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ABSTRACT: 

In this paper, two different convolutional neural networks (CNNs) are applied on images for automated structural damage detection 
(SDD) in earthquake damaged structures and cracking localization (e.g., detection of cracks, their widths and distributions) at various 
scales, such as pixel level, object level, and structural level. The proposed method has two main steps: 1) diagnosis, and 2) localization 
of cracking or other damage. At first a residual CNN with transfer learning is employed to classify the damage in the structures and 
structural components. This step performs damage detection using two public datasets. The second step uses another CNN with U-Net 
structure to locate the cracking on low resolution images. The implementations using public and self-collected datasets show promising 
performance for a problem that had remained a challenge in the structure engineering field for a long time and indicate that the proposed 
approach can perform detection and localization of structural damage with an acceptable accuracy. 

1. INTRODUCTION

1.1 Introduction 

Automatic Structural Damage Detection (SDD) requires advan-
ced technologies to determine the level of damage experienced by 
a structure and to evaluate the service life, integrity, stability and 
safety of the structures, for example, after major events such as 
hurricanes and earthquakes. Remote or non-destructive techni-
ques, such as high definition cameras, can be used to assess and 
evaluate the state of the structure. Typically, the damage 
condition of the structure is evaluated by human experts during 
field inspection (Yang et al., 2017). Field inspections may be 
risky, unsafe or very expensive to conduct, especially after a 
major disaster such as an earthquake or extreme wind event. On 
the other hand, with the development of optical and robotics 
industry, vision-based technologies are becoming more viable 
and competitive. Many researchers and engineers have started to 
look into this technology for field inspection to detect structural 
damage and monitor the health of the structure, i.e., damage 
progression in the structure (Spencer et al., 2019). 

With recent advances and widespread use of high definition 
cameras, drones, and robots, it is imperative to develop a model 
that can automatically detect and classify various types of 
damage accurately using computer vision methods (Spencer et al. 
2019, Gao and Mosalam, 2018). Robots can be trained to 
recognize structural damage automatically so that the cost and 
time can be reduced dramatically for field inspections. 

1.2 Problem Statement 

In this research, a deep learning method is adopted to detect 
several structural failures with PEER Hub ImageNet (Phi-Net) 
dataset (Gao and Mosalam, 2020). The dataset includes different 
damage levels and types, collapse, spalling, and scene classify-
cation. The work presented in this paper has similarities to those 
of Yeum et al. (2018) and Gao and Mosalam (2018) with a focus 
on how deep learning models can accurately identify the damage 
on structures without human intervention.  However, these cited 
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methods cannot identify the locations of damages, while human 
experts can easily identify the structural damage by checking the 
images manually. This paper proposes an approach to perform 
both detection and localization of one of the damage, cracking,  
automatically in this way: First, a ResNet model (He et al., 2016, 
Zha et al. 2019) is used to classify the cracking, then the U-Net 
model (Ronneberger et al., 2015, Flôr, 2019) is employed to mask 
cracks after training, so that the location of the cracking can be 
determined. 

It is necessary to consider the effect of scale when the cracks are 
located on structures since they may look totally different in 
images taken at different distances. Structural damage manifest 
themselves differently at various levels: pixel level, object level 
and structural level (Figure 1). In pixel-level images, typically 
structural components are zoomed in and partially captured. They 
fully appear in object-level images, so columns, beams and walls 
can be recognized. On the other hand, an entire building or bridge 
can be seen in structural-level images. The typical cracks in pixel-
level images are wide and deep while in object-level ones they 
look long and narrow. Cracks also appear in structural-level 
images, however, there are more other objects and less visibility 
as scale increases. These characteristics are the reasons why we 
select typical images at different scales before labeling the 
samples and training the proposed model to automatically locate 
the cracks.  

 (a) pixel level           (b) object level             (c) structural level 
Figure 1. Three scene levels (scales) in the proposed model

The paper is organized as follows: Section 2 provides a brief 
review of related research. Section 3 introduces a deep learning 
method, the ResNet, for classification. Section 4 shows the 
implementation with the U-Net to segment and locate the cracks. 
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Section 5 discusses the problem of crack localization at different 
scales, and Section 6 provides concluding remarks. 

