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ABSTRACT: 

 

A workflow is devised in this paper by which vehicle speeds are estimated semi-automatically via fixed DSLR camera. Deep 

learning algorithm YOLOv2 was used for vehicle detection, while Simple Online Realtime Tracking (SORT) algorithm enabled for 

tracking of vehicles. Perspective projection and scale factor were dealt with by remotely mapping corresponding image and real-

world coordinates through a homography. The ensuing transformation of camera footage to British National Grid Coordinate 

System, allowed for the derivation of real-world distances on the planar road surface, and subsequent simultaneous vehicle speed 

estimations. As monitoring took place in a heavily urbanised environment, where vehicles frequently change speed, estimations were 

determined consecutively between frames. Speed estimations were validated against a reference dataset containing precise 

trajectories from a GNSS and IMU equipped vehicle platform. Estimations achieved an average root mean square error and mean 

absolute percentage error of 0.625 m/s and 20.922 % respectively. The robustness of the method was tested in a real-world context 

and environmental conditions.  
 

 

* Corresponding author 

1. INTRODUCTION 

1.1 Background 

Traffic monitoring systems within urban infrastructure have 

become an integral component for managing congestion, 

transport analysis, and for keeping roads safe and efficient. The 

ubiquity of modern-day sensors can capture the movements and 

interactions of people through different modes of transport, 

allowing for the manual analyses of highly voluminous datasets. 

However, with the introduction of smart city networks, 

driverless vehicles, 5G, and increased access to greater 

computing power through GPUs, the way in which traffic is 

monitored can be revised in order to better manage exceeding 

loads of information automatically and with greater accuracy. 

By utilising advanced technology (e.g. deep learning 

algorithms) in combination with dense and widespread roadside 

CCTV networks throughout the UK, the greater aim of this 

paper is to be able to automatically analyse traffic conditions in 

real-world contexts. In this case, a key component defining 

traffic conditions – vehicle speeds – will be the focus. Counting 

the number of passing vehicles will also be considered. Such 

information is necessary for understanding fine vehicle 

movements and subsequent interactions which contribute to 

road conditions. Furthermore, vehicle speed information can be 

used to aid the monitoring of traffic in specific locations – 

increasing safety measures through emergency response and 

managing the efficiency and environmental effects of roads by 

revealing areas of stress. 

 

1.2 Aim 

The aim of this study is to estimate vehicle travel speeds in real 

time (following detection and tracking) and under real-world 

conditions using video camera footage. An experimental 

framework for analytics is developed, where deep learning, 

tracking, and image mapping systems can undergo optimisation 

for fast and seamless operation in a combined processing 

workflow. Utilising different sensors the robustness of the 

technique is evaluated under varying real-world contexts. 

Validation and subsequent analysis provide insight into the 

effectiveness of surveillance speed monitoring in a typical 

urbanised environment. 

 

2. RELATED WORK 

2.1 Vehicle Detection 

Traditional computer vision techniques often use Haar-like 

classifiers and AdaBoost machine learning algorithms for 

vehicle detection (Wen et al., 2015). Computer vision 

techniques for the analysis of urban traffic used prior to 2011 

can be read in a detailed review by Buch et al. (2011). 

 

However, more recently, Deep Neural Networks (DNNs) have 

taken precedence in how vehicles are detected (Fan et al., 

2016). The robustness of a DNN is especially beneficial when it 

comes to vehicle detection in poor lighting or camera resolution 

conditions (Bautista et al., 2016; Chen et al., 2011). A common 

approach for vehicle detection is to utilise an algorithm which is 

both fast and precise, therefore allowing for reliable, real-time 

applications. Single Shot MultiBox Detector (SSD) (Liu et al., 

2016), You Only Look Once (YOLO) (Redmon and Farhadi, 

2018), and Faster R-CNN (Ren et al., 2016) are among the most 

notable models which can be used for this purpose in traffic 

monitoring (Fedorov et al., 2019; Tang et al., 2017).  

