SPBR. We highlight 3D edges, which are extracted as high-
curvature areas of 3D scanned point clouds, in the transparent
visualization. The edge highlighting works well together with
the transparent visualization, and we can obtain comprehens-
ible 3D see-through images. In Figure 1, we compare an or-
dinary transparent visualization (the left image) with an image
that incorporates the edge-highlighting effect (the right image).
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We can see that highlighting the edges makes the 3D internal
structures of the visualized object more understandable.

In addition, we propose a new edge highlighting method applic-
able to 3D scanned point clouds. We call the method “opacity-
based edge highlighting.” Conventional edge-highlighting
methods are based on simple feature-value binarization and
proper coloring of the high-feature-value areas. However, our
new edge highlighting utilizes transparency, which is made
available by using SPBR, to make the 3D edges look thinner
and sharper. Opacity-based edge highlighting works well for
both sharp (high-curvature) and soft (low-curvature) 3D edges.

The organization of this paper is as follows: In Section 2, we
review related work. In Section 3, we briefly review the pre-
scription of SPBR, whose ability to realize transparency is used
in our proposed method. In Section 4, we describe the method
of the proposed opacity-based edge highlighting. In Section 5,
we show several case studies to demonstrate the effectiveness of
the proposed edge-highlighting method. Section 6 is the con-
cluding section, which summarizes our achievements.

2. RELATED WORK

Highlighting 3D edges or, more generally, feature highlighting
of 3D point clouds has been actively studied (see the review in
(Rusu, 2013) for details). Varieties of computational techniques
have been used for the research. The purposes of the research
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Figure 1. Transparent visualizations of a 3D scanned campus building. The left image shows the ordinary case without the
edge-highlighting effect. The right image is created by incorporating our edge-highlighting effect. The campus building is at Kyoto

Women’s University in Kyoto City, Japan.

are understanding of 3D structures of point-based objects, clas-
sification and segmentation of points, and others.

Recently, statistical methods that use eigenvalue-based 3D fea-
ture values are becoming popular (West et al., 2004, Rusu,
2010, Toshev et al., 2010, Demantké et al., 2011, Mallet et al.,
2011, Weinmann et al., 2013, Weinmann et al., 2014, Dittrich
et al., 2017, He et al., 2017). In these statistical methods, the
3D feature values are defined based on the eigenvalues of the
local 3D covariance matrix, which is also called the 3D struc-
ture tensor (Jutzi, Gross, 2009). For each 3D point, the 3D
structure tensor is calculated by numerically investigating local
variances and covariances of point distributions within a certain
radius of a spherical neighborhood. It is also useful for adapt-
ively tuning the spherical radius based on local distributional
properties (Weinmann et al., 2014, He et al., 2017).

In this paper, we also utilize the abovementioned eigenvalue-
based 3D feature values to extract high-curvature areas, i.e., 3D
edges, from given point clouds. The new contribution of this
paper is relating the 3D feature values to the opacity distribution
of 3D scanned point-based surfaces, so that we can realize their
(transparent) visualization with their various types of 3D edge
regions highlighted.

3. BRIEF REVIEW OF SPBR

SPBR (Stochastic Point-based Rendering) realizes fast and pre-
cise 3D see-through imaging, that is, transparent visualiza-
tion of large-scale 3D scanned point clouds. The transpar-
ency originates from the stochastic determination of pixel in-
tensities. This stochastic algorithm achieves the correct depth
feel without requiring the time-consuming depth sorting of 3D
points. Below, we briefly review the method of SPBR (Tanaka
et al., 2016) with an extension of the local opacity tuning.

SPBR can control surface opacity by adjusting the point density
of the visualized point cloud. We make upsampling or down-
sampling such that the user-defined opacity is realized accord-
ing to the opacity formula (see below). If the initial point dens-
ity is too large, we randomly select an appropriate number of 3D
points from the raw data and remove them. If the point density

is too small, we randomly select an appropriate number of 3D
points and create the required number of their copies. Then, we
randomly divide the density-adjusted point cloud to multiple
subgroups, each of which has the same number of 3D points.
Below, we call the subgroups “point ensembles.” By creating an
image for each point ensemble with the point-occlusion effect
incorporated and then averaging the created images, we obtain
the final transparent image.