2. RELATED PREVIOUS RESEARCH

2.1 Deep CNNs for Structural Damage Detection and 
Cracking Localization 

There has recently been increasing number of publications on 
structural damage detection. Yeum et al. (2018) use AlexNet to 
classify and identify the structural damages in post-event 
buildings with large scale images. Hoskere et al. (2017) try an 
experiment with 23-layer ResNet and 9-layer Visual Geometry 
Group (VGG) networks to classify and segment 7 classes of 
structural damage. which include cracks, spalling, exposed 
reinforcements, corrosion, fatigue cracks, asphalt cracks, and no 
damage. Ali et al. (2019) introduce Faster R-CNN (Faster Region 
Convolutional Neural Networks) into defects detection in 
historical masonry buildings with high resolution images. Kong 
and Li (2018) describe an application that detects and tracks the 
propagation of cracks in a steel girder with a video stream. Atha 
and Jahanshahi (2018) explain the different effects when they use 
two algorithms of CNNs (VGG16 and ZF Net) in detecting 
metallic corrosion. 

Gao and Mosalam (2020) started the Phi-Net Challenge for 
collecting pictures of building structural failures, which is used 
as a dataset in our work. There are eight tasks in this dataset: 1) 
scene level: it can be used to detect cracks at pixel level and 
identify concrete spalling on structural components and collapse 
of buildings and bridges at object level and structural level, while 
spalling means the concrete cover of the steel reinforcements is 
split from the base; 2) damaged or undamaged state; 3) spalling 
or Non-spalling; 4) material type: steel and others; 5) collapse 
mode: this task distinguishes global collapse, partial collapse and 
non-collapse of structures; 6) component type: there are four 
types, including beams, columns, walls and others; 7) damage 
level: no damage, minor damage, moderate damage and heavy 
damage; 8) damage type: it can identify four types of structural 
member failure, including no damage, flexural damage, shear 
damage and combined damage (Gao and Mosalam, 2018 Gao 
and Mosalam, 2020). The cracks position, orientation and shape 
are good indicators to determine whether moments, shear forces 
or both on the structural components cause material failures, 
which could be called as flexural damage, shear damage or 
combined damage. There are totally 36,413 images with various 
scales in this dataset. The extended framework of Phi-Net is 
shown in Figure 2. 

Figure 2. Hierarchy of the extended Phi-Net framework (Gao and 
Mosalam, 2020)  

Zhang et al. (2018) propose an improved CNN (Convolutional 
Neural Network) for autonomous detection of pavement cracks  

at the pixel level. Liu et al. (2019b) demonstrate the 
application with U-Net to segment the crack on concrete 
structures, and their experiment shows the proposed network 
outperform the CNN which was used by Cha et al. (2017). 
Dung and Anh (2019) also use Fully Convolutional Network 
to localize the cracks on the concrete surface, and Liu et al. 
(2019a) implement Deep-Crack, which adopts an extended 
Fully Convolutional Networks (FCN) and a Deeply-
Supervised Nets (DSN), to detect pixel-wise cracks. These 
methods to segment the cracks are based on pixel level and 
less useful in SDD for structural engineers. 

2.2 COCO Like Data Labeling 

In our work, we curated a dataset similar to Common Objects 
in Context (COCO) and used it for training the pipeline. 
COCO is a large-scale object detection, segmentation, and 
captioning dataset (cocodata-set.org/home). COCO has several 
features: object segmentation, recognition in context, super-
pixel segmentation, 330K images (>200K labeled), 1.5 million 
object instances, 80 object categories, 91 stuff categories, five 
captions per image. 