 

With use of deep learning, Tang et al. (2018) achieved flow 

characterisation (including speed estimation), and object re-

identification. The vehicle detection system utilised YOLOv2 

deep learning algorithm to recognise vehicles across various 

categories. From resulting 2D bounding boxes, foot point 

coordinates (midpoint of lower corners) underwent affine 

transformation into 3D space preceding speed estimation. 

Instead, for enhanced speed estimation precision, Mask-RCNN 
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(Kaiming et al., 2018) algorithm can be used to map discrete 

pixels through segmentation (Kumar et al., 2018).  
 

2.2 Vehicle Tracking 

With deep learning detection as a backdrop, computer vision 

applications have been adapted to track moving vehicles. This 

function is necessary for discrete and simultaneous vehicle 

tracking. The latest research in this field concerns multi-camera 

vehicle tracking and reidentification. Using learned high-level 

features for vehicle instance representation, vehicles can be 

tracked and reidentified on a city-wide scale (Nguyen et al., 

2019; Wu et al., 2018). Likewise, large-scale tracking is 

achievable with an optimisation technique using spatiotemporal 

vehicle trajectories combined with visual feature recognition 

(Tan et al., 2019). Alternatively, an example which does not 

utilise machine learning for detection, instead uses graph 

partitioning and matching with trajectory analysis to achieve 

multiple object and vehicle tracking from surveillance videos 

(Lin et al., 2012). However, in this paper vehicles are only 

tracked across single camera views, without any personal 

identification. 

 

2.3 Camera Calibration for Speed Estimation 

Computer vision techniques have also been developed with the 

capability of estimating vehicle speeds. These often extend 

detection and tracking methods by manipulating image 

geometry for measuring real-world distances. Usual practice of 

camera calibration, to accurately find interior, exterior, and 

distortion parameters is not always possible with pre-existing 

fixed monocular surveillance setups – and especially 

challenging when considering multiple camera locations such as 

in a network. 

 

A common approach in correcting for perspective effects, 

resulting from camera position and orientation relative to the 

road surface, restores affine properties of a road plane by 

manually labelling two pairs of parallel lines, with pairs being 

orthogonal to one another (Kumar et al., 2018; Schoepflin and 

Dailey, 2003; Shi et al., 2018). Reference distances measured or 

assumed from features such as road markings or standard lane 

widths (Huang, 2018; Tran et al., 2018), combined with 

‘vanishing points’ at which parallel lines meet on the image 

domain, provide parameters enabling for camera calibration 

through algorithmic optimisation (Tang et al., 2018). Vanishing 

point methods have also been adapted for fully automatic 

application with the use of vehicle dimension estimation, 

vehicle motion analysis and diamond space accumulation 

algorithms (Dubská et al., 2015; Giannakeris and Briassouli, 

2018; Sochor et al., 2017). However, with the use of 

background modelling and cluster analysis of vehicle 

trajectories derived from video footage, perspective 

transformation is not strictly necessary for deriving vehicle 

speed estimations (Xiong, 2018). Furthermore, speed 

estimations can be derived directly from tracking information 

through prior knowledge of road speed limits and calculated 

assumptions of vehicle motion in relation to the camera (Hua et 

al., 2018). 

 

3. DATA ACQUISITION 

Over the course of a two-hour period on 31.05.19, a small van 

fitted with a dual frequency GNSS receiver and IMU device 

was driven around the study area situated in the city centre of 

Newcastle upon Tyne, UK. A Canon EOS 6D Mark II camera 

was manually positioned as if to capture the passing vehicle 

from the perspective of an elevated roadside CCTV camera. 

This camera was set to record at 1080/60p, 25 frames per 

second, with a full-frame image stabilized lens of 24mm focal 

length and f/3.5 aperture. Multiple passes were recorded as the 

vehicle changed travel directions. Weather conditions on the 

day of study were calm and well lit (despite an overcast sky). 

This therefore resulted in limited environmental interference 

which could influence detection, tracking, and speed estimation 

results – such as distortions or blurring caused by water droplets 

on the camera lens or movement in windy conditions. This 

made for perfect baseline testing conditions. Overall, four 

experimental cases were extracted from the passing vehicle. 

