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ABSTRACT: 
 
Image-based 3D modelling are rather mature nowadays with well-acquired images through standard photogrammetric processing 
pipeline, while fusing 3D dataset generated from images with different views for surface reconstruction remains to be a challenge. 
Meshing algorithms for image-based 3D dataset requires visibility information for surfaces and such information can be difficult to 
obtain for 3D point clouds generated from images with different views, sources, resolutions and uncertainties. In this paper, we 
propose a novel multi-source mesh reconstruction and texture mapping pipeline optimized to address such a challenge. Our key 
contributions are 1) we extended state-of-the-art image-based surface reconstruction method by incorporating geometric information 
produced by satellite images to create wide-area surface model. 2) We extended a texture mapping method to accommodate images 
acquired from different sensors, i.e. side-view perspective images and satellite images. Experiments show that our method creates 
conforming surface model from these two sources, as well as consistent and well-balanced textures from images with drastically 
different radiometry (satellite images vs. street-view level images). We compared our proposed pipeline with a typical fusion 
pipeline - Poisson reconstruction and the results show that our pipeline shows distinctive advantages. 
 
 

1. INTRODUCTION 

1.1 Introduction* 

Surface models through meshing point clouds are important 
presentations in Geomatics and Computer Graphics community. 
State-of-the-art approaches are well developed for well-acquired 
and single-source images, which result in many successful 
software packages and processing pipelines, such as Pix4D 
(2014), ContextCapture (Antila et al., 2011), Vricon (Landry et 
al., 2016), RSP (Qin, 2016). However, meshing conflated 3D 
dataset generated from images of different view and sensors for 
surface reconstruction is extremely challenging. Nowadays the 
tasks of 3D modeling and meshing may utilize diversified data 
sources, such as RGB or depth images from low-cost 
cameras/depth ranger or expensive LIDAR (Light Detection and 
Ranging) data. However, the current practice in using multi-
source data for meshing is still rather intuitive. For example, 
data from different sources are often processed separately using 
well-developed approaches to generate point clouds, and then 
apply a point cloud based meshing algorithms (Kazhdan et al., 
2006), followed by a post texture mapping using available 
oriented images. It is known that meshing from image-based 
point clouds often utilizes the visibility information that codes 
for each point, which image (if available) observes it, as such 
information implicitly provides the surface information with 
respect to the camera positions. Meshing from the level of 
combined point clouds (from different sources) are likely to 
miss the visibility information, because on one hand, most of 
the image-based 3D modeling software packages do not output 
the visibility information, and on the other hand, when multiple 

                                                                 
*  Corresponding author 
 

cameras are involved, implementing individual camera models 
for visibility can be trivial processes. In this paper, we take the 
challenge by proposing a meshing method that integrates point 
clouds generated from the overview satellite images and side-
view perspective images. Instead of re-implementing different 
camera sensor models into an image-based point cloud meshing 
pipeline, we assume the point clouds generated from the 
satellite images are associated with top-view parallel cameras, 
which is much easier for encoding the visibility information. In 
addition, we take this idea to further extend an existing texture 
mapping method to incorporate satellite images with street-view 
images for seamless texture mapping. 
 
1.2 Related Works 

Existing surface reconstruction from point set methods can be 
categorized into implicit surface methods and Delaunay-based 
methods (Labatut et al., 2009). Implicit methods construct a 
function of space from samples, a surface can be implicitly 
defined as a level-set of the function allowing smooth and 
approximating surface reconstruction, however sometimes they 
are sensitive to noise, outliers or non-uniform sampling or even 
simply by a lack of reliable and consistent normal (Labatut et 
al., 2009). Among implicit methods, Poisson surface 
reconstruction (Kazhdan et al., 2006) is regarded one of the 
most commonly used methods, even though relies on surface 
normal, and have been implemented in many software 
packages, including CloudCompare (Girardeau-Montaut, 2016), 
MeshLab (Cignoni et al., 2008), etc. Another family of 
Delaunay-based methods that construct tetrahedra that partition 
the space to compact simplices and eliminate facets of Delaunay 
tetrahedra according to certain criteria such as being in an inner 
or outer surface. One of the most widely used techniques for 
large-scale surface reconstruction was the work of Labatut, et 
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al. (2009), which was further improved by Jancosek and Pajdla 
(2014). In this approach, a s-t (source-sink, acyclic) graph 
(Dantzig and Fulkerson, 2003) is derived from Delaunay 
tetrahedra, the minimal s-t cut of graph labels each tetrahedra as 
either occupied or free. As a result, surfaces located at the 
interface between source labeled and sink labeled tetrahedron. 
To construct s-t graph, Labatut, et al. (2009) introduced ray 
visibility information derived from structure-from-motion 
(SFM) (Moulon et al., 2016) processing to compute weights for 
each tetrahedron. Our surface reconstruction pipeline is 
extended from this work, and the visibility information plays an 
essential role carrying ray information. 

