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ABSTRACT:

The photogrammetric bundle adjustment is well-behaved in the case of structured aerial imagery looking in the nadir direction.
That is less so in the case of ground-level imagery with less structure and potentially looking in any direction. Besides, the cost
function based on reprojection errors of tie points is not defined everywhere and exhibits singularities which renders this bundle
adjustment process sensitive to initial conditions and outliers. In order to handle difficult configurations without incurring the risks
posed by the reprojection function, we propose a new error function that is equivalent to the reprojection error when this error tends
to zero, and that enjoys many desirables properties, such as being defined everywhere and being continuous. This allows an easier
implementation of a robust bundle adjustment, and incidentally it also allows to solve derivative problems such as triangulating
points starting from arbitrary initial positions, or estimating the relative positions of calibrated and oriented cameras starting from
arbitrary positions, thus offering a simple solution to the known-orientation structure-from-motion problem.

1. INTRODUCTION

In computer vision a prerequisite to producing a 3D reconstruc-
tion is to accurately model the geometry of the images. This
often involves an approximate initial knowledge of this geome-
try, followed by a global optimization called bundle adjustment
(for an all-around review we refer to (Triggs et al., 2000)).

This process typically uses point correspondances between the
images, and aims at minimizing the quadratic sum of reprojec-
tion errors of the triangulated points. As it turns out, this opti-
mization problem may have many local minima, even in trivial
configurations (Kahl and Hartley, 2008), and so is sensitive to
initial conditions. Also, when the triangulated points are used as
auxiliary variables, their projection in some images may not be
defined, and/or singularities may arise in the course of the pro-
cess. This may be countered by preemptively discarding some
points, or discarding them during the optimization, using some
ad hoc criteria.

Cost functions other than the quadratic sum of reprojection er-
rors have been proposed in the litterature for their practical
advantage in optimization (Schinstock et al., 2009; Mitra and
Chellappa, 2008), but then somewhat changing the meaning and
significance of the optimum.

We propose a new cost function that has many desirable math-
ematical properties ensuring the robustness of the bundle ad-
justment process. Close to the optimum, this cost function is
mathematically equivalent to the standard quadratic sum of re-
projection errors, but contrary to the latter, it is well defined
everywhere. Using this cost function the bundle adjustment
problem can be implemented easily with not special cases to
be taken care of. Also, it turns out that other optimization prob-
lems can be solved using this same bundle adjustment process,
such as triangulating a point starting from an arbitrary location,
or estimating relative camera positions starting from arbitrary
positions.

The new cost function has been designed incrementally by adding
mathematical requirements. In section 2 we describe this cost
function and the rationale leading to it.

In section 3, we comment on bundle adjustment experiments us-
ing this cost function, and present results of the known-orientation
structure-from-motion (SfM) problem using a simple bundle-
adjustment-like optimization, being rendered possible by the
new cost function.

2. DESIGN OF A COST FUNCTION

2.1 Shortcoming of the reprojection error

Given a 3D point M and its known position m in a given cam-
era, the reprojection error is defined as r = P (M) −m where
P : R3 → I ⊂ R2 is the projection function from object
space to image space I . The cost function for this point is of-
ten defined as the squared norm of the reprojection error vec-
tor, the implicit assumption being then that the measurement
error follows a Gaussian probability distribution. This allows
using non-linear least squares optimization algorithms, such as
Gauss-Newton or derivatives.

As not all points project inside the image, the projection func-
tion is not defined over the whole object space, which is a con-
cern if this condition is not properly checked and handled dur-
ing optimization, and doing so adds some complexity to a would-
be robust bundle adjustment algorithm.

The main goal is thus to find an extension of the projection func-
tion to the whole object space that has good properties, so as to
simplify a bundle adjustment implementation. If that is impos-
sible, we want to find an alternative cost function that is de-
fined over the whole object space, and that is equivalent to the
squared norm of the reprojection error when it tends towards
zero.

