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ABSTRACT:

This paper deals with 3D modeling of building interiors from point clouds captured by a 3D LiDAR scanner. Indeed, currently,
the building reconstruction processes remain mostly manual. While LiDAR data have some specific properties which make the
reconstruction challenging (anisotropy, noise, clutters, etc.), the automatic methods of the state-of-the-art rely on numerous con-
struction hypotheses which yield 3D models relatively far from initial data. The choice has been done to propose a new modeling
method closer to point cloud data, reconstructing only scanned areas of each scene and excluding occluded regions. According
to this objective, our approach reconstructs LiDAR scans individually using connected polygons. This modeling relies on a joint
processing of an image created from the 2D LiDAR angular sampling and the 3D point cloud associated to one scan. Results are
evaluated on synthetic and real data to demonstrate the efficiency as well as the technical strength of the proposed method.

1. INTRODUCTION

Since the 1990’s, architects and civil engineering professionals
use digital models to perform simulations and accurate compu-
tations before construct a building. The new challenge is to
obtain as-built models from existing buildings, which would
notably be useful in case of renovations. For this purpose,
the LiDAR technology is mostly used to scan building interi-
ors because of its accuracy and its efficiency. In this work, we
are particularly interested in reconstructing the envelopes of the
scanned scenes. The building structure is commonly composed
of a main set of polygons which are easy to represent in 3D. The
major scientific lock to the modeling of this structure lies in the
accurate location of the planes, the polygonal contours and the
polygons’ connections. The difficulty of this task comes mostly
from the acquisition faults of a LiDAR device i.e., sampling an-
isotropy, measurement noise, occlusion problems, etc.

In view of the planar feature of the building interiors, the poly-
gonal and polyhedral reconstructions seem to be the most sui-
table. They are notably easy to transfer to a BIM (Building In-
formation Model) format used in the field of civil engineering.
Both are based on a precise segmentation of planar primitives
in the scene (Macher et al., 2017) (Boulch, Marlet, 2016) (Och-
mann et al., 2016). The most known method to extract planar
primitives in point clouds, namely Hough transform, RANSAC
and region growing, suffer from the anisotropy of sampling in
the 3D environment, and require complex configuration. Then,
the primitives are generally extrapolated to recover a water-
tight envelope. However, this extrapolation can lead to false
reconstructed areas.

In this work, we aim at reconstructing indoor building envel-
opes as a piecewise planar structure. A new method of poly-
gonal modeling from point clouds is then proposed. Like
various authors (Chauve et al., 2010) (Boulch, Marlet, 2016),
we choose to work on individual scans after capture process to
∗ Corresponding author

maintain the link with the 2D angular sampling of the LiDAR.
The method relies on the estimation of normals in order to
achieve 2D region growing allowing to extract the plane pri-
mitives and their contours directly in an image. An intersec-
tion study is then carried out in order to classify the interac-
tions between planes (occlusions or connections) and the con-
tours are modeled by a set of line segments taking account of
openings and clutters. Finally, the set of connected polygons
with holes is then represented in the form of a mesh.

The existing methods in the field of interior scene modeling is
first detailed in Section 2. Then, our approach to model a scan
is presented in Section 3. Finally, the method is evaluated on
real data (Section 4) before concluding on the advantages and
drawbacks of such modeling.

2. RELATED WORK

Building modeling from point clouds generally breaks down
into two distinct tasks: segmentation, which corresponds to la-
beling of points according to the sampled object, and adjust-
ment of geometric models to points. These two tasks are carried
out by a multitude of different methods which vary according
to:

• the reconstructed object: a complete building, a building
floor, a room or a scan;

• initial data: 3D coordinates, color, normal, photographs,
individual or multiple registered scans, etc.

• the desired accuracy;
• the initial geometrical hypotheses;
• special requirements: wateriness, modeling openings, etc.