As compared to the normal of points, the ray visibility preserves 
raw observations which helps perform robust surface 
reconstruction: as shown in Figure 1a, a normal will 
deterministically pick a specific tangent plane on one point in 
surface optimization, which can be affected by outliers and 
noises. In contrast, the rays cover a range of possible 
orientations that surface may have at this point (Figure 1b), 
which allows more flexible formulation for surface 
optimization.  However, the visibility information is not always 
available, such as point clouds generated from commercial 
software packages, or LIDAR datasets.  

 
 (a)            (b) 
Figure 1. (a): Green arrow is normal of the object point; black 
line represents surface determined by normal. (b): Green arrows 
are rays corresponding to the object point. Shadowed area 
represents possible area of surface implied by ray information. 
 
The image-based 3D mesh reconstruction algorithms are well-
practiced in single-sourced data, while processing data from 
multiple sources is non-trivial. In this paper, taking 3D point 
clouds generated from satellite images, and 3D point clouds 
produced by an SFM pipeline (with the associated visibility and 
poses of the images), we propose a method to reconstruction 
textured meshes from such data, specifically, in our method,  

1. We extend state-of-the-art Delaunay tetrahedron 
based surface reconstruction method which modelled 
ray visibility by adapting satellite stereo height map to 
create large scale, coarse-fine fused surface model.  

 
2. We extend a texture mapping method to 

accommodate images acquired from different sensors, 
i.e. side-view perspective images and satellite images. 

 
We will introduce our proposed mesh reconstruction method in 
Section 2 and texture mapping method in Section 3 in detail. 
We practice our proposed method on overview satellite point 
clouds and street-view point clouds and report the results in 
Section 4; Section 5 concludes this paper and proposes our 
future works. 
 

2. OPTIMIZING MESH RECONSTRUCTION 

2.1 Data Description 

Our method focuses on multi-source fusion specifically for side-
view and over-view dataset as shown in Figure 2 and Figure 3. 
Furthermore, the satellite dataset comes approximately geo-
referenced (based on their sensor accuracy) (Barazzetti et al., 
2016; Mandanici et al., 2019) in which the Z values of the 
resulting point clouds refers to the evaluation. The approach we 
used takes building boundaries as the common feature aligning 
street-view and overview datasets. The co-registration achieves 
an RMSE of 1.44 m in error, which are reasonable considering 
that the satellite point clouds have a resolution of 0.5 m (Qin, et 
al, 2020).We also assume that side-view images have been 
oriented with their resulting point clouds co-registered with the 
satellite point clouds, an example of the dataset is shown in 
Figure 4.  
 

 
Figure 2. Reconstructed camera poses (black wireframes) and 
the generated 3D color point clouds from the street-view 
images. 
 

 
Figure 3. Left: orthophoto generated from satellite images. 
Right: DSM generated from satellite images. 
 
The resolution of side-view and over-view sources are 
significantly different, as the GSD (ground sampling distance) 
of the satellite point clouds is about 0.5 m, and pixel GSD of 
side-view image is less than 0.01 m. The resolution differences 
lead to different uncertainty of the resulting point accuracy. 
Therefore, it is expected that the resulting meshes can be 
heterogeneous in terms of their level of details. 

 
Figure 4. Co-registered street-view reconstructed point clouds 
and satellite reconstructed point clouds. 
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2.2 The Proposed Multi-source Mesh Reconstruction 
Pipeline 

The base method (Labatut et al., 2009) takes the constructed 
Delaunay tetrahedra of the point clouds as the input to extract 
the surface. These tetrahedra can be viewed as a connected 
graph, in which the tetrahedra are the nodes and shared/common 
faces are edges. Our pipeline extends from this base algorithm 
by incorporating point clouds generated from the satellite 
images. 
 