 

4. METHODLOLOGY 

Counting and estimating vehicle speeds necessitated the 

formation of a workflow. Pre-recorded footage initially 

underwent detection to define bounding box areas around 

vehicles within the image space. Immediately following this, 

vehicle detections were assigned ID numbers for counting and 

tracking throughout the monitoring period. Finally, by mapping 

the image space to a real-world coordinate system, traversed 

vehicle distances could be measured for simultaneous speed 

estimations. The workflow is presented in Figure 1. 

 

4.1 YOLOv2 Vehicle Detection 

A deep learning approach was selected for detecting vehicles 

within the video footage. Pre-trained model (on the COCO 

dataset (Lin et al., 2015)), YOLOv2, was the algorithm of 

choice due to its fast processing speed (potentially allowing for 

real-time processing application), its well tested precision, and 

compatibility with the tracking program.  

 

4.2 Multiple-Object Tracking 

Using the Hungarian algorithm and Kalman Filtering, Simple 

Online Realtime Tracking (SORT) algorithm was selected for 

tracking of detected vehicles (Bewley et al., 2016). Detection 

and tracking techniques were merged into a single processing 

workflow, proving advantageous when aiming towards a 

streamlined and automated approach. Output video and CSV 

files containing tracking IDs, frame numbers, and bounding box 

image space coordinates for each detection, were retrieved. 

 

4.3 Road Scene Mapping 

In correcting for perspective projection and scale, it was initially 

required that pre-processing steps were used to find 

corresponding pixel to real-world coordinate relationships. A 

subsequent perspective transformation was then used to find 

relationship vectors to map real-world coordinates onto the 

image space, allowing for real-world distance measurements 

within footage. 

 

By assuming that the investigated real-world road surfaces are 

planar (no deviation in elevation), it can be assumed that there is 

a shared homography relationship with the road surfaces 

represented in corresponding video footage. 

 
Numerous easy to identify points, spread somewhat evenly on 

the road surface, such as edges of road markings, were selected 

on the image road surface (see Figure 2). Corresponding real-

world coordinates (in British National Grid), were found for 

each using Google Earth and The World Coordinate Converter 

(“TWCC,” 2020). This method was inferior to others in terms of 

accuracy as point positions had to be selected by eye, but was  
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chosen for practicality purposes as well as improved scalability 

potential. Using this method allowed for points to be collected 

quickly and safely without requiring tedious and possibly 

disruptive physical measurements to be taken at each point 

location. Furthermore, a relative accuracy could be assumed in 

each camera view, as pixel and real-world coordinates were 

selected for each instance. This therefore limited positioning 

errors from multiplying, as would be the case at larger scales. 

 

 
Figure 2. Original camera view with selected coordinates (red) 

 

 
Figure 3. Transformed camera view to fit British National Grid 

Coordinate System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In finding a planar homography transformation, RANSAC-

based robust reconstruction method was used to optimally unite 

the two planes through iterative calculations. Inlying points, 

agreeing to within a reprojection threshold of 5, were used to 

determine two pairs of parallel vanishing lines – one pair 

running parallel to the direction of moving traffic, and one pair 

parallel to the horizon. From each pair, a vanishing point was 

derived at the position at which parallel lines appeared to 

converge. A subsequent 3x3 homography matrix (Equation 1) 

was produced to define translation, rotation, and scaling 

parameters, constrained by eight degrees of freedom. By 

applying the homography transformation to the image, an 

output (such as Figure 3) can be observed. 

 

                  (1) 

 

where H = homography 

 s = scale factor 

 x’, y’ = image coordinates 

 x, y = object coordinates 

 
4.4 Speed Extraction 

As used monitoring cameras were in a heavily urbanised city 

centre location, which had constant, and often congested traffic, 

it could not be assumed vehicles would be moving at a constant 

speed between any two points on the road surface. Frequent 

changes in acceleration therefore prevented the use of average 

speed estimation between two separate points. Instead, vehicle 

speeds were updated for each frame throughout the footage. 