Consequently, the following paragraphs draw up a non-
exhaustive inventory of the tasks achievable in a processing
chain aiming at reconstructing building interiors in different
contexts.
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2.1 Breakdown into subsets of points

Building modeling can be carried out from a point cloud in-
tegrating all the scans from the different poses of the scanner,
after registration. In this context, a few methods propose to
decompose the global cloud into sub-clouds which can be seg-
mented and/or modeled independently. (Huber, 2011), (Oesau
et al., 2014), (Khoshelham, Dı́az-Vilariño, 2014) and (Macher
et al., 2017) break down the point cloud into floors. (Ochmann
et al., 2016) and (Macher et al., 2017) further decompose the
point cloud into rooms. Some authors also filter the cloud to re-
move occluding objects (Oesau et al., 2014, Sanchez, Zakhor,
2012). These methods are based on geometric priors of the scan
(verticality, walls width) and are sensitive to anisotropy of the
3D point clouds. Here, we will prefer to work on LiDAR scans
directly to address these issues.

2.2 Envelope element detection

In order to be modeled, the elements of the envelope of a room
must be detected, i.e., the points of the different walls, floor and
ceiling must be labeled. To do this, most methods seek to detect
planes in scenes.

2.2.1 Detection of 3D planes In a majority of building re-
construction methods, the search for planes is carried out in
the point cloud. The classic 3D Hough transform (Duda, Hart,
1971) can be used. It consists in creating a surface of potential
planes’ parameters for each point and to build a 3D histogram
(accumulator) from these parameters to detect the surface inter-
sections while taking account of noise. However, this approach
is slow and encounters discretization problems which make it
dependent on the chosen bin width and on the orientation of the
histogram. Some extensions have been introduced to solve such
issues (Yl-Jski, 1994), (Borrmann et al., 2011).

The RANSAC paradigm (Fischler et al., 1981) consists in
fitting planes on triplets of points randomly extracted from
the cloud. Then, the plane corresponding to the most points
(inliers) relatively to a given distance threshold, is selec-
ted. This method has been extended taking account of nor-
mal information (Bretar, Roux, 2005) or constraining the mo-
dels to find horizontal or vertical planes (Thomson, Boehm,
2015). (Torr, Zisserman, 2000) introduce MSAC (M-estimator
SAmple Consensus) and MLESAC (Maximum Likelihood Esti-
mation SAmple Consensus) in which the selection criterion of
the plane is replaced to depend on the residues of the inliers re-
latively to the studied model. This kind of methods is efficient,
fast and widely used in an indoor scene reconstruction con-
text. (Tarsha-Kurdi et al., 2007) assert that RANSAC has better
noise management and greater efficiency than the 3D Hough
algorithm. A combination of the RANSAC and Hough me-
thods is proposed by (Xu et al., 1990) in their method called
Randomized Hough Transform (RHT).

3D region growing on an image is another solution. It consists
in starting from a seed pixel and in growing a region pixel by
pixel according to a criterion related to the selected seed. Re-
gion growing has been performed on range images (Besl, Jain,
1988) (Fitzgibbon et al., 1997). It has been extended to 3D
point clouds by defining a 3D local neighborhood (Chauve et
al., 2010) (Xiong et al., 2013). However, a neighborhood in
a point cloud is difficult to define, mainly because of the non-
uniformity of the sampling. In both cases, the criterion gener-
ally used to enlarge the regions is the residue of neighboring

points relatively to the local plane defined on the seed (Pu, Vos-
selman, 2006, Poppinga et al., 2008), but the similarity of the
normals can also be taken into account (Deschaud, Goulette,
2010, Poullis, You, 2009, Boulch et al., 2014). The main lim-
itation of region growing and RANSAC is the complexity of
their configuration in order to limit the overlap of one region
on another, while taking into account the effect of measurement
noise and normals estimation.

In the indoor reconstruction context, some authors base their
approach on the assumptions of the Manhattan world (Cough-
lan, Yuille, 1999). (Budroni, Boehm, 2010) add the hypo-
thesis that the floor and the ceiling are parallel to the {x, y}
plane, using a sweeping procedure (translating and rotating
planes). (Vanegas et al., 2012) use these assumptions to gather
the points according to their spatial proximity and their neigh-
borhood similarity to local primitives (planes, 90◦ edges and
90◦ corners). Although the effectiveness of these methods has
been proven, the construction assumptions on which they are
based reduce their applicability to real data.

2.2.2 2D plane detection A possible assumption to make is
that the walls are perpendicular to the ground plane which is
horizontal. The 3D plane search problem can then turn into a
search for 2D lines after projection of the points onto the hori-
zontal plane. (Macher et al., 2017) perform 2D straight line de-
tection on projections using MLESAC 2D to guide subsequent
wall detection by MLESAC 3D. (Oesau et al., 2014) fit locally
the best of two possible models: one line, or an intersection of
two lines. Then, they correct the resulting local lines by a bi-
lateral filter and group them by a region growing. This method
has the advantage of being able to detect fine planes and to re-
construct curved wall under the shape of a set of fine vertical
planes.