In a multi-view stereo scenario, each point in 3D space can be 
determined by at least two rays, which connect the object points 
and camera centers, and these rays indicate the visibility of this 
object point on the image connected to it. Based on ray 
visibility, tetrahedra intersected with rays are evaluated by their 
probability to be in a free space (outer space), and tetrahedra 
behind the ray endpoint are evaluated by their probability 
belonging to the full space (inner space). Labatut (2009)’s work 
minimized the s-t cut approach to solve the labeling problem. 
The final surfaces are the common faces of the tetrahedra 
labeled as free and full spaces (Figure 5).  

 
Figure 5. Left: Green network is Delaunay triangulation, yellow 
region (free space) are tetrahedra which intersected with rays 
(dash arrows), white region is tetrahedra labelled as full space. 
Right: Red lines are surfaces between full and free space, which 
are common faces shared by those tetrahedra.  
 

  
Figure 6. Our pipeline of multi-source mesh reconstruction 

 
Figure 6 shows our proposed pipeline that meshes point clouds 
generated from street-view images and satellite point clouds. 
Firstly, we form Delaunay tetrahedra with the combined point 

set. Next, rays are created from visibility clue through 
triangulated points from dense matching and orthographic 
projection of satellite orthophoto to weight the tetrahedra. 
Finally, solve the minimum s-t cut for labeling problem and 
extract surface. 

 
2.3 Delaunay 3D Triangulation 

3D Triangulation or tetrahedralization is extended from 2D 
triangulation, which partitions a polyhedron into non-
overlapping basic 3D elements, where the vertices of tetrahedra 
take the vertices of the original polyhedron. Delaunay 
tetrahedron reconstruction (Van Kreveld et al., 2000) divides 
the convex hull of points into compact simplices, where neither 
extremely long edge nor extremely sharp angle is included. 
Many well-known commercial packages and open source 
projects have implemented the algorithm that creates Delaunay 
tetrahedron from point set, here we use CGAL (Fabri and Pion, 
2009) an open source computational geometric algorithm 
library to construct tetrahedra. 
 
2.4 Visibility 

Dense points associated with registered images are the most 
common source of visibility in our approach. To setup a 
minimum s-t cut problem, we first set the tetrahedra covering 
camera centers (start point of rays) to be free space and assign s 
label to them. We further initialize the tetrahedron behind object 
points as full, assign t label to them. As for tetrahedra that 
intersect with visibility rays while not belonging to any cases 
mentioned above, we assign weights to the edges of the graph 
(being the faces shared by tetrahedra) as smooth terms. The 
aforementioned algorithm was implemented by an open-sourced 
project OpenMVS (Cernea, 2015). 
 
Ideally, we should implement the satellite camera sensor models 
(e.g. Rational Polynomial Coefficients) (Qin, 2016) to record 
the visibility information, however that could painstakingly 
trivial and complex. By considering that the point clouds can be 
associated with the orthophoto through a parallel projection, we 
then propose a two-step method to implement this strategy:  
 

1. We first project the satellite points on to a grid, and in 
this process, for each planimetric location, we only 
mark the highest points as being visible. 
 

2. Create vertical rays for these visible points.  
 
2.5 Assigning Weights for the Graph 

Section 2.3 introduces the constructed graph for the surface 
reconstruction problem. The strategy of weighting the edges 
considers the visibilities. The idea is intuitive: if a face has been 
traversed by many rays, it is unlikely to be a surface as the 
points are all behind this surface (which the ray is shooting to 
from the camera center). In this process, the confidence value of 
the triangulated points, if available, can also be incorporated 
when assigning the weights, otherwise, we keep it as a constant, 
denote as . 
 
Our method follows a so-called soft visibility weighting model 
that was used by the base algorithm (Labatut et al., 2009): As 
shown in Figure 7, the left-most tetrahedron which contains 
camera, gets a scaled  link to the source, as discussed in 
Section 2.2. The green faces that passed through by the ray get 
scaled , and the scale factor serves as the penalty that 
computed by its distance to  the object points, being, the closer 
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the face is to the object point, the less trusty of the ray. As 
shown by Figure 7, the yellow curve in labelled with oriented 
facet weights represent scaled  along the camera-point ray. 
The right-most tetrahedron gets scaled  and is link to sink. 
 
Once weighting procedure for the edges is done, we use IBFS 
(Incremental Breadth First Search) (Goldberg et al., 2011) 
maximum flow algorithm to solve minimum s-t cut problem. 
Finally, the common faces between source and sink tetrahedra 
are extracted to build up optimum surface model (Figure 8b). 
 