The COCO dataset does not contain structural damage, and there 
are only a few open sources for cracking segmentation at hand. 
For this reason, we curated images and created cracking dataset. 
The images in our dataset are at various scales and are resized 
using the tool referred to as the COCO Annotator (Brooks, 2019) 
to label cracks for training. Some examples from this process are 
shown in Figure 3. In these labeled images, cracks are in yellow 
and back-ground is in purple. Image size of all the training and 
labeling images is 256×256. We will make this dataset available 
to other researchers when the paper is published.

  original                 label                  original     label 
Figure 3. Some examples of training data 

3. FIRST NETWORK FOR CLASSIFICATION: RESIDUAL
NEURAL NETWORK (RESNET)

In this section, the architecture of the classification network, 
which is coded as a ResNet, is briefly introduced. Then, we have 
tested our implementation of ResNet on two datasets, Phi-Net 
and an open-source dataset of concrete surface cracks which are 
collected from several buildings at Middle East Technical Univer-
sity (Ö zgenel, 2018) for analyzing its performance. 

3.1 Architecture of Our ResNet 

He et al. (2016) introduced the architecture of ResNet. The 
ResNet is built upon each layer which learns a residual function 
F(x):= H(x) - x (see Figure 4, H(x) is an underlying mapping of 
x) and x itself as the equation y = F(x) + x, instead of a direct
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mapping of y = H(x) as done in many other CNNs. In contrast to 
regular neural networks which gets saturated and suffers a 
performance degradation as the network depth increases, ResNet 
and its residual learning strategy can overcome vanishing and 
exploding gradients when some connections between layers are 
skipped. Therefore, ResNet makes deep networks possible and 
show higher accuracy on the tasks like image recognition. Zha et 
al. (2019) provides two reasons for this better performance: from 
the perspective of mathematics, it is reasonable to set the 
residuals to zero than fit to an identity mapping x by stack of non-
linear layers if the identity mapping is optimal, since the 
operation for F(x) =0 instead of F(x) = x is much easier in neural 
networks. Second, from an intuition perspective, the whole 
hierarchical feature combinations can be optimized with skipping 
connections and fewer feature compositions may better represent 
the objects in various layers.  

Figure 4. Block of plain net and Residual net 

In this paper, a ResNet with 152 layers is used because its 
performance is better than others. The steps are as follows: we 
implement 152 layers of ConvNet layers and FC (Fully 
Convolutional) layers, and three different filter sizes on ConvNet 
layers, 1×1, 3×3 and 7×7 are employed. Different filter size of 
convolution generates different feature representations for 
different scales. The 7×7 convolution filter is on top of the 
network and follows four blocks of convolution combination, 
each of which consists of two 1×1 convolutions and one 3×3.  

3.2 Performance on Phi-Net Dataset 

For testing the network performance, the hyperparameters are 
defined as: learning rate is 0.001 and momentum is 0.9; the loss 
function is cross-entropy for classification problem. In addition, 
40 min-batches are defined to maximize GPU usage while the 
total number of epochs is set as 100. The training and testing for 
the model are executed with NVIDIA GeForce GTX 2080 Super.  

For analyzing performance, we used accuracy that represents the 
percentage of the correctly classified images: 

     (1) 

where  N = total number of samples.  
Testing results are shown in the Table 1. 

Table 1. Classification Results on Testing Data 
Detection Tasks     Number of     Image Statistics    Test Acc 

  Classes   Train     Validation    Test       (ResNet)  
  Scene Classification    3   13,939 3,485     4,356     93.8% 
   Damage Check            2 4,730     1,183      1,479     81.9% 
   Spalling Condition     2 2,635      659    824    79.6% 
  Material Type     2 3,470    867     1,085     99.5% 
  Collapse Check     3 2,105      527    658     63.1% 
  Component Type    4 2,104      526    658     71.7% 
   Damage Level    4 2,105    527     658     67.8% 
  Damage Type       4 2,105   527   658   67.5%  

Our ResNet model can classify scene levels and material types 
well as shown in Table 1, whereas its accuracy on checking 
collapse and identifying damage levels and types is not high, but 
it is acceptable for current data collection. 

3.3 Performance on Dataset of Concrete Surface Cracks 

There are two tests on this dataset, one for scene classification 
and the other for identifying cracking types. The total number of 
images in the datasets is 40,000, and only half of the images have 
surface cracks. Image size of this dataset is 227×227, and they 
are resized to 224×224.  