 

Traces of vehicle travel were drawn from the centre-midpoint 

positions of bounding boxes to follow the motion of the 

detected vehicle between consecutive frames. This position was 

chosen as it is generally the closest average position to the road 

plane. To determine the real-world distances of vehicle traces, 

start and end points were automatically transformed from pixel 

coordinates to British National Grid coordinates using 

parameters found prior for the homography. Time stamps were 

then approximated for each video frame based on time of initial 

recording and frame rate of the footage. Speed estimates were 

then made (in m/s) from real-world distance and time 

measurements. Traces were also used to identify whole circle 

bearings of vehicle travel from within the transformed image 

Figure 1. Processing Workflow 
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space. Averaging these readings for general movement direction 

proves useful when undertaking spatiotemporal analyses.  

 

Persistently updating speed between frames meant for a large 

set of fluctuating values and noise. Subsequently, a basic filter 

was used to remove extreme values (such as those well above 

speed limits), before a six-degree polynomial filter was applied. 

By fitting such a trendline, the smooth motion of the vehicle 

was replicated for an improved ability to minimise the effect of 

variation in detected bounding boxes. 

 

 
Figure 4. Detection and tracking outcomes, with bounding box 

detections (white), and tracking ID numbers (top left of 

bounding boxes, white) 

 

 
Figure 5. Results imposed on DSLR camera footage to display 

bounding box detections (white), automatically assigned vehicle 

tracking numbers (white), travel traces (with corresponding 

real-world coordinates) (green), and speed estimation results 

(red).  

 

 
Figure 6. Vehicle platform fitted with GNSS and IMU devices 

(white van, tracking ID 179). Blue and pink markers represent 

vehicle speed (gradient from blue, low values, to pink, higher 

values approaching speed limit) and position over the past 30 

frames. Red marker represents current vehicle position. 

 

4.5 Validation 

Data recorded from the GNSS receiver and IMU were 

processed to find precise coordinates and trajectories, which 

were then used to determine vehicle travel speeds between 

consecutive epochs. Using GPS time information from the 

geolocation function on the camera, estimated and precise 

vehicle speeds were aligned in time. For this, reference speeds 

were thinned from 100 readings per second to match the 

corresponding video frame rate – therefore allowing direct 

speed comparisons in time. As for estimated speeds, reference 

speeds were smoothed using the same technique. Several 

metrics, such as root mean square error, mean absolute error, 

and mean absolute percentage error were determined when 

comparing datasets. 

 

5. EXPERIMENTAL RESULTS 

5.1 Detection and Tracking Results 

The YoloV2 and SORT algorithms successfully monitored 

vehicles as they passed through the image space. By visually 

inspecting the result footage it was clear that detection bounding 

boxes were largely true-positive, remaining fixed on the vehicle 

throughout. False-positive outcomes were uncommon but did 

not influence speed estimations, so were disregarded. On 

occasion, there were several frames in which the detection 

algorithm missed a vehicle. However, this did not impede on the 

ability of SORT to re-identify the vehicle for continuous speed 

estimation. Therefore, as the primary focus of this paper was 

vehicle speed estimation, a statistical evaluation of detection 

rate was not carried out. Instances when temporary detection 

loss did occur, was often due to occlusion from other vehicles 

on the opposite side the road. This was not so much of an issue 

for speed monitoring – once the vehicle was re-identified, 

average speed was calculated from the last known time and 

position. Table 1 shows the length of time the refence vehicle 

was in camera view, as well as number of detected instances 

(frames). Such information is necessary in understanding 

averaged speed results with respect to quantity of data available 

to produce an accurate forecast. 

 

Experiment 

No. 

Total Time in 

Camera View 

(s) 

Footage FPS Detected 

Instances 

(frames) 

1 54.16 25 1343 

2 9.32 25 234 

3 17.52 25 425 

4 63.16 25 1510 

Table 1. Recording and Detection Results 

 

The principle axis pointed diagonally across the road surface, 

like that of many existing road surveillance cameras. 

Additionally, this maximised the length of time vehicles were 

within frame and subsequent speed measurement volumes. 

Detected instances of experiment 1 and 4 are much larger than 

in other cases. This is due to the vehicle being stationary or 

moving slowly within footage for extended periods, as 

evidenced in Figure 7 speed plots.  