The original paper of SPBR (Tanaka et al., 2016) treats cases
that visualized point clouds as having a uniform point distribu-
tion. However, the abovementioned point-density adjustment
can be executed locally such that we can assign different opa-
cities to selected local areas.

Let us focus on a local area with an area size of S. We execute
the point-density adjustment for this local area such that the
following user-defined surface opacity α is realized:

α = 1−
(
1− s

S

)nadj/L

, (1)

where s is the particle cross-section area, which is tuned such
that an image of each 3D point overlaps exactly one pixel, nadj

is the adjusted number of 3D points in this local area, and L is
the number of point ensembles.

The specific steps to execute the transparent visualization are:

STEP 1. Creation of point ensembles: Prepare L point en-
sembles by randomly dividing the given raw point cloud after
appropriate point-density adjustment according to formula (1).
STEP 2. Point projection per point ensemble: For each point
ensemble, independently project its constituent 3D points to the
image plane. As a result, L intermediate images are created. In
the projection process, we incorporate the point-occlusion ef-
fect per pixel.
STEP 3. Averaging the intermediate images: Create an aver-
age image by averaging intensities of the corresponding pixels
in the above L intermediate images. The created average image
becomes the final transparent image. (The ensemble number L
controls the statistical accuracy and works as an image-quality
parameter.)
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4. OPACITY-BASED EDGE HIGHLIGHTING

In this section, we propose our edge-highlighting method,
which we call “opacity-based edge highlighting.” In the
method, first, we extract high-curvature areas from the given
point cloud. We regard these areas as 3D edges of the point-
based surface. The extraction is made by referring an appropri-
ate feature value that is calculated and assigned to each point
beforehand. Second, we execute the transparent visualization
of the point cloud with its high-curvature areas, i.e., 3D edges,
highlighted. The key idea of our opacity-based edge highlight-
ing is that we assign higher opacities to the 3D edges. This idea
can make the 3D edges look brighter compared with the sur-
rounding nonedge regions. Note that we utilize the degree of
opacity, which is made available by using SPBR, for highlight-
ing 3D edges.

4.1 Eigenvalue-based 3D Feature Values

In this paper, we utilize the eigenvalue-based 3D feature values
to extract high-curvature areas, i.e., 3D edges, from the given
point cloud. Several kinds of eigenvalue-based 3D feature val-
ues have been proposed. In our research, we adopt “change of
curvature” and “linearity”:

Change of curvature: Cλ =
λ3

λ1 + λ2 + λ3
, (2)

Linearity: Lλ =
λ1 − λ2

λ1
, (3)

where λ1, λ2, and λ3 are the eigenvalues of the 3D structure
tensor (the local 3D covariance matrix) (Jutzi, Gross, 2009)
with λ1 ≥ λ2 ≥ λ3 ≥ 0. In our implementation, the 3D struc-
ture tensor is calculated for each spherical local region centered
at each point. Change of curvature Cλ measures the minimal
extension of the local point distribution that should vanish in
the case of planar distribution. Linearity Lλ measures the dif-
ference between the two independent-directional largest exten-
sions of the local point distribution that should also vanish in
the case of planar distribution. Thus, a large value of Cλ or Lλ

indicates that the examined local set of points forms a 3D edge
of the point-based surface.

We also introduce another feature value “aplanarity”:

Aplanarity: P̄λ = 1− Pλ , (4)

where Pλ = (λ2 − λ3)/λ1 is known as feature value “planar-
ity.” Aplanarity P̄λ is the opposite of planarity and describes
the degree of a nonplanar feature of the local point distribution.