3.3.1 Scene classification After the dataset is tested with the 
proposed ResNet model, all the images were classified as pixel 
level cracks in Task 1, suggesting that our model performed well. 

3.3.2 Crack type:  There are four types of damages (related to 
cracking types) in Task 8: non-damage, flexural damage, shear 
damage, combined damage. A test is performed on this dataset 
after training our model with the Phi-Net dataset. Table 2 shows 
the result. The model can achieve 91.21% accuracy on finding 
the cracks in this image dataset. 

Table 2. Classification of Cracking and Noncracking 
Cracking Type Number of images 

Non damage 
Noncracking 

19,184 
Cracking 

2,699 
Total 

21,883 
Flexural damage 228 4,490 4,718 
Shear damage 84 7,702 7,786 
Combined damage 504 5,109 5,613 
Accuracy 95.92% 86.505% 91.21% 

4. SECOND NETWORK FOR DETECTION: U-NET

After the first network is used to identify these images with 
various cracks on the structures or structural components, U-Net 
is employed to locate them. It has been successfully applied on 
biomedical image segmentation (Ronneberger et al. 2015). As 
shown in Figure 5, the U-Net architecture is a symmetric 
structure, the left part consists of several convolutional layers 
while the right side is made of up-sampling layers, or they can be 
called encoder and decoder respectively. But the features 
extracted from the same size convolutional layers are 
concatenated with corresponding up-sampling layers, thus these 
high or low-level feature maps can be kept and inherited by 
decoder to get more precise segmentation. 

  Figure 5. U-Net architecture (Ronneberger et al., 2015) 

The developed U-Net model has a similar architecture as shown 
in Figure 5 (Flôr, 2019). In this paper, data augmentation is 
applied prior to training so that the prediction can be more 
accurate with limited data. Thus, there are 1,000 images with 
pixel-level cracks in our U-Net model, and 853 images for object-
level and structural-level cracks. Both datasets are separately 
trained on the same computer with GPU, and learning rate is 
0.0001 and binary cross-entropy is assigned as the loss function. 

We define the pixel-level cracks as partially or incompletely 
cracking in images, in which the structural components such as 
walls, columns, beams, slab and nonstructural components like 
partition walls and decoration layers are also not included 
completely. In addition, most of them are also 2D or planar cracks 
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on these components. Contrast to this, those cracks on structural 
components or an entire structure are labeled as object-level and 
structural-level cracks. 

In the following figures to demonstrate the results of our 
implementations, white color in prediction images means cracking 
while background is in black, and cracks are marked in red while 
light blue color is the background in the overlaid images.  

4.1 Locating the Pixel-level Cracks on 2D Images 

4.1.1   Concrete surface cracks   
For this test, 1,000 out of 20,000 images with cracks in the dataset 
of concrete surface crack are randomly selected and labeled 
through COCO Annotator. Upon training, the method achieved an 
accuracy 96.48% for validation set. The testing data are the 
remaining 19,000 images of this dataset. 

Some results are presented in Figure 6. As can be observed that the 
U-Net structure was able to successfully predict and mask the
cracks on concrete surfaces, or it almost reproduces the same
pattern of real cracks through learning. Overall, there were no
failure cases in locating the cracks in this test, but few examples as 
shown in Figure 7 indicate that there were some noise in final
labels. The percentage of these cases in this test is less than 5%.
The problem can be attributed to the limited number of images in
the training set. We believe that the accuracy would improve if the 
training data size is increased.

4.1.2   Pixel-level data in Phi-Net  
The above trained U-Net model is implemented on pixel-level data 
from Phi-Net, which includes more scenarios of cracking, which 
are not only confined on concrete surface but also on the surface 
of masonry and decoration layers. There is a total of 4,661 images, 
but cracking and non-cracking can be successfully detected in 
2,819 images. Since they are not identified or wrongly marked in 
1,842 images, the accuracy for our U-Net model is 60.48% while 
there are a few similar images from this training dataset, with 
respect to the scale of testing images varies in a flexible range but 
uniform in the training dataset. In addition, this method is also an 
end-to-end test for classifying and segmenting cracks at pixel level. 
These results show that the U-Net with less training data for 
detecting pixel-level cracking can work well. A higher accuracy 
can be achieved if a larger number of similar images can be fed 
into the dataset in the future. 