2.3 Modeling

2.3.1 Polygonal modelisation The envelope elements can
be modeled independently with polygons. To do this, the
characteristics of each underlying plane are computed and the
outline of the polygon is detected and modeled. Some au-
thors choose to directly use the RANSAC algorithm (Thomson,
Boehm, 2015) (Sanchez, Zakhor, 2012). Then, the first ones
use the convex hull, while the second ones prefer the α-shape
to detect and model the outline of the polygon. The α-shape of
a point cloud is a hull closer to the data than the convex hull.
However, it is sensitive to the sampling anisotropy and its con-
figuration can be complex (Boulch et al., 2014). With the same
objective, (Boulch et al., 2014) prefer to directly work on the
2D angular frame used by the LiDAR sensor. The detected pri-
mitives can then be represented on an image and local lines are
detected in the form of pixels. (Macher et al., 2017) detect the
vertical edges as the ends of segments in the 2D projection of
the wall onto the floor. The other edges are modeled as inter-
sections. These methods do not study the interactions between
planes and lead to independent polygonal modeling for each
plane.

2.3.2 Polyhedral modelisation To recover these interac-
tions, a majority of methods seek to directly reconstruct a poly-
hedron by locating its faces on an arrangement of lines or
planes. The classical method described by (Budroni, Boehm,
2010) consists in projecting the walls in the horizontal plane
in the shape of line segments. Then, the segments are exten-
ded until they intersect the bounding box. The points of the
cloud are also projected in the arrangement and the cells are
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labeled according to their occupation by points or not. The
segments separating two cells of different labels are then ex-
truded to model the walls. Similarly, (Ochmann et al., 2016)
work on registered point clouds and seek the walls separating
rooms in 2D. To do so, they optimize a cost function to label
the cells per room. Other authors are working on 3D plane ar-
rangements. These arrangements can be constructed by extru-
ding 2D arrangements (Oesau et al., 2014) or by extending 3D
planar primitives (Chauve et al., 2010) (Boulch et al., 2014).
As (Ochmann et al., 2016), the authors cited above propose to
carry out an optimization which allows to label the cells ac-
cordingly to the measured points (with ray tracing (Oesau et
al., 2014) or visibility constraints (Boulch et al., 2014)) while
limiting the complexity of the surface. These methods make it
possible to obtain a watertight, credible reconstruction. How-
ever, they are sensitive to the anisotropy of the sampling and
the authors use weighting mechanisms to overcome this pro-
blem (Oesau et al., 2014) (Ochmann et al., 2016) (Boulch et al.,
2014). Moreover, many artifacts can appear in the reconstruc-
tion (forgetting a wall, copies, false intersections) and openings
are not modeled.

Aware of the shortcomings of the methods listed above, we wish
to propose a new approach to model indoor scenes with poly-
gons, solving such issues and yielding information on interac-
tions between surface pieces (occlusions, or connections). The
method should allow the modelisation of openings and lead to
minimal extrapolation of LiDAR data.

3. INDOOR SCENE MODELING

3.1 Overview

The LiDAR device captures the world around its position
with distance measurements for a collection of rays w.r.t. two
orientation angles ϕ and θ. The objective of our method is
to take advantage of the regularity of the sampling in this 2D
coordinate system to improve the point cloud segmentation
in the 3D space. Indeed, the point cloud can also be repre-
sented under the form of an image; ϕ being associated with
rows and θ being associated with columns. We call these data
{ϕ, θ} images. Each 3D point of the dataset is associated
with a pixel. Figure 1 presents such an image, in which the
colored elements {R,G,B} of a pixel qi express the values
{dpinxpi , dqn

y
pi , dpin

z
pi} where npi is the normal of the local

plane adjusted in pi and dpi is its distance to the origin. This
image identifies polygons as groups of pixels of similar colors.
Note that the points which never returned to the source corres-
pond to empty pixels (black pixels in figure). The other are
qualified as “full” pixels. Hence, a segmentation of this image

(a)
(b)

Figure 1. Simulated capture of a room by a LiDAR laser
scanner. (a) Point cloud. (b) {ϕ, θ} image.

is carried out to detect these groups and their contour lines as a
set of pixel/point pairs. The modeling of the polygons is then

carried out in two stages. First, straight line segments are fitted
to the outline and secondly, the vertices of the polygons are de-
duced by analyzing the intersections of these segments. All the
method parameters defined in the following are summarized in
Table 1, with their values used in all of our tests.

