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ABSTRACT:

Camera based navigation in dynamic environments with high content of moving objects is challenging. Keypoint-based localization
methods need to reliably reject features that do not belong to the static background. Here, traditional statistical methods for outlier
rejection quickly reach their limits. A common approach is the combination with an inertial measurement unit for visual-inertial
odometry. Also, deep learning based semantic segmentation was recently successfully applied in camera based localization to
identify features on common objects. In this work, we study the application of mask-based feature selection based on semantic
segmentation for robust localization in high dynamic environments. We focus on visual-inertial odometry, but similarly investigate
a state-of-the-art pure vision-based method as baseline. For a versatile evaluation, we use challenging self-recorded datasets based
on different sensor systems. This includes a combined dataset of a real world system and its synthetic clone with a large number of
humans for in-depth analysis. We further deploy large-scale datasets from pedestrian navigation in a mall with escalator scenes and
vehicle navigation during the day and at night. Our results show that visual-inertial odometry performs generally well in dynamic
environments itself, but also shows significant failures in challenging scenes, which are prevented by using the segmentation aid.

1. INTRODUCTION

The tasks for optical navigation become more and more chal-
lenging. Applied in different scenarios such as drone-, robotic-,
driver assistance- or inspection systems, a reliable estimation of
the current position and orientation of the system is mandatory.
This can be realized by detecting and tracking features at salient
keypoints in a sequence of camera images to estimate the ego-
motion. Common implementation forms are Visual Odometry
(VO) or Simultaneous Localization and Mapping (SLAM). The
demands are versatile, ranging from low light conditions, fast
camera movements to many moving objects. Traditional pure
optical based navigation systems show difficulties in such scen-
arios, often fail completely in dynamic environments.

The compensation of these weaknesses has been a research topic
for many years, while we concentrate on two main directions.
First, optical systems are often fused with additional sensors.
A common realization is the fusion with an Inertial Measure-
ment Unit (IMU), known by the term Visual-Inertial Odometry
(VIO). One representative is the Integrated Positioning System
(IPS) (Borner et al., 2017), that is used for navigation, inspec-
tion, and 3D-modelling. Second, prior knowledge based on
classification of point features to be located on static or mov-
ing objects is introduced. Due to the recent success of Deep
Learning (DL), semantic segmentation has been frequently ap-
plied to mask specific areas of the image where features are un-
favorable for pose estimation. This feature selection extension
has shown to improve the performance of optical localization
(Kaneko et al., 2018). Also, due to