In our edge highlighting, we adopt one of Cλ, Lλ, and P̄λ, de-
pending on a target point cloud. Below, we represent the adop-
ted 3D feature value as f . When using f , we normalize it such
that its maximal value in the target point cloud becomes one,
and the values of f are distributed between zero and one.

4.2 Method of Opacity-based Edge Highlighting

We define 3D edge regions as areas with large 3D feature val-
ues, i.e., values of f . As we mentioned at the beginning of
Section 4, the fundamental idea of our opacity-based edge high-
lighting is to assign higher opacities to the 3D edge regions in
the transparent visualization of SPBR. This idea can make the
3D edges look brighter compared with the surrounding nonedge
regions. For the color of the 3D edges, we assign an appropriate

highlight color, e.g., red, or keep the original (but brightened)
point colors.

To highlight the 3D edges, we introduce three types of functions
to relate 3D feature value f to opacity α: type (a), type (b), and
type (c). We select one of the three, depending on the shapes
and other properties of the 3D edges to be highlighted. Below,
we explain the three types.

4.2.1 Type (a) The function of type (a) adopts the simplest
binary relation between f and α. We assign a constant high
opacity to local areas with f values larger than a user-defined
threshold fth. In Figure 2, we show a typical graph of f and α
for the function of type (a).

Figure 2. Typical relation between 3D feature value f and
opacity α when adopting the function of type (a). The relation

has the step-functional feature, and fth is the user-defined
threshold value that defines the stepping position.

The simple highlighting strategy of type (a) is robust and works
well in many cases. However, the highlighted edge widths can-
not be smaller than the diameter of the spherical local regions
to calculate the 3D structure tensor, and we are often required
more thinning of the edge widths. Type (b) is designed to im-
prove this problem (see Section 4.2.2).

Let us show an experiment to verify the edge highlighting based
on the function of type (a). We constructed a point-based 3D
model where two squares are joined at a right angle. In the
model, a 3D edge should appear between the two squares. We
highlighted the 3D edges of this model based on a function of
type (a). Change of curvature Cλ is adopted as f . The created
2D image is shown in Figure 3 (right). We can confirm a clear
3D edge as a bright vertical line. At each horizontal position in
the edge region of this 2D image, we averaged pixel intensities
along the vertical direction. Then, we investigated the change in
the average pixel intensity along the horizontal direction across
the edge region. We show the result in the graph of Figure 3
(left). The graph forms a square shape approximately corres-
ponding to the step-functional feature of the opacity distribution
shown in Figure 2.

4.2.2 Type (b) The function of type (b) is used to visualize
3D edges as thinner lines compared with type (a). This high-
lighting strategy is suitable for highlighting sharp 3D edges that
have high curvatures within narrow local areas.

In Figure 4, we show a typical graph of f and α for the func-
tion of type (b). The 3D edge regions are defined as areas with
f ≥ fth as in type (a). The graph shows two essential aspects
of edge highlighting based on the function of type (b). The first
aspect is that the larger f is, the more opaque the correspond-
ing local regions become, which means that the narrow areas
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Figure 3. Verification experiment of the function of type (a). The
right image shows the edge-highlighting result of a point-based
3D model consisting of two joined squares. The graph on the
left shows the change in pixel intensity around the 3D edge in
the horizontal direction in the right image. The parameters are

set to L = 100, fth = 0.1, αmax = 0.9. The opacity of
non-edge regions is set to 0.2.

along the centerlines of the 3D edges look brighter compared
to the surrounding areas. The second aspect is that the graph
has a sharp peak at the maximal value of f , which means that
the centerlines are visualized with particularly bright intensit-
ies. These aspects make 2D images of the visualized 3D edges
thinner compared with the cases of type (a).

Figure 4. Typical relation between 3D feature value f and
opacity α when adopting the function of type (b). α gradually
increases for f larger than fth and forms a sharp peak at the

maximal value of f .