2.2 Tentative extension of the reprojection error

Assuming a simple pinhole model with no optical distorsion,
the formula for the reprojection error can be extended as is from
the camera frustum to the entire open half-space in front of the
camera. However it cannot be further extended continuouly at
the optical center of the camera, nor on the plane perpendicular
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Figure 1. The projection of the hidden partH of the unit sphere
by a continuous function would necessarily contain any point m

of the image domain I .

to the optical axis going through the optical center, and con-
sequently not behind the camera either. For such an extension
to be continous over the whole space, it must of necessity be
bounded on any bounded region of space (in particular a sphere
centered on the camera is projected into a bounded region of the
image), and it must also be continuous at the camera center.

If we temporarily set aside the camera center, which we identify
with the origin of R3, we may observe that a continuous ex-
tension over (R3)? would have another problem: there would
necessarily be points M that have zero reprojection error with-
out actually being on the line of sight of point m.

To see this we consider the unit sphere S centered on the ori-
gin. Let B be the curve of camera-visible points in S whose
projection is the rectangular boundary of the image in R2 (Fig.
1). This curve separates S into two parts, one which is visible,
and one which is hidden. Let us call the latter H. On the one
hand, H is homeomorphic to a disk, thus simply connected, so
its boundary B can be contracted within H to a point of B; and
since we look for a projection function P that is continuous over
(R3)?, including overH, the contraction path of B withinH to
a point of B implies a contraction path of P (B) within P (H)
to a point of P (B). On the other hand, R2 \ {m} is not simply
connected and the boundary of the image P (B) surrounds point
m in R2, so it cannot be contracted to a point within R2 \ {m},
and a fortiori not within P (H) \ {m}. Since P (B) can be con-
tracted within P (H) and not within P (H) \ {m}, these sets
must differ, which implies m ∈ P (H). Therefore there must
exist at least one point inH (thus invisible) whose projection is
m (thus with zero reprojection error).

This observation can be extended to all spheres centered on the
origin, so that we would have a family of non-visible points
with zero reprojection error. To avoid unnecessary generaliza-
tion we consider that this set of points would be a straight semi-
line open at the origin and extending in some direction behind
the camera.

2.3 Incidence function as a generalization of the reprojec-
tion error

The key idea is that since the projection function cannot be ex-
tended to the whole space in a continuous manner, nor with the
property that the reprojection error is zero only for points M
that are visible at m, we look for a more general function

F : R2 × R3 → Rd

(m,M) 7→ r
(1)

whose squared norm will be our cost function. This function as-
signs a residual vector r to a pair (m,M). The residual vector,
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Figure 2. Sphere-based incidence function ΠS(M)− u(m)
between an image point m and an object point that is either

outside (M ) or inside (M ′) the unit sphere. Case of a non-visible
stationary point (M ′′). Comparison of the 3D incidence residual
vectors ~r and ~r ′ with the 2D reprojection error ~e = P (M)−m.

whose dimension d is to be chosen, should be zero if and only
if point M is on the line of sight of pixel m. For this reason we
call F an incidence function. Given m we also define

Fm : M 7→ F (m,M) . (2)

We want the incidence function F to have the following prop-
erties:

• It is defined for all M ∈ R3 and m ∈ I

• It is continuous and differentiable

• It is zero if and only if M is on the line of sight of m

• Fm is constant when M runs along a given line of sight

• The norm of Fm has no stationary point except when it is
zero

• Near incidence (i.e., F (m,M)→ 0) it is equivalent to the
reprojection error

• The norm of Fm is quasiconvex (optional)

2.4 Getting continuity at the camera center

It is obviously not possible for a non-constant function of M to
be constant on each line of sight originating from the camera
center and at the same time be continuous at the camera center.
To have continuity we must relax the condition that the func-
tion should be constant on each line of sight. We start with the
formulation

F (m,M) = ΠS(M)− u(m) (3)

where u(m) ∈ S is the point of the unit sphere such thatP (u) =
m, and ΠS : M 7→ M/max(1, |M |) centrally projects points
on the unit sphere if they are outside, and leaves them unchanged
otherwise (Fig. 2).