3.2 Image segmentation into planar surfaces

Our goal is to segment the planar primitives from the {ϕ, θ}
image. We call Π the set of planar primitives. A primitive πk
belonging to Π and modeling a subset of points in the cloud S,
is defined by:

• Pπk : a set of 3D points;
• Qπk : the corresponding pixels;
• nπk : the normal to πk;
• dπk : its distance from the origin.

We want to detect these primitives and to compute their features
using a regions growing process. Like (Boulch et al., 2014), we
choose to achieve the region growing on the image considering
the neighbors residues relatively to the local plane defined on
the seed with the threshold τd. The regions are sets of pixels.
Each seed grk is defined by its pixel/point pair qg

rk
/pg

rk and
its local plane, πg

rk . To select a seed, we test all the pixels
of the scan successively per line and per column. pi is selec-
ted to create a seed if qi does not belong to any region, the
maximum angular difference between the normal in pi and the
neighboring normals is less than a threshold τgα, and if the ma-
ximum residue of a pi’s neighbors relatively to its local plane is
less than a threshold τgd . The neighborhood is defined by the 8

pixels surrounding qi, and πg
rk is determined by averaging the

3D points and normals in qi’s neighborhood.

A problem relating to the use of a region growing is that, de-
pending on the chosen residual error, a region may partially
overlap another one. Moreover, a region can propagate on a
surface of different orientation if points are found aligned with
the studied region. (Boulch et al., 2014) propose to add a new
threshold on the resemblance of the local normals of the points
with the seed to mitigate this problem but that can complicate
the parameters setting of the algorithm that we want to keep as
simple as possible. We use a variant to the region growing in
order to resolve these ambiguities: after a region has been seg-
mented, its pixels are removed from the list of potential seeds,
but they are brought into play again in the growth of the fol-
lowing regions. Hence, a pixel can be selected in several re-
gions. The points are then reallocated to the regions with the
most similar local planes i.e., the region corresponding to the
smallest angular deviation between the studied point normal
and the seed’s local plane normal. This method allows the re-
gion growing to cover a maximum of pixels of the image, it
prevents overlapping of regions corresponding to intersecting
planes while alleviating the algorithm configuration.

After segmenting the planar regions R, the set of primitives Π
can be determined. For each region rk, a primitive πk is created:
Qπk contains the pixels of rk, Pπk is the set of corresponding
3D points, nπk is determined by PCA on the whole set Pπk
and finally, dπk is the scalar product of Pπk ’s centroid with
nπk . When 3D points of a region are distant from the seed, the
angular error of the local plane normals implies strong points’
residues and several regions can then be detected on the same
planar primitive. Figure 2 shows a schematic example of such a
situation. Therefore, the characteristics of the different segmen-
ted planes are compared and, if they are close together and the
regions have pixels in common, the planes are merged: their
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Figure 2. Representation of a (hatched) region grown on a red
flat surface from the seed A associated with the inaccurate blue
local plane. B is wrongly discarded from the region. Similarly,

another region will be grown from B in which A will be
discarded.

points and pixels are pooled and a new pair of characteristics
(normal and distance) is computed.

At the end of this process, an image is obtained where all the
planar regions are segmented. The points which do not belong
to any region are assumed to belong to non-planar objects. The
image is then filtered to eliminate false detections of non-planar
objects due to the error of normals estimation and to the meas-
urement noise. If the objects contain less than Smin pixels, they
are reassigned to the nearest plane in the image. An example of
these processes result is given in Figure 3 for the cloud presen-
ted in Figure 1(a). The colors correspond to the regions.