The relation of f and α as in the graph of Figure 4 is realized
by defining the following function α(f):

α(f) =
αmax − αmin

(1− fth)d
(f − fth)

d + αmin . (5)

On the right-hand side, fth is the threshold value of f , over
which the corresponding local regions are regarded as 3D
edges. Minimal opacity αmin and maximal opacity αmax are
assigned to areas with f < fth and f = 1, respectively. In the
intermediate range, fth ≤ f < 1, the opacity α(f) increases
as f becomes larger. The parameter d controls the speed of the
opacity increase. Usually, we set d in a range 1.0 ≤ d ≤ 3.0.

We executed a verification experiment that is similar to the one
in Section 4.2.1 by adopting the function of type (b). We used
the same point-based 3D model consisting of the two joined
squares. The change of curvature Cλ is adopted as f . The
created 2D image is shown in Figure 5 (right). We can confirm a
clear 3D edge as a bright vertical line, which is thinner than the
one in Figure 3 (right). This experimental result demonstrates
the edge-thinning effect of the function of type (b).

Figure 5. Verification experiment that is similar to Figure 3 for
the function of type (b). The parameters are set to L = 100,
fth = 0.1, αmin = 0.2, αmax = 1.0, d = 3.0. The opacity of

nonedge regions is set to 0.2.

4.2.3 Type (c) The function of type (c) enables us to visu-
alize soft 3D edges. We define a soft 3D edge as a region that
is not a sharply defined 3D edge but has comparably higher
curvatures than the surrounding areas. The soft edges often
characterize the 3D structure of 3D scanned objects. Note that
the conventional methods of highlighting 3D edges often fail
for soft edges.

In Figure 6, we show a typical graph of f and α for the function
of type (c). There are two threshold values, fth and Fth, with
fth < Fth. The 3D edge regions are defined as areas with
f ≥ fth as in types (a) and (b). α gradually increases for fth ≤
f < Fth and becomes constant for f ≥ Fth.

Figure 6. Typical relation between 3D feature value f and
opacity α when adopting the function of type (c). α gradually
increases in range fth ≤ f < Fth and becomes constant for f

larger than Fth.

Let us consider the meaning of the opacity graph in Figure 6
in more detail. f in the soft-edge regions takes more variet-
ies of values than sharp-edge regions. Therefore, we need the
plateau area at f > Fth to cover all soft-edge regions. In ad-
dition, we make the opacity gradually decrease as the position
moves away from the centerline of the edge regions (see the
area fth ≤ f < Fth). This opacity distribution gives the narrow
areas around the centerlines comparably higher opacity, and the
areas are highlighted with brighter colors.

The relation of f and α as in the graph of Figure 6 is realized
by defining the following function α(f):

α(f) =


αmax − αmin

(Fth − fth)d
(f − fth)

d + αmin (fth ≤ f < Fth)

αmax (Fth ≤ f ≤ 1)
(6)
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Definitions of the parameters other than Fth on the right-hand
side are the same as formula (5).

In Figure 7, we compare the results of using the functions of
types (a) (left) and type (c) (right) for a cubic surface with roun-
ded (soft) edges. Only 3D edge regions are visualized, elimin-
ating the other areas. The change of curvature Cλ is adopted
as f . In the right figure, we can see that the use of the type (c)
function makes the centerlines of the 3D edges brighter than the
surrounding areas. The brightness gradually decreases as the
position moves away from the centerlines. This gradation ef-
fect makes the 3D edges look thinner than in the left image with
type (a). For the left image, the parameters are set to L = 100,
fth = 0.3, αmax = 0.9. For the right image, the parameters are
set to L = 100, fth = 0.3, Fth = 0.8, αmin = 0.2, αmax = 1.0,
d = 2.0.

Figure 7. Comparison of the visualization results of using the
functions of type (a) (left) and type (c) (right).

5. CASE STUDIES

In this section, we present three case studies that demonstrate
the effectiveness of our opacity-based edge highlighting for
various 3D scanned data. More specifically, we present ex-
amples where the functions of types (a), (b), and (c) work well.