      original                   prediction                   overlaid    
 Figure 6. Some examples of normal testing results 

        original                    prediction                  overlaid    
  Figure 7. Some examples of testing results with noise 

Figures 8 and 9 show some examples of accurate and false 
predictions respectively. Figure 8 shows that the model can provide 
a very precise prediction for the location of the cracks in pixel-level 
data whereas the surface is not the same as training on concrete 
surface. Incorrect predictions in Figure 9 also show that currently 
masonry surface, shadows and narrow cracks are not well excluded 
and identified by this model. It is necessary to introduce more 
similar data during the training process to improve the model. 

  original                   prediction                 overlaid 
 Figure 8. Some examples of correct prediction 

4.2 Object-level Data in Phi-Net 

At object-level and structural-level scales, cracks become narrow, 
long and less visible since they are far from the cameras when focal 
length is fixed. In addition, these images also include some other 
objects and non-cracking damage, which will make the feature 
extraction easier to be distracted and misclassified. We established 
a principle that the selected images are typical cracks with these 
distractions and can be used as templates. Moreover, we tried to 
keep a balanced training data, i.e. the equal number of images for 
two levels are chosen. However, the total number of labeling 
images are still small and that goal was not achieved in our training. 

The accuracy for validation step reaches up to 98.82%. Then we 
directly tested the object-level training data in Phi-Net, including 
5,713 images with cracks and without any crack. The test results 
show that our model can segment cracks on 1,494 images while it 
fails on 4,219 images, most of which are non-cracking one but are 
wrongly labeled as cracked one, the accuracy is only 26.15%.  
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    original                  prediction                  overlaid   
 Figure 9. Some examples of incorrect prediction 

Examples of good prediction and mis-prediction can be seen in 
Figures 10 and 11. However, after using our ResNet with Task 8 to 
filter the non-cracking images, we obtained 1,896 images which are 
identified as cracked. Then the U-Net was employed to locate the 
cracks again. 1,129 images can be well predicted the location of 
the cracks, and the accuracy is improved to 59.55%. This test 
shows that in this research it was necessary to improve the 
accuracy of prediction by cascading two networks. 

   original    prediction   overlaid 
Figure 10. Some examples of good testing results for object-level 

Phi-Net data 

As shown in Figures 10 and 11, cracks on the beams, columns and 
walls are masked while the scales are also varied within object 
level. It should be pointed out that there are much more noise in 
prediction due to distraction by different crack-like objects, such as 
cables and wires, even some plants (see Figure 11). On the other 
hand, most of the cracks are 3D ones in the testing set compared to  

the previous training and testing process, which are more like a 
mission on planar object detection so that the network just needs to 
focus on 2D feature learning. 

         original                    prediction                 overlaid   
Figure 11. Some examples of incorrect testing results for object-

level Phi-Net data 

4.3 Structural-level Data in Phi-Net 

In a structural-level dataset, 5,832 images in Phi-Net are used to 
detect cracks in various buildings and bridges. However, the task 
becomes more complicated with inclusion of people, plants, 
pavements and other objects. Compared to these objects, cracks are 
tiny and more likely to be distracted and occluded by crack-like 
objects like wires, cables and other damage like spalling and 
exposed reinforcements.  

        original                     prediction                overlaid    
Figure 12. Some examples of good testing results for structural-

level Phi-Net data 
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The test results show that our model can predict cracks in 500 
images while it fails on 5,332 images, most of which are non-
cracking ones but being mis-predicted as cracked ones, the 
accuracy is only 8.57%. Examples of fair prediction and mis-
prediction can be seen in Figures 12 and 13. Our model identified 
717 images as the cracked when our ResNet with Task 8 was 
employed to gate the non-cracking ones. So the U-Net can predict 
the location of the cracks in 356 images, thus the model achieves 
an accuracy of 49.65%. The cascaded networks improve the 
accuracy at this level as well as at object level.  

   original    prediction    overlaid   
Figure 13. Some examples of incorrect testing results for 

structural-level Phi-Net data 

It should be noted that most of cracks are smoothed after being 
resized from original and high resolution images into these low 
resolution images, since the image size is just 224×224 for testing. 
And it is also an outcome for labeled images are not sufficient in 
training now. Moreover, angle or viewpoints of cracks are quite 
different from the training data because hundreds of these labeled 
images cannot cover them all in various complicated scenes. 