Figure 3. Segmentation of the {ϕ, θ} image represented
Figure 1(b)

3.3 Contour line detection

In order to model polygons, we want to detect the edges of
the planar primitives previously extracted, and to label them.
A contour line can either separate two primitives, indicate an
opening or the presence of a non-planar object. Examples of
contour lines are shown in Figure 4. The set of contour lines is
called L. Each contour line `l belonging to L is defined by:

• P `l : a set of 3D points;
• Q`l : the set of corresponding pixels;
• Π`l : a set of interacting primitives. Π`l ⊂ Π;
• e`l : a label which can be: “interaction with primitive”,

“opening”, or “interaction with object”.

We consider here the study of the contour of a particular primi-
tive named π, and we note πC the complement of π.

All the pixels Qπ are isolated in a binary image (see
Figure 5(a)). The edge pixels of π are then extracted from the
image along with their closest neighbors in πC . This new set of
pixels is named Qπbound. To create each contour line, one must
group the pixels Qπbound corresponding to the same element (a
neighboring planar primitive, a non-planar object or an open-
ing). An example of such a grouping is given in Figure 5(b),
the labels, corresponding to colors, identify the object interact-
ing with the studied primitive. For π, a group of contour pixels
extracted from Qπbound allows to create a line ` as follows:

• Q` is the group of pixels and P ` their corresponding 3D
points;

• Π` contains the plane and the interacting plane where ap-
plicable;

• The label e` is selected accordingly to the neighborhood.
If the pixels are close to another plane, the label is “inter-
action with primitive”; if the pixels have no full neighbor,
the label is “opening”; otherwise, the label is “interaction
with object”.

It is to note that if ` is an interaction between primitive, then
#Π` = 2 otherwise #Π` = 1.

πb

πa

Figure 4. Example of contour lines for three interacting planar
primitives. The orange line represents the interaction of the

primitives πb and πc, the green line represents the interaction of
πa and πc, the purple line represents the interaction of πa and
πb, and the blue line shows the opening in the primitive πa.

(a) (b)

Figure 5. Outline detection in a planar primitive. (a) Planar
primitive extracted from {ϕ, θ} image, (b) labeled contours

3.4 Contour line modeling

We assume that the contour lines can be modeled by a set of
straight line segments. Therefore, we will try to adjust these
models and label them. An example of contour line modeling is
given in Figure 6. The contour lines of the plane πc (on the left),
are modeled by segments (on the right). The set of straight line
segments modeling the contour lines is named ∆. A straight
line segment δd belonging to ∆ is defined by:

• tδd : its guiding vector;
• {pδdinit, q

δd
init} and {pδdfin, q

δd
fin}: the point/pixel pairs of its

ends;
• `δd : its referent contour line, (`δd ∈ L);
• P δd : the set of 3D points modeled, (P δd ⊂ P `

δd
);

• Qδd : the set of corresponding pixels, (Qδd ⊂ Q`
δd

);
• eδd : a label which can be: “occlusion”, “intersection”, “in-

teraction with object” or “opening”.

The segments are built successively, after a segment δ has been
computed, the points P δ and the pixels Qδ are removed from
P ` and Q` respectively, and new segments are sought in the re-
maining points. Depending on their nature, the contour lines
are modeled by different methods. An additional labeling step
is necessary in order to separate the lines containing only oc-
clusion segments from lines containing an intersection segment.
We carry out a connectivity test: for a line ` of this type, we de-
termine the pixels which could be attributed to an intersection
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πb

πa

(a)
πb

πa

(b)

Figure 6. Contour lines and modeled straight line segments.
(a) Contour lines of πc interacting with πa and πb. (b) Straight

line segments to model contour. The green segments correspond
to occlusions. The red segments correspond to intersections

between the planes of the set Π`. We call this new set of poten-
tial pixelsQ`∗. Figure 7 gives an example of the result obtained
for the contour of the planar primitive studied (see Figure 5). If
the number of pixels included in

{
Q` ∩Q`∗

}
is sufficient, the

line must contain an intersection, otherwise, we deduce that it
is a set of occlusion segments. In the example of Figure 7, most
of the contour lines have pixels in common with their theoret-
ical intersection lines and are therefore labeled as intersections,
except the yellow line which results only from an occlusion.

Figure 7. Theoretical lines (white) for connectivity test. The
colored lines compose the primitive outline detected.