Here, we summarize some parameter values used for creating
figures in this section: We set the radius of the spherical local
region for calculating the 3D structure tensors (see Section 4.1)
such that each local region includes a few hundred points. It
is convenient to define the radius in units of the bounding-box
diagonal length of the target point cloud. For Figures 1, 10,
and 11, the spherical radii are adaptively tuned by referring to
the local measure of eigenentropy (Weinmann et al., 2014). For
Figure 1, the maximal and minimal radii are 1/150 and 1/500,
respectively. For Figures 10 and 11, the maximal and minimal
radii are 1/300 and 1/600, respectively. For Figures 8, 9, 12,
and 14, the spherical radius is fixed to 1/300, and 1/500 for
Figure 15. The opacity of nonedge regions is set to 0.5 for
Figures 14 and 15, and 0.2 for the other figures. The ensemble
number L is set to 100 for all the figures. The image resolution
is set to 10242 for all the figures except for Figures 14 and 15.
For the two figures, an image is first created with resolution
20002 for the whole of one relief panel, and its part is clipped.

5.1 Application of the type (a) function

In this subsection, we show edge-highlighting examples when
adopting the type (a) function, which defines the simplest bin-
ary step-functional opacity distribution of Figure 2.

In Figure 1, for a campus building, we compare the ordin-
ary transparent visualization by SPBR (the left image) and the
edge-highlighted transparent visualization realized by adopting
the type (a) function (the right image). In the right image, we

observe the complex internal 3D structures of the building more
understandably by highlighting the 3D edges as black lines.

To create Figure 1 (right), change of curvature Cλ is adopted as
the 3D feature value f . The black color is assigned to the 3D
edge regions as the highlight color. The parameters that appear
in Figure 2 are set as follows: fth = 0.25, αmax = 0.9.

In Figures 8 and 9, we show similar comparisons for the 3D
scanned data of the prayer chapel of the Zuiganji Buddhist
Temple, which was made by excavating rock walls. The chapel
consists of many cuboid-shaped rooms, in each of which many
stone Buddhist statues are enshrined. Figure 8 compares the
see-through bird’s-eye views with and without highlighting the
3D edges. In Figure 8 (b) with the edge highlighting, we can
observe the whole 3D structure of the chapel better, guided by
the highlighted 3D edges. Human-made structural objects often
have clearly defined 3D edges, which are available in our edge-
highlighting method to improve the comprehensibility. Images
of Figure 9 are created by setting the viewpoint inside a chapel
room. In Figure 9 (b) with the edge highlighting, we can ob-
serve outlines of the stone Buddhist statues more clearly. This
example demonstrates the usability of our method to highlight
object outlines that define the silhouettes of 3D scanned objects.

To create Figures 8 (b) and 9 (b), aplanarity P̄λ is adopted as f .
For curved outlines, aplanarity often works better than linearity
and change of curvature (see also Section 5.4). The parameters
are set as follows: fth = 0.4, αmax = 0.9.

(a) Ordinary transparent visualization without edge highlighting

(b) Opacity-based edge highlighting (type (a))

Figure 8. Comparative visualizations of the prayer chapel in the
Zuiganji Buddhist Temple (1): (a) The ordinary transparent

visualization by SPBR without edge highlighting. (b)
Opacity-based edge highlighting (type (a)).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-373-2020 | © Authors 2020. CC BY 4.0 License.

 
377



(a) Ordinary transparent visualization without edge highlighting

(b) Opacity-based edge highlighting (type (a))

Figure 9. Comparative visualizations of the prayer chapel in the
Zuiganji Buddhist Temple (2): viewpoint inside the chapel.

5.2 Application of the type (b) function

In this subsection, we show edge-highlighting examples when
adopting the type (b) function, which defines the opacity distri-
bution with a gradually increasing region and a sharp peak (see
Figure 4). This function works well for highlighting sharply
defined 3D edges.