 

5.2 Speed Estimation Statistics 

Speed values of each instance were collectively summed and 

divided by number of instances to estimate mean speeds, which 

could be used for macroscopic traffic flow modelling. These, as 

well as absolute differences between means, are presented in 
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Table 2. Absolute difference in mean speed give general 

indication of result quality over the whole monitoring period. 

 

Experiment 

No. 

Reference 

Mean Speed 

(m/s) 

Estimated 

Mean Speed 

(m/s) 

Absolute 

Difference 

(m/s) 

1 0.452 1.012 0.560 

2 4.393 5.098 0.706 

3 2.825 2.498 0.327 

4 0.872 0.973 0.101 

Average - - 0.424 

Table 2. Mean Speed Evaluation 

 

However, as vehicles were not usually travelling at constant 

speeds, such simplified metrics limit understanding of result 

quality. Furthermore, estimated speeds deviated both above and 

below reference speeds, which potentially allowed for 

cancelling out of differences. Despite this, the results presented 

here allow broad understanding of result quality.  

 

On the other hand, individual vehicle movements are tracked on 

a sub second basis, which enables detailed traffic 

microsimulation. Table 3 presents statistics aimed at better 

understanding the magnitude of errors. Mean absolute error 

(MAE) takes the absolute values of individual instances before 

collective summation and division by number of instances.  

Mean absolute percentage error (MAPE) assess the quality of 

forecasted data against the reference dataset. As this is 

expressed as a percentage, greater understanding can be given to 

quality of results with respect to volume of speed data.  

 

Experiment 

No. 

RMSE (m/s) MAE (m/s) MAPE 

(%) 

1 0.821 0.760 33.014 

2 1.171 0.892 35.532 

3 0.378 0.333 11.878 

4 0.130 0.118 3.264 

Average 0.625 0.526 20.922 

Table 3. Statistical Speed Evaluation 

 

In terms of order of accuracy, MAE values agree with those of 

RMSE. As seen in Table 3, experiment 4 outcomes continue to 

show minimal error across all measurement types, resulting in 

best performance with an RMSE of 0.130 m/s and MAE of 

0.118 m/s. On the other hand, experiment 2 consistently shows 

the poorest outcomes, with an RMSE of 1.171 m/s and a MAE 

of 0.892 m/s. Over all experiments, RMSE averages to a value 

of 0.625 m/s, whereas MAE has an average value of 0.526 m/s. 

The MAPE values of the four experiments varied regardless of 

the magnitude of vehicle speed. 

 

5.3 Speed Plots 

Experiment 1 (Figure 7) depicts speed initially in a state of 

rapid decline, before a levelling off as the vehicle comes to a 

stop due to a build-up of traffic preventing further movement. 

This stationary position continues for much of the monitoring 

period, and therefore results in a low reference mean speed of 

0.452 m/s. Around the 62 second mark the vehicle gathers speed 

as surrounding traffic clears. On the other hand, the shortest of 

all monitoring cases, experiment 2 (Figure 7), presents the 

vehicle moving at a near consistent speed at approximately 5-6 

m/s for the first half. Following this, the vehicle gradually slows 

to a stop, again due to traffic, outside of camera view. Reference 

mean speed is highest in this case, at 4.393 m/s. 

 

Experiments 3 and 4 (Figure 7) show the results of vehicle 

movements in the same location at peak congestion, where 

traffic is often slow moving or stagnant. Over the course of 

about 20 seconds, experiment 3 demonstrates the vehicle 

maintaining slow, but consistent speed, before beginning to 

slow to a stop as it moves from the camera view. On the other 

hand, the vehicle recorded in experiment 4 remains within 

camera view for much longer (~65 seconds), as it moves to a 

near stop on two occasions due to a build-up of traffic. 

Experiment 4 shows a strong relationship between estimated 

and reference data throughout, resulting in an RMSE value of 

0.130 m/s and MAPE of 3.264 %. Results in experiment 3 are 

not so closely related, but maintain a slightly offset relationship 

to reference data as the vehicle accelerates. Consequently, this 

results in an RMSE of 0.378 m/s and MAPE of 11.878 %. 