The function Fm has values in R3, is constant on each line of
sight outside the unit sphere, and is zero if and only if point M
is on the line of sight of m and outside the unit sphere.
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Figure 3. Half-cylinder-based incidence function between an
image point m and object points in front of the camera (M ),

inside surface A (M ′), or behind the camera (M ′′). Comparison
of the 3D incidence residual vectors ~r, ~r ′ and ~r ′′ with the 2D

reprojection error ~e.

There are still some issues: the norm of Fm has some non-
zero stationary points, it is not equivalent to the norm of the re-
projection error near incidence, and it is not quasiconvex. The
first point can be seen by considering that outside of the unit
sphere, the function can be expressed in terms of a function
defined on the unit sphere, which is compact, so its norm must
have a non-zero maximum which is a non-zero stationary point.
The second point can be solved by applying a well-chosen lin-
ear transform to the residual vector, which we detail in sec-
tion 2.6. The third point can be seen by observing that the set
{M : |Fm(M)| < ε} is not convex (also seen in later Fig. 5(a)).

2.5 Removing stationary points

It is desirable for the function Fm to not have any non-zero sta-
tionnary point, in which case it can be safely minimized with
any gradient-based technique. Also we would expect this to fa-
cilitate the optimization of a problem that is the sum of many
such functions. It is not possible to avoid non-zero stationary
points in the cost function if this function can be expressed in
terms of the central projection of M on the unit sphere or any
other compact surface. Conceptually, what we need to do is re-
move one point from the unit sphere, or the associated oriented
direction in space, where the cost function would be stationary.

So we define an open surface A that has one intersection with
each semi-line originating from the camera center except for the
removed direction. We define ΠA(M) as the central projection
of pointM on surfaceAwhenM is farther to the origin than the
surface, orM otherwise. We also update the previous definition
of u(m) such that it now represents the point on A (instead of
S) whose image by P is m. Then we define

F (m,M) = ΠA(M)− u(m) . (4)

For this formulation to be continuous, surface A should stretch
towards infinity when it tends towards the singular direction (it
cannot simply be a punctured sphere). There are several possi-
bilities, each with their advantages and disadvantages in terms
of mathematical properties or computational efficiency. One
solution is to define A as a the union of a semi-sphere in front
of the camera and a semi-cylinder behind the camera (Fig. 3).
It has the advantage of being quite simple. It also illustratively
isolates the singularity at the camera center and the singular-
ity in the direction space. One drawback, that is shared by all
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Figure 4. Using an appropriate vector basis (e1, e2, e3) on R3 to
measure the 3D incidence residual vector ~r makes it equivalent

to the pixel reprojection error ~e.

choices of A, is that a radius for the sphere and cylinder has to
be chosen more or less arbitrarily.

Another choice would be a paraboloid, and if we extend the set
of directions forbidden for projection, we could also use one
sheet of an hyperboloid, or even a plane at some distance in
front of the camera. Finally we could define surface A to be
dependent on m (for instance choosing the forbidden direction
opposite to the line of sight of m, instead of the optical axis of
the camera).

2.6 Equivalence to the reprojection error

In order to use the incidence function in standard bundle ad-
justment interchangeably with the reprojection error, we need
it to be equivalent to the reprojection error when it tends to-
wards zero. For this all we need is that for any given m the
Jacobians of M 7→ P (M) − m and M 7→ Fm(M) be equal
when Fm(M) = 0. We first note that the reprojection error has
values in R2 whereas the incidence function has values in R3.
However, outside ofA, Fm(M) has really values inA−u(m),
which is a 2-manifold, so it should be possible to find a local
linear mapping between Fm(M) and P (M) − m augmented
with a zero third component (Fig. 4).