3.4.1 Intersection segment After detecting a line segment
of intersection δ by this connectivity test, its characteristics can
be computed as follows:

• the guiding vector tδ is deduced by cross product from the
normals of the planes;

• Qδ is defined by Qδ = Q`
δ

∩ Q`
δ∗. P δ contains the cor-

responding 3D points;
• To determine pδinit and pδfin, one computes the values of

projections of all the segments corresponding points along
the directing vector tδ . The minimum and maximum of
these values correspond to the projections of pδinit and
pδfin, respectively.

3.4.2 Opening segment In order to model an opening seg-
ment δ, we seek to adjust a line on the points of a line `
labeled as “opening”. For this, we use a 2D RANSAC pro-
cedure. In fact, the points of the opening belong to a single
plane (Π` =

{
π`

}
). Therefore, the search for lines takes

place in the coordinate system of this plane. RANSAC is car-
ried out with a maximum number of tests M and a member-
ship threshold to the straight line named τdelta. A maximum
distance between two consecutive points of the same segment
is configured simultaneously in pixels at the value of τ qdiff and
in spatial distance at the value of τpdiff . The previously defined
threshold Smin is also used to define a minimum number of
pixels in a segment. A least squares refinement is finally per-
formed on the inlier points. Each set P δ is then defined by

the points at a distance less than τδ the line adjusted by least
squares. The ends (pδinit and pδfin) of the segment are com-
puted by projection of the points P δ on the line obtained and
by selection of the minimum and maximum projection values
respectively. After this step, the segments are finally replaced
in 3D.

3.4.3 Occlusion segment Unlike an opening line, a con-
tour line containing an occlusion has 3D points on two separate
planes (Π` =

{
π`1, π

`
2

}
). We then seek to model from the same

contour line pairs of segments, the first of which is in π`1 and
the second of which is in π`2. To do this, a first segment δ1 is
adjusted on the points P ` belonging to π`1 using, as before, a 2D
RANSAC procedure, coupled with a least squares adjustment.
Then, a second segment δ2 is adjusted on the points P ` be-
longing to π`2 and whose pixels are close to the pixels modeled
by δ1. Then, in each pair of segments {δ1, δ2}, δ1 is projected
onto the plane π`2 and δ2 is projected onto the plane in the di-
rection of the laser beam from the sensor. An example of this
kind of projection is given in Figure 8. The adjusted segments
are represented by a solid line and the projected segments are
represented by dotted lines. Then, for each plane, an average is
computed between the features of the detected segment and the
projected one, in order to obtain two final segments, one in the
plane π`1 and the other in the plane π`2.

Figure 8. Detection of occlusion straight line segments from
contour lines of interaction between planes. The solid lines

represent the segments detected by RANSAC 2D on the planes
and the dashed lines represent their projections on the other

plane

For the interactions with non-planar objects, the difference with
the preceding modeling resides in the fact that the outline of the
object is not modeled.

3.5 Corner modeling

The last step is to connect the line segments to obtain closed
polygons. For this, we are looking for the vertices of the poly-
gons. We call C the set of all the corners in the scene. A corner
cn belonging to C is defined by:

• {pcn , qcn}: a pair 3D point/pixel;
• ∆cn : a set of line segments (∆cn ⊂ ∆);
• ecn : a label which can be: intersection of three planes,

intersection of two lines, continuity of two lines.

The different types of corners defined by their labels are illus-
trated in Figure 9. A corner is then computed depending on its
label. The algorithm consists, first, in selecting a set of potential
corners C∗ relative to the set of line segments ∆. Then, these
potential corners are compared with the measured ends of the
segments in order to be selected or not in the set C. This process
is described in detail below.
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πa

M

nπ

nπ

a

b

nπc

(a)
πa

M

nπa

(b)
πa

M

nπ

nπ

a

b

(c)

Figure 9. Kinds of possible corners. (a) intersection of three
planes ; (b) intersection of two coplanar straight lines ;

(c) intersection of three straight lines.

3.5.1 Intersection of three planes We select the pairs of
line segments labeled as intersections {δα, δβ}δα,δβ ∈∆ that

have a plane in common. This common plane is named πδα,β .
The union of the sets Πδα and Πδβ then contains three planes,
named

{
πδα , πδβ , πδα,β

}
. A new potential corner c∗ is created

whose point pc
∗

is the intersection of these three planes. The
segments δα and δβ are then contained in ∆c∗ . Finally, we seek
if a third segment represents the intersection between the planes
πδα and πδβ . If this segment exists, it is added to ∆c∗ .