 

 
 

Figure 7. DSLR Speed Estimation Results 
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5.4 Speed Analysis 

Speed plots depict estimated vehicle speeds over the course of 

video recording time, with respect to corresponding reference 

speeds. Experiment 1 (Figure 7) vehicle reference speeds 

suggest slow or stationary conditions for much of the 

monitoring period. Despite estimated speeds also presenting 

low speeds throughout, there is no indication of the vehicle 

being stationary at any point in time. The difference between 

slow moving and stationary traffic may be minimal in terms of 

values, but in traffic flow analysis such a difference may 

classify as an alternate conditional state. These differences may 

well have been caused due to noise generated from bounding 

box detections. With re-detection occurring at each consecutive 

frame, newly generated bounding boxes do not always align 

with previous rectangles. Instead, boxes may be offset or of 

varying size with respect to true vehicle position and 

dimensions within the image space. As the detection algorithm 

is optimised for speed, taking ‘one look’ at each frame before 

classification and moving to the next, it does not have the ability 

to solve for fine grained positioning. Such anomalies are not as 

noticeable as the vehicle is moving, and largely cancel out as 

bounding boxes alternate between falling behind and ahead of 

true vehicle position. However, as the vehicle is stationary, all 

noise generated is positive and therefore averages to a low 

speed.  

 

On the other hand, estimated results presented for experiment 4 

show the vehicle moving slowly over the course of monitoring, 

almost approaching a stop on two occasions. However, as the 

vehicle does not come to a complete stop for an extended 

period, estimations appear to better match reference data. 

 

Results from DSLR experiment 2 and experiment 3, show the 

vehicle gradually accelerating and decelerating, respectively, 

throughout the course of monitoring. Despite some positive 

offset, estimations of experiment 3 appear to more consistently 

match reference speeds than those of experiment 2. This is 

likely due to rate of change being more dramatic in the latter 

case, over a shorter period of monitoring. This further supports 

the idea that, with longer monitoring time, better results are 

produced using this technique.  

 

6. DISCUSSION 

Over all metrics, experiment 4 demonstrated the highest 

achieving values, whereas experiment 2 generally demonstrated 

the poorest outcomes. This coincides with length of monitoring 

time and subsequent number of frame detections. It therefore 

suggests this experimental framework operates best with a 

greater volume of estimated speed data. This can be achieved by 

positioning and orienting the camera to increase road area 

visibility, or by increasing recording framerate. The speed of the 

vehicle also determines length of time in camera view and 

subsequent data volume. Nevertheless, if applied to sensor 

networks in a real-world context, such operations may not be 

feasible with fixed CCTV cameras. However, despite what is 

suggested by highest and lowest achieving results, other 

experimentation cases (1 and 3) do not support this trend. It is 

more likely that volume of data is only one contributing factor 

towards result outcomes. Factors such as accuracy of camera 

calibration, lens distortion, and consistency of detection and 

tracking precision also largely influence final speed estimations. 

Raw speed results (especially from those which were estimated) 

proved to be very noisy. This is most likely due to the 

inconsistent positioning of the bounding box as it re-detected 

the vehicle in each frame. By not re-evaluating each detection, 

the algorithm lacked in accurately defining the boundaries of 

vehicles, as a more time costly segmentation mask (such as 

Mask-RCNN) would achieve. Despite this, detection precision 

is maintained throughout this process, producing mostly true-

positive outcomes. As speed estimations are measured by 

distance traversed between consecutive frames, many false and 

noisy speed readings occur. Comparing reference and estimated 

speed results in this raw form would produce poor correlation. 

However, by smoothing the results, as was accomplished in this 

case, improved correlation between datasets was achieved.  

 

Overall, experimental speed estimation results had an RMSE of 

0.625 m/s. In terms of typical traffic monitoring, this outcome is 

more than suitable – allowing for understanding into mirco-

level vehicle speeds and, when applied to traffic simulations, 

general flow characteristics. When simply looking at the 

average magnitude of errors, rather than quadratic scoring, 

overall MAE results present an average value of 0.526 m/s. As 

MAE gives a relatively low weight to large errors, in 

comparison to RMSE, this was to be expected. 