Thus, we look for an invertible 3× 3 matrix K such that under
the condition Fm(M) = 0 we have[

∂P
∂M

0

]
= K

∂Fm

∂M
. (5)

Matrices ∂P
∂M

and ∂Fm
∂M

have dimensions 2 × 3 and 3 × 3 re-
spectively. They both have the same one-dimensional right null
space, defined by the direction of the line of sight of m. They
also both have rank 2. Given that ∂P

∂M
has full rank, contrary to

∂Fm
∂M

, establishing the solution for L = K−1 instead ofK, hap-
pens to be more straightforward. If we noteL12 theL submatrix
composed of its first two columns, and L3 its last column, then
multiplying (5) by L on the left we obtain

[
L12L3

] [ ∂P
∂M

0

]
= L12

∂P

∂M
=
∂Fm

∂M
. (6)

Multiplying (6) on the right by the pseudo inverse of full rank
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Figure 5. (a) Iso-level surfaces of |Fm| (bold solid lines). (b)
Design of iso-level surfaces for a quasiconvex function.

matrix ∂P
∂M

we get

L12 =
∂Fm

∂M

(
∂P

∂M

)T
(
∂P

∂M

(
∂P

∂M

)T
)−1

. (7)

Note that for practical computations, any vector basis of R3 for
the derivation variable M can be chosen, for instance one in
which the third axis is aligned with the line of sight of m. In
this case the third column of ∂Fm

∂M
and ∂P

∂M
is zero. Then the

formula can be simplified by deriving only with respect to any
other two independent axes, and using a plain matrix inverse
instead of a pseudo-inverse.

As L3 has vanished from the equations, it can be chosen arbi-
trarily, but we needL (andK) to be full rank to capture the third
dimension of the residual vector whenever we are further from
incidence. So we set L3 as (a multiple of) the cross product of
the column vectors of L12, and then compute K = L−1.

Finally the modified incidence function is

G(m,M) = K(m)F (m,M) (8)

where K(m) is the matrix defined above which depends only
on m (it can be evaluated at any chosen point M such that
Fm(M) = 0, for instance at M = u(m)).

2.7 Towards a quasiconvex cost function

The cost function defined so far is not quasiconvex. It could
be made quasiconvex by designing level surfaces that enclose

convex volumes.

As pointed out in (Kahl and Hartley, 2008) it would be inter-
esting to have quasiconvex cost functions if we would optimize
their point-wise maximum, as quasiconvexity is preserved by
the point-wise maximum operator. However, in the context of
standard bundle adjustment (using not the maximum, but the
sum of individual cost functions) quasiconvexity brings no use-
ful property, so we did not go so far as to actually make our
incidence function quasiconvex. Convexity would have been
even more desirable, as it is preserved by addition, however the
squared norm of the reprojection error is not itself convex (Kahl
and Hartley, 2008) so the squared norm of a function equivalent
to the reprojection error would be non-convex either.

This being said, we provide an example of what a quasicon-
vex cost function would look like, by modifying the sphere-
and-cylinder-based one (Fig. 5). A way to adjust an existing
incidence function to fit designed iso-level surfaces, is to first
determine which iso-level surface of Fm a given point M is on,
with the associated value, and then scale the residual vector so
that its length has this value.

2.8 Remarks

An important property of the incidence function is that contrary
to the reprojection error, it does not depend on the definition, or
extrapolation, of the image geometrical model away from point
m. This is especially useful in an image featuring high radial
distortion modeled by a polynomial function, because in this
case evaluating the projection function for a point M that is far
from being visible at point m may fail or provide an hazardous
result.

It may also be useful to apply the incidence function idea in
the context of more complex geometrical models, such as im-
ages acquired by a pushbroom sensor. In this case, not only is
the projection function costly to evaluate, but the geometry may
present many accidents (especially in aerial pushbroom) such as
a same object being imaged more than once, or the image being
jittery, perturbing the evaluation of the reprojection error and of
its gradient. When evaluating the reprojection error betweenM
and m, we do not want to be perturbed by any imaging acci-
dents located far from m and otherwise irrelevant. Like for the
pinhole model, we can achieve this by defining an incidence
function between M and m that depends only on differential
properties of the projection at m.

3. EXPERIMENTAL RESULTS

3.1 Point triangulation

Using the new cost function, we verified that it is possible to use
standard optimization algorithms to triangulate the position of
a point seen in multiple images starting from an arbitrary initial
position. There is the risk of converging to a local minimum,
but this is no different than when using the quadratic sum of
reprojection errors which features such local minima (Kahl and
Hartley, 2008). When points are behind cameras the value of
the incidence function is large, so that they are naturally drawn
in front of the cameras. However the squared sum of residuals
could conceivably have local minima there too depending on
the configuration of the cameras.
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Figure 6. Aerial acquisition over mountainous area. Recovered
trajectory (black line) and tie point positions (colored dots).