3.5.2 Intersection of two lines The intersection of two lines
corresponds to pairs of segments {δα, δβ}δα,δβ ∈∆ which have
a common plane and of which at least one of the segments is
not an intersection. This plane is then named πδα,β . A new
potential corner c∗ is created whose point pc

∗
is the intersection

of the straight lines of these segments in the plane πδα,β . The
set of line segments associated with is then ∆c∗n = {δα, δβ}.

3.5.3 Continuity of two lines When a primitive occludes
different other primitives, the same edge can be divided
into several consecutive segments (the green segments in
Figure 6(b), are an example of such a case). These different
segments are reconnected. For this, for each pair of segments
{δa, δb}, if they have a plane in common, if they meet a parallel-
ism constraint (arccos (|tδa · tδb |) < τ//) and if their ends are
close (according to the threshold distance τpc ), then, a potential
corner is created and added to C∗ to link the two segments.

3.5.4 Selection of corners and fusion For a line segment
δ, we extract the potential corners whose corresponding set of
segments contains δ (i.e., for a corner c∗, δ ∈ ∆c∗ ). We then
compute the distances between the point pc

∗
and the ends of δ

(pδinit and pδfin). After evaluating all the 3D distances between
ends and potential corners, for each end, the corner c∗ for which
the distance is the smallest is selected, i.e., the one pc

∗
with the

closest point. If this distance is less than a named threshold τpc
and if the distance between the pixel qc

∗
and the pixel of the

end is less than a threshold τ qc , the corner is added to C and the
ends of the segment δ are modified accordingly.

Finally, as can be seen in Figure 9(c), it is possible that the
corner (called M in the image) is the intersection of three lines
without being an intersection of three planes. In this case, we
will get two distinct corners, computed from two intersections
of lines. Therefore, the last step of the algorithm consists of
detecting these duplicates and merging them. The detection is
carried out by looking for the corners computed from a com-
mon segment which are separated by a distance less than the
threshold τpc . The average point is computed between the points
of the two corners.

3.6 Final modeling

An example of the result obtained after the construction of seg-
ments and corners is given in Figure 10 for the synthetic exam-
ple studied in this section (see Figure 1). From this result, the
last step is to close the polygons and create the holes by gath-
ering corners to form cycles. Starting from a corner chosen
randomly in a polygon, the segments having this corner as end
are studied, and the end of one other is selected. This process
is repeated iteratively until retrieving the initial corner. If a seg-
ment is connected only by one end, we look for the corner of
the closest unconnected polygon to the other end in order to
close the cycle. Moreover, if a cycle closure involves crossing
an edge, the corner closest to the intersection is removed and
the route is continued. Various cycles are created until all seg-
ments have been traversed. They represent the outline, openings
or occluded areas of the polygon. A mesh can then be created

Figure 10. Contour segments of the polygons and corners
detected by our method, superimposed on the point cloud from a

LiDAR simulation in a synthetic scene. The edge labels are:
intersection (red), occlusion (green) and opening (cyan). The

corner labels are: intersection of three planes (red), intersection
of two segments (brown)

by triangulation on the corners by imposing the edges of the
polygons. For the same planar primitive, the faces located in
the inner cycles are removed. The constrained Delaunay tri-
angulation implemented by the CGAL library was used in the
reference plane of the polygons to perform this task. The mesh
result of the example used in this section (see Figure 1) is re-
presented in Figure 11.

Figure 11. Mesh obtained from a synthetic point cloud.

3.7 Settings

For all the reconstructions performed, we use the same set of
parameters as detailed in Table 1. This set was chosen in rela-
tion to the physical characteristics of the indoor environments
without any calibration and the algorithm is robust to its modi-
fication.
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Symbol Description Value

General
Smin Minimal number of points/pixels 4

τ//
Maximal angle value to consider

parallelism 10◦

Seed
selection

τgd
Maximum residue of a neighbor to the

seed’s local plane 2 cm

τgα
Maximum angular difference between

neighbor normals 8◦

Region
growing τd

Maximum distance to the seed’s local
plane 8 cm

RANSAC

M Maximum number of tests 50 000
τδ Maximum distance to a straight line 2 cm

τpdiff
Maximum distance between two

consecutive points of a straight line 10 cm

τqdiff
Maximum distance between two

consecutive pixels of a straight line 5px

Corner
selection

τpc Maximum distance to a potential corner 15 cm
τqc Maximum distance to a potential corner 10px