Figure 10 shows the visualization results obtained by using
our 3D scanned point cloud of a gymnasium in an element-
ary school. Figure 10 (a) shows the original 3D scanned point
cloud. Figure 10 (b) shows the visualization created by the con-
ventional opaque point-based rendering, where only 3D edge
regions are visualized. Figure 10 (c) shows the transparent
visualization with our opacity-based edge highlighting with the
type (b) function. We can see that the visualized 3D edges look
much thinner than the conventional visualization by gradually
increasing the transparency, depending on the distance of the
position from the 3D-edge centerlines. To create Figure 10 (c),
change of curvature Cλ is adopted as f . The parameters that ap-
pear in formula (5) are set as follows: fth = 0.3, αmin = 0.2,
αmax = 1.0, d = 3.0.

Figure 11 demonstrates the effect of increasing parameter d in
formula (5). We can see that the 3D edges for d = 3.0 (Figure
11 (b)) are thinner than those for d = 1.0 (Figure 11 (a)), which
proves that d can control the speed of edge thinning.

Figure 12 shows the edge-highlighting transparent visualization
of a festival float with high cultural value. Linearity Lλ is ad-
opted as the 3D feature value f . The 3D edges are highlighted
by adopting the type (b) function with fth = 0.25, αmin = 0.2,
αmax = 1.0, and d = 2.0. This float is composed of many nar-
row square timbers. For such an object, sharply highlighted 3D
edges of the timbers work effectively for us to understand how
the timbers are built up.

5.3 Application of the type (c) function

In this subsection, we show edge-highlighting examples when
adopting the type (c) function, which defines the opacity distri-
bution with a plateau area for high opacities (see Figure 6). This
function works well for highlighting soft (round) 3D edges.

(a) 3D scanned point cloud

(b) Conventional opaque point-based rendering of 3D edges

(c) Opacity-based edge highlighting (type (b))

Figure 10. Comparison of visualizations of a gymnasium in an
elementary school.

(a) d = 1.0

(b) d = 3.0

Figure 11. Effect of the parameter d in formula (5).

For the demonstration, we use 3D scanned data of relief pan-
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Figure 12. Opacity-based edge highlighting (type (b)) of a 3D
scanned point cloud of the Hachiman-Yama float used in the

Gion Festival in Kyoto City, Japan.

els of the Borobudur Temple (UNESCO World Heritage Site)
in Yogyakarta, Indonesia (see Figure 13).

Figure 14 shows the edge-highlighting visualization of a part of
Karmavibhangga relief. Many human characters, each of which
has soft 3D edges as its outline, are drawn on the panel. Fig-
ure 14 (a) is created by the conventional opaque point-based
rendering, where regions with f ≥ fth are assigned the red
color. Since the soft edges have larger widths compared with
the sharply defined edges, the visualized red regions form wide
bands rather than thin lines, so that the outlines of human char-
acters become unclear. In contrast, Figure 14 (b) shows the
visualization with our opacity-based edge highlighting with the
type (c) function. The gradation of the red color appears, and
the brightness becomes higher around the centerline of the red
regions, which makes the outlines more recognizable.

Figure 15 shows the similar edge-highlighting visualization of
the famous ancient ship drawn in a relief panel of the Borobudur
Temple. In the right image, the detailed design of the ship is
more understandable than in the left image due to the color-
gradated 3D edges and outlines.

For creating Figures 14(b) and 15 (right), change of curvature
Cλ is adopted as f . The parameters in formula (6)
are set as follows: fth = 0.03 (Figure 14 (b)), fth =
0.02 (Figure 15 (right)), Fth = 0.2, αmin = 0.2, αmax = 1.0,
and d = 2.0.

Figure 13. 3D scanned data of reliefs of the Borobudur Temple.

We make one comment here. It is true that Figures 14 (b) and
15 (right) are transparent visualizations. However, the effect of
transparency only reduces the brightness here. As long as there
are no hidden objects behind, the transparent visualizations can-
not be distinguished from opaque visualizations. In this sense,
the visualizations of Figures 14 (b) and 15 (right) can also be
regarded as improved opaque edge-highlighting visualizations.