 

In comparison to other, similar methods (using deep learning 

algorithms for detection and homography style techniques for 

image mapping), but which estimate vehicle speeds on 

highways rather than non-free-flowing urban roads, the used 

technique in this paper presents promising performance. For 

example, (Kumar et al., 2018) who use Mask-RCNN for 

detection, achieved an RMSE of 9.54mph (4.265 m/s). 

Similarly, (Shi et al., 2018) also use Mask-RCNN to obtain a 

speed estimation  RMSE of 6.667mph (2.98 m/s). Despite both 

using an algorithm of superior precision, errors here are greater 

than experiments presented in this paper. Track 1 of the 

NVIDIA AI City Challenge presents various techniques for 

speed estimation using a monocular camera setup (Naphade et 

al., 2018). Here, RMSE values range from 4.096 mph – 27.302 

mph (1.831 m/s – 12.205 m/s). Again, the average RMSE of 

0.625 m/s presented in this paper reveals a promoting outcome. 

 

No evaluation was carried out into precision and recall of the 

algorithm in this case. However, with a VOC 2007 mAP of 78.6 

%, it was decided YOLOv2 would be a robust enough solution. 

Likewise, no evaluation was carried out into success rates of 

this tracking algorithm. Despite  this, SORT qualified as the 

best open source multiple object tracker in the 2015 Multiple 

Object Tracking benchmark challenge (Milan et al., 2015), and 

thus provided the necessary processing speed and accuracy 

required for the task at hand. 

 

Furthermore, as vehicles move through the image space, size, 

orientation and appearance of the vehicle changes with respect 

to the camera view. Speed estimations will be affected by these 

perspective effects. However, by smoothing speed values, such 

errors are largely minimised. Alternatively, one solution to this 

would be to adopt the approach taken by (Sochor et al., 2018), 

who model vehicle boundaries in 3D. As a result, vehicle 

position can be obtained with greater accuracy and consistency 

as it traverses the scene. 

 

One other factor which must be taken into consideration when 

comparing results, is the reliability of reference data. GNSS and 

IMU devices were processed for deriving precise vehicle 

trajectories. However, as experimentation took place in a city 

centre environment, urban canyon effects, such as multipath, 

may have been present. 

 

Measuring vehicle speed in rapid succession over the course of 

monitoring may be applicable within several applications – 
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broad and fine scale analyses of free flowing/congested traffic, 

anomaly/incident detection, or automated monitoring. Such a 

technique may also prove beneficial in better understanding the 

impact of traffic speeds and volumes on the wider urban 

environment. With use of other sensor networks, multimodal 

analyses can be conducted in relation to air quality, noise 

pollution, or the planning and maintenance of infrastructure. 

However, for safety critical monitoring applications, such as 

incident/anomaly detection, or more detailed spatial analysis, 

the speed estimation errors achieved in this paper are not always 

tolerable. In the UK, conventional speed cameras are expected 

to be consistently within 1mph (~0.45 m/s) error, which, when 

looking at RMSE, is achieved by two of the four experiments. It 

means that comparable accuracy can be expected by ordinary 

video cameras, showing great potential to be used for city scale 

traffic monitoring. 

 

7. CONCLUSIONS 

A workflow was designed and developed to semi-automatically 

detect, track, and estimate vehicle speeds. Current results are 

promising and therefore pave the way for further development 

and investigations as the project moves towards fully-automated 

and real-time solutions.  

 

The used technique successfully estimated vehicle speeds to an 

average RMSE of 0.625 m/s from a DSLR camera setup. This 

was accomplished travelling along congested city centre roads, 

rather than on highways where vehicles are assumed to move at 

near constant speeds. Therefore, unlike related research, which 

often takes a single speed average over a defined distance, the 

scenario here necessitated taking multiple speed measurements 

throughout monitoring to account for frequent changes in 

vehicle acceleration. 

 

Continuing research plans consist of extending the framework 

for more detailed investigation into the robustness of the used 

technique. This can be accomplished by testing with more 

camera sensors and over longer periods of time for more 

varying context and environmental conditions (such as different 

levels of daylight, or adverse weather conditions). 
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