 
Figure 7. Soft visibility weighting model (Labatut et al., 2009) 

 
(a) Street-view image only mesh model 

 
(b) Mesh model reconstructed using multi-source data 

Figure 8. Reconstructed surface model using only the street-
view images (a), and surface model using both satellite and 
street-view images in our reconstruction method (b). 
 

3. OPTIMIZING TEXTURE FUSION 

3.1 The Proposed Multi-source Texture Mapping Pipeline 

Our texture mapping framework is based on Waechter (2014)’s 
work which has been well practiced and widely used in many 
famous open source projects, e.g. TexRecon (Guthe, 2020), 
OpenMVS (Cernea, 2015), Open Drone Map (Dakota et al., 
2017), etc.  We consider the street-view images are perspective 
and the satellite orthophotos are in parallel projection. Our 
texture mapping considers the orthophoto as one of the images 
with only few simple modifications: we balanced data term of 
ortho images to compensate resolution gap and make ortho 
images as the default sources for texturing. Given these many 
images serving as potential source of texture, the first step is to 
pick a best image for each triangular face. Lempitsky and 
Ivanov (Lempitsky et al., 2006) compute a labeling  that assign 
a view  to be used as texture for each mesh face  using a 

pairwise Markov random field energy formulation (Waechter et 
al., 2014): 

 

 
 

(1) 
 

 
Figure 9. Our pipeline of multi-source texture mapping 

 
(a) Street-view image only texture mapping 

 
(b) Our multi-source texture mapping 

Figure 10. Textured models using only the street-view images 
(a), and textured models using both satellite and street-view 
images in our texture mapping method (b). 
 
3.2 Best-View selection  

The base method (Waechter et al., 2014) determines face 
visibility (distinct from ray visibility) for all combinations of 
views and faces by first performing back face and view frustum 
culling, then renders faces onto images, using depth buffer to 
determine the nearest faces. This base approach takes projective 
projection as general camera model (Equation 2), but it did not 
assume images with parallel projections. In our work, we extend 
face visibility module to make it support orthographic 
projection (Equation 3) to adapt orthophoto. 
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Projective projection model: 
 

 

 

(2) 

Orthographic projection model: 
 

 

 

(3) 

 
Data Term: The best view is defined as the closest, orthogonal 
image with highest-resolution and without imagery quality 
defects (e.g. blur). Gal et al. (2010) use the gradient magnitude 
of the image integrated over the face’s projection, as Equation 4 
shown. The data term  is assigned only if the given 
face  is visible for street view image . The visibility is 
checked by projecting to a given view and perform depth testing 
(or z-buffering) like graphics rendering system (Greene et al., 
1993). In our case, the challenge is handling data from different 
sensors and distinct resolutions. First, the normalization factor 

 is introduced to balance the scale difference which 
theoretically is the ratio of  average GSD of overview images 
and street view images. By adjusting  manually, we can 
control the preference between street view and orthophoto. The 
second challenge we met is sampling issue in z-buffering phase 
as each pixel in orthophoto might cover multiply triangular 
faces in practice because the mesh contains high resolution 
point clouds. Equation 5 shows the data term we used for 
orthophoto images, the denotes i-th ortho image. If the face is 
visible for ortho photo , the term will be computed by 
gradient magnitude; if neither street view nor ortho image can 
see the face , every ortho photo  will be assigned a constant 
value which is less than infinity (infinity is the trivial cost for 
unlabeled face). The data term (Equation 5) for orthophotos can 
make sure at least orthophotos are available to provide texture, 
which is a common practice in photogrammetry digital products 
generation (Zebedin et al., 2006). If there are more than one 
ortho images are provided, the smooth term will determine the 
which orthophoto to use based on face connectivity. 
 

 (4) 
 

(5) 

 
where       = i-th triangular face  

 = index of i-th street view image 
 = index of i-th ortho image 
,  = image of i-th street / ortho view 

= any constant value that less than infinity 
 = average GSD of orthophoto divided by average 

GSD of the street-view images. 
 
Smoothness Term: Waechter (2014) proposed a smoothness 
term based on Potts model (Wu, 1982): , 
which works well and very fast. 
 
3.3 Seamless Texture Fusion 

Waechter (2014) proposed a global and local color adjustment 
method to blur the seams, which extended Lempitsky and 
Ivanov’s (Lempitsky et al., 2006) color adjustment approach. 

The original approach only accounts for color difference on 
vertices to measure color difference along the seam line, called 
global adjustment. The extended method added a local 
adjustment with Poisson editing (Pérez et al., 2003), affect 
border strip of image patches. 
 