Table 1. Parameters of the proposed method

4. EVALUATION

Our method is successfully evaluated on simulated data (see
Figure 11) with an RMS error of 1.3× 10−5 m between ac-
quired points and the mesh structure. We validated visually our
algorithm on various LiDAR scans, and we present the results
for two challenging ones in this section. These data were col-
lected by a Leica P20 scanner. First, a room is scanned and
modeled by our method. The scan contains 2 million points.
The modeling result is obtained in 2 minutes (one thread on pro-
cessor Intel i57440HQ, 2.80 GHz) and is shown in Figure 13.
The point/segment reconstruction in Figure 13(b) highlights the
relationships between the planes and the objects in the scene
which are correctly labeled. The short intersection segments
are all detected but a few occlusion segments could not be high-
lighted by the RANSAC algorithm. The reconstruction contain
84 planar primitives. They are represented as a mesh in Figu-
res 13(c) and 13(d), we note that the sampling anisotropy of
the point cloud is well handled by our method. Thin polygons
such as the door border or the ceiling grids are detected if they
are sampled by at least 3 points across their width. Small oc-
cluding objects are also detected: the emergency lighting above
the door, the radiators, the video projector, the blackboard,
etc.However, we note that the points reflected on the windows
can corrupt the reconstruction (see Figure 12(b)). In addition,
the ceiling lights are not fully detected because they lay in the
area of noise. We measured an RMSE of 8 mm between ac-
quired points and the resulted mesh which mainly correspond
to the noise level of the Leica sensor. Moreover, 98.6% of
the total points are represented by one of the planar primitive
(i.e., are located at less than 20 cm of a primitive).

Second, another example of scan is tested in a scene including
a staircase sampled by 2.5 million points (see Figure 14). This
scene is particularly challenging because some walls are at a
strong oblique angle to the LiDAR rays and it contains a lot
of details and fine planes. The scene is visually correctly re-
constructed in five minutes: all primitives are detected (87 poly-
gons), fine planes as well (see the doors’ width, the banisters or
the box on top left part zoomed in Figure 14(c)) and the connec-
tions are correctly assigned. Residual problems concern curved
shapes such as the discoid targets placed in the foreground (on

the floor), and in the background (upstairs), to help the registra-
tion, whose contours are modeled by polygons which causes a
loss of information. The RMSE between initial points and the
reconstructed structure is 8 mm as previously and 99.6% of the
points are represented by one of the planar primitive.

(a) (b)

Figure 12. 3D views of generated building model, (a) a first
inside view of the room, (b) another view of the scanned scene

(a)
(b)

(c) (d)

Figure 13. 3D reconstruction of a classroom (a): LiDAR 3D
point cloud. (b) Segments and corners. The edge labels are:
intersection (red), occlusion (green), interaction with object

(blue) and opening (cyan). The corner labels are: intersection of
3 planes (red), intersection of 2 segments (brown). (c), (d): mesh

model obtained.

5. CONCLUSION

Building modeling is commonly divided into two stages, the
segmentation of the point cloud and the fitting of models on
these points. The mainly used segmentation methods require
complex configuration and are difficult to adapt to any LiDAR
acquisition context. In the model fitting process, existing me-
thods often lead to a strong geometrical deviation of the mod-
elisation relatively to the studied scene. We then proposed a
new method allowing to solve the problems of modeling from
3D LiDAR scans. It is based on the simultaneous processing of
the points in the 3D space and in the angular 2D frame used by
the LiDAR device. This process allows a better handling of the
sampling anisotropy than existing methods, and, as we do not
use lines nor planes arrangement, it allows a lower extrapolation
of the data. Finally, the proposed approach allows extracting
occlusions, connections and openings information with a good
accuracy. The direct step derived from this procedure would be
to gather all scan models into one unique object by registration.
A method of global registration for point clouds (Sanchez et al.,
2017) could be extended as it uses geometrical features that can
be easily extracted from our new polygonal model.
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(a) (b)

(c) (d)

Figure 14. 3D reconstruction of a staircase. (a) LiDAR 3D point
cloud, (b) mesh model obtained, (c) zoom on a box, (d) zoom on

banisters and their stands.
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