5.4 Comparative visualizations of 3D feature values

Selection of the most effective type of 3D feature value de-
pends on the target point cloud. Generally speaking, change

(a) Conventional opaque point-based rendering

(b) Opacity-based edge highlighting (type (c))

Figure 14. Comparative visualizations of the Borobudur relief
(1): Highlighting outlines of human characters in the relief.

Figure 15. Comparative visualizations of the Borobudur relief
(2): The left image is created by the conventional opaque

point-based rendering and the right image by SPBR with the
opacity-based edge highlighting (type (c)).

of curvature Cλ is mostly robust (Dittrich et al., 2017). Linear-
ity Lλ works well for detecting outlines of surfaces to which no
neighboring surfaces are connected. This situation often occurs
when the neighboring surfaces are invisible from the scanning
viewpoint. Aplanarity P̄λ works similarly to linearity, but it
works better for detecting curved outlines.

We executed the edge-highlighted visualization for the data
in Figure 9 by adopting change of curvature, linearity, and
aplanarity, respectively. Figure 16 shows the comparison res-
ult of the partial enlargement of the same portion in Figure 9.
We can see that the edges extracted using aplanarity are the
sharpest, followed by linearity and change of curvature.

Figure 16. Comparative visualizations with different 3D feature
values: (a) change of curvature, (b) linearity, (c) aplanarity.

5.5 Performance

In Table 1, we summarize the rendering speeds in frames per
second (fps) together with the number of points in the point
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clouds after the point density adjustment (see Section 3). We
can see that the rendering speeds are a few tens of fps for 107

points and several fps for 108 points. These speeds are fast
enough for interactive visual analysis. Roughly speaking, the
number of points is doubled by the point-density adjustment in
the 3D edge regions.

Figure 1(b) 8(b) 10(c) 12 13(b)
fps 49.4 63.6 31.6 47.8 8.53

Points (×106) 35.8 15.3 63.7 44.4 87.1

Table 1. Rendering speeds (fps) and numbers of points for point
clouds with 3D edges highlighted.

The rendering speeds are measured for STEPs 2 and 3 of SPBR.
The computations were executed on a Linux PC with an Intel
Xeon E5-2687W (3.00 GHz, 512 GB of memory) CPU and an
NVIDIA Quadro P5000 (16 GB of memory) GPU.

6. CONCLUSIONS

In this paper, we proposed a novel method to highlight 3D edges
of a 3D scanned point cloud in its transparent visualization. We
call the method opacity-based edge highlighting. The key idea
is that we assign higher opacities to the 3D edges to make the
edges brighter. This idea is realized by utilizing SPBR, which
was recently proposed for high-quality transparent visualization
of large-scale 3D scanned point clouds. The proposed method
makes the 3D edges look brighter compared with the surround-
ing nonedge regions. This effect improves visibility and com-
pensates for the disadvantage of transparent visualization, that
is, showing too much information, which is confusing.

We investigated three types of functions to relate the 3D feature
value to the surface opacity. The type (a) function defines the
basic binary step-functional relation, which is useful in many
cases. The type (b) function with a sharp peak works to make
the 3D edges look thinner and sharper, and this type is use-
ful to highlight sharply defined 3D edges. The type (c) func-
tion, which has a wide plateau area, enables us to visualize soft
(round) 3D edges, realizing gradation of the highlight color that
becomes brightest at the centerlines of the 3D edges. We can
select one of the three types, depending on the edge shape. We
applied our opacity-based edge highlighting with each function
type to real 3D scanned point clouds and demonstrated the ef-
fectiveness of the method successfully.

The limitation of the proposed method is that we need to set sev-
eral parameters manually. Our future target is to realize semi-
automatic determination of the parameter values by investigat-
ing local point distributions. Adaptive selection of the opacity-
function type is also promising, which can make the method
applicable to shapes with varieties of curvatures. Incorporation
of the idea of the contour detection in (Hackel et al., 2017) into
our method is also interesting.
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