It is difficult for our U-Net model to learn geometry of the cracks 
and texture features from these limited images and to localize the 
cracks with less noise and errors at this scale now. Therefore, 
increasing labeled training data will be a way to improve the 
process in our future work.  

5. DISCUSSION

In this research, two deep learning neural networks and two datasets 
are used to test the proposed method pipeline to classify and 
segment cracks at various scales, which are defined and separated 
because their characteristics are so different. It is shown that the use 
of these cascaded networks on semantic segmentation for cracks 
and other types of structural damage is possible. 

1) At pixel level, cracks are not fully shown but occupy a big
portion of images, and their discontinuity in width and continuity
in length are distinctive. Therefore, a very high accuracy is
achieved with less errors and noise to detect them by the U-Net.

2) For object-level cracks, the cracks appear long and narrow, and
also show the discontinuity on the material surface of structural or
nonstructural objects. Furthermore, various common objects are
captured in this scene and angle of views on the cracks also changes 

between different images. Some of cracks in this scale may not be 
planar-like as at pixel level. This brings challenges to precisely 
locate the cracks on various materials. Although there are some 
noise in predictions, which are caused by insufficient training data 
to cover all the similar scenarios in testing data, especially for some 
steel and masonry structures, the results show our model can locate 
the cracks with a higher accuracy with the cascaded networks.  

3) At large scale, defined as structural level in this study, compared 
to entire buildings and bridges, cracks are more likely to be
invisible. Some of them are wide and long enough to be detected
with vision-based technologies. However, more non-related
objects are common in images, and some of them are very similar
to cracks. Furthermore, there are more 3D cracks instead of planar 
ones, with not enough data for training. On the other hand, with
lower resolution, there are more noise and incorrect predictions on
the cracking localization. But the proposed method also increases
the accuracy dramatically at this scale.

4) The proposed method has the potential to semantically segment 
the cracks and other structural damage in the future. For example,
if Task 1, 6 and 8 in the ResNet are employed to classify the
cracking and implement U-Net to locate the cracks on a column
successfully, then we can label it like this: “This is a column with
shear-damaged cracks, and cracks are shown in red markers in the 
image”.

6. CONCLUSIONS

In this paper, two kinds of neural networks are proposed for 
structural damage detection and cracking localization. Most CNNs 
like our ResNet model for SDD cannot identify the locations of 
structural damage. A solution is provided for this problem by 
introducing another network, the U-Net, to locate the damage. 
However, currently we just have to try to locate the cracks at 
various scales. In our methodology, the ResNet is used to classify 
the scene levels and gate the noncracking and cracking at first, then 
the U-Net is employed to locate these cracks. In our experiments, 
after training 1,000 images out of a dataset with 20,000 images, the 
proposed method can give a very high accuracy to mask the cracks 
on pixel-level images based on two open-source image datasets. 
We believe this is because the scene is simple and most of the 
cracks are planar. 

We labeled 853 object-level and structural-level images and train 
with the U-Net model, then test the data from Phi-Net. Although it 
can give fairly good prediction to detect the location of cracks, the 
errors and noises increase due to presence of more objects as 
distraction and 3D spatial effects under such scales. Moreover, we 
found out that the strategy to use the U-Net model as an end-to-end 
network to classify and locate the cracks under these large scales 
doesn’t work, but the accuracy has been improved significantly 
when the ResNet is used to pick up those images with cracks first 
and then mask them by the U-Net. Therefore, the proposed method 
is a right solution for segmentation problem on detecting structural 
damage, especially with limited training data now. 

Our training datasets are available from this link:  
https://github.com/OSUPCVLab/StructureCrackDataset. 
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