In our case, since the resolution of orthophoto is way lower 
than the street-view images, prior to applying the fusion of 
image patches, we up-sampled orthophoto to the same 
resolution as that of the street-view images. After color 
balancing and Poisson editing, color differences can be well 
adjusted and seams are successfully been blurred, as shown in 
Figure 11. 
 

 
Figure 11. Seamless texture fusion with (right column) and 
without fusion (left column) 
 

4. EVALUATION 

We collected 6 World-View 2 images fully covering the campus 
region of The Ohio State University and processed with RSP 
satellite imagery stereo reconstruction package (Qin, 2016) The 
resulting DSM (or point clouds) and orthophoto cover 5 km x 3 
km, with 0.5m GSD. As for close-range side view dataset, we 
extract a sequence of ~3000 images taken with GoPro camera 
mounted on a car. GoPro images are registered with state-of-
the-art SFM algorithm (in-house developed approach, following 
standard SFM / photogrammetry pipeline (Moulon et al., 
2016)), and the dense matching were performed using 
OpenMVS through multiple view 3d reconstruction algorithm 
(Shen, 2013). The datasets are then co-registered with the free 
SFM bundle with satellite DSM points (Figure 12) using 
approach described in (Qin, et al, 2020). 
 

 
Figure 12. Co-registered street-view and satellite view dense 
match points. 
 
As shown in Figure 13, our method outperforms Poisson 
reconstruction with our dataset, when processing dataset coming 
from multiple sources. Our method benefits from visibility 
information comparing with Poisson surface reconstruction 
(Kazhdan et al., 2006). Since Poisson reconstruction requires 
oriented points (with normal) but our dataset does not provide 
such information, we preprocessed the dataset with normal 
estimator (Mitra and Nguyen, 2003). The Poisson surface 
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reconstruction we used is implemented in CloudCompare 
(Girardeau-Montaut, 2016), and the voxel size of the algorithm 
is configured to match with our average point distance. 
 
Figure 14 shows results of the texture mapping method we 
proposed with our reconstructed mesh models. Our method can 
eliminate less confident vertices from satellite (e.g. tree crowns 
in Figure 13a), and create smooth, nice looking model with 
color adjustment. 
 
Here we summarized run-time statistics and the model 
complexities of the generated model using different methods. 
As shown in Table 1, two methods have similar processing 
time, but it turns out our method can generate more concise 
model without appearance loss. 

 
(a) Poisson surface reconstruction 

 
(b) Our reconstruction method 

Figure 13. A comparison of Poisson reconstruction and our 
method. 

 
 

 
Figure 14. Our multi-source texture mapping method applied on 
the generated surface model. 

Model Name Vertices Faces Usage 

Ours #1 422,726 845,328 4 min 

Poisson Recon #1 1,782,581 3,581,926 5 min 

Ours #2 1,134,241 2,268,167 7 min 

Poisson Recon #2 13,078,242 26,270,296 6 min 

Table 1. Number of vertices of the reconstructed mesh and the 
processing time 
 

5. CONCLUSION 

We present an approach to mesh heterogeneous 3D data by 
using Delaunay tetrahedralization based mesh reconstruction 
with ray visibility weighting. The surface reconstruction is cast 
as an energy minimization problem that can be globally 
optimized by solving minimum s-t cut. Our method recovers 
visibility from DSM data which acquired by matching satellite 
images and scaled to adapt to street-view images with 
orientations. It turns out that combining complementary data 
sources could enhance surface representative significantly if all 
information is well processed. The proposed multi-source 
meshing pipeline which extends state-of-the-art Delaunay 
tetrahedron based surface reconstruction method and multi-
source texturing mapping pipeline which accommodates images 
acquired from different sensors (i.e. side-view perspective 
images and satellite images) can create large scale, coarse-fine 
fused, and seamless textured surface model. 
 
The experiments show that our method creates visually 
consistent surface model from these two drastically different 
sources, as we as textures with well-balanced color although the 
source data are with very different radiometry (satellite images 
vs. street-view level images). We compared our proposed 
pipeline with a typical fusion pipeline - Poisson surface 
reconstruction and the results show that our pipeline shows 
distinctive advantages. 
 
Our approach assumes that the satellite point clouds are 
associated with orthophotos, which does exclude the possible 
points from facades, as well as other scenarios in which 
different types of sensors from different views are used. Our 
planned future work includes methods that deal with 3D point 
clouds generated from other sources, such as MLS (Mobile 
Mapping System), ALS (Airborne LIDAR System).  
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