3.2 Bundle adjustment

Seeing that the cost function allows to correctly triangulate points,
as if the reprojection error were minimized, the next step is to
plug it into a real bundle adjustment problem and check that it
also gets the correct solution.

As with all bundle adjustment, the assumption is that the ini-
tial camera orientation is close enough to the optimum. We
initialize points using this geometry and the triangulation algo-
rithm described previously (section 3.1). Then we optimize the
full bundle adjustment problem, solving both for camera pa-
rameters (exterior and interior orientation) and point positions
using the Levenberg-Marquard algorithm with sparse Cholesky
factorization of the reduced system Gauss-Newton Hessian ap-
proximation.

We verified on several examples that, as expected, the obtained
solution is the same whether we optimize the reprojection error
or the incidence function. Outlier tie points may have signifi-
cantly different costs between the two algorithms, thus leading
to slightly different solutions. In this case the one obtained with
the incidence function is likely less perturbed by gross outliers
as this function is bounded, but in the end these outliers are
filtered and final results are the same.

3.3 Relative pose with known rotation

Estimating the relative pose between cameras is a fundamental
problem for which several algorithms have been proposed. One
class of methods consists in estimating first the relative orienta-
tions, by computing pairwise orientations and integrating them
(Chatterjee and Govindu, 2013), and then estimating the rela-
tive positions with fixed orientations (Moulon et al., 2013).

We propose to use the bundle adjustment engine based on the
new cost function to solve the known-rotation relative position
problem. For this we initialize the position of all cameras at a
single arbitrary location and optimize the global cost function.
The properties of the new cost function may enable the process
to converge to a realistic solution despite the initial geometry
being far from the optimum. This is what we empirically ob-
serve in a variety of configurations.

We present results obtained with two different configurations: a
bidimensional aerial acquisition, and a mono-dimensional multi-
camera mobile-mapping-system acquisition.
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Figure 7. Ground acquisition in Marseille port. Recovered
trajectory (black line) and tie point positions (red dots), with a

closeup of one extremity.

3.3.1 Aerial acquisition This dataset consists of 22,123 im-
ages taken from a Unmanned Aerial Vehicle (UAV) over a 7 km×
7 km mountainous area following a structured flight plan. The
images possess GPS position and IMU orientation information.
They also have been finely bundle adjusted to obtain camera
calibration, known relative orientations, and some kind of “ground-
truth” against which to compare the result of our relative posi-
tion algorithm.

A set of about 216,000 tie points has been obtained by image
block matching in cartographic space, with 146 points per im-
age on average. Any outlier has been identified and removed
during the bundle adjustment process so that the relative posi-
tion experiment may be conducted in ideal conditions.

We initialized image positions and tie point positions to be at
the origin of the coordinate system. As for camera calibration
and relative orientations we fixed them to the values obtained
previously by bundle adjustment.

Then we optimized the incidence-based cost function using the
Levenberg-Marquard algorithm, which yielded a solution for
relative image positions and tie point positions. We registered
the computed relative positions to the ground-truth positions,
using the similarity transform that minimizes the quadratic sum
of point-wise distances. Then we measured the distance (or er-
ror) between the ground-truth positions and the registered rel-
ative positions. The median error distance is 0.68 m and 97%
are under 2 m. The result can be seen in Fig. 6.

So, for these images the process converged well, and to a sen-
sible solution. Yet we may wonder why it did not get closer to
the bundle adjustment result, especially as we used the camera
calibration and relative orientations given by this very bundle
adjustment, with only the relative positions left to be estimated.
A factor to consider is that that the original bundle adjustment
problem has a prior cost term based on given GPS positions that
makes it substantially different than the relative position prob-
lem where no such term exists.

3.3.2 Ground acquisition This dataset consists of 526 shots
taken by a multi-camera system mounted on a car. The acqui-
sition system is made of 6 cameras mounted at 60◦ from each
other with a little overlap, effectively covering a 360◦ cylin-
drical field of view. The maximum distance between any two
camera optical centers is about 50 cm. The car ran along the
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2 km-long street bordering the port of Marseille, France. Each
shot came with unreliable GPS position and heading angle.

For bundle adjustment, a collection of about 1.5 million SIFT-
like (Lowe, 2004) tie points has been obtained between all 3,156
images. The result serves as “ground-truth”, and provides geo-
metrical calibration of the system, as well as an estimate of the
relative orientation between shots.

We used the same protocol as for the aerial dataset, and initial-
ized the positions of tie points to the center of the coordinate
system, as well as the positions of the camera rig for the 526
shots. Then we optimized the incidence-based cost function,
and registered the obtained rig positions to the “ground-truth”
with the best similarity transform. Fig. 7 shows the obtained
results.

The measured median distance error is 0.61 m with 90% under
2 m. This implies that there was relatively little drift in spite
of the long linear acquisition. The known rotations certainly
helped with that, but the configuration probably did too. In fact
the inside of the port being relatively flat and unobstructed, both
sides of the port could virtually be seen from anywhere, provid-
ing some correspondances and rigidity between all images.

Worth of note is that the scale factor of the similarity used to
register the solution to the ground-truth is 1.001, which means
that the unregistered solution was already recovered with al-
most the correct scale. This is only possible because we are
not dealing with a pinhole camera system but with a general-
ized camera system, whose calibrated inter-camera distances
provide an absolute scale reference.

3.3.3 Discussion The results presented so far show that the
incidence-based cost function provide robustness within a bun-
dle adjustment algorithm. Although not the primary goal, we
found that computing unknown relative positions was even pos-
sible using standard bundle adjustment with the new cost func-
tion.

It should be noted though that for this experiment we placed
ourselves in ideal conditions: calibrated camera system, fairly
accurate relative orientation taken from bundle adjustment, and
outlier-free tie points.

When these conditions are not met, the process would still con-
verge, but would not provide the right positions. It is still possi-
ble to use the proposed bundle adjustment engine as a building
block to iteratively refine the internal camera geometry, or im-
age relative orientation, or filter outliers, but that is outside the
scope of this study.

Even in ideal conditions, there are some cases in which the pro-
cess does not converge to a sensible solution. It is especially
so when the connectivity graph of the images induced by the
tie points has several connected components, or when there are
some very weak links, or when the links are very unbalanced.
In such cases we can end up with a solution that is globally
wrong, but that is piece-wise correct (only the relative position
and scale between those pieces are wrong). Linear acquisitions
(along a street or air corridor) are more prone to this risk than
area acquisitions.

Also some numerical difficulties may arise due to a kind of tie
point that would be seen by almost collinear rays in different
images (even if this is a transitory accident during optimiza-
tion). Such points may get triangulated very far away and end

up being stuck there when the Jacobian of their cost function
becomes virtually zero. This may require specific handling in
the optimization algorithm, or taking it into account in the de-
sign of the incidence function.

Finally, the value of the radius used to isolate the singularity in
the incidence function can have an influence, especially when
the problem has an absolute scale factor, such as with standard
bundle adjustment, or with relative positions of a generalized
camera system. In these cases the radius must absolutely be
smaller than the object-to-camera distances. Other than that,
it does not influence the optimum but it can still influence the
optimization path.

4. CONCLUSION

We presented an alternative formulation of the bundle adjust-
ment problem that is equivalent to minimizing the quadratic
sum of reprojection errors but that is defined for all point po-
sitions and is exempt of singularities. It allows an easier im-
plementation without special cases and enjoys a larger radius of
convergence, even so as to provide a new solution to the known-
orientation relative position estimation problem.

Further work may be geared towards improving the mathemat-
ical properties of the incidence function to allow tackling an
even wider range of problems. For instance it could be made
quasiconvex and used with L∞-norm thus yielding provable
convergence for some optimization problems. The incidence
function idea could also be applied to other sensors such as op-
tical pushbroom. Finally, some comparative experiments could
be carried out on benchmark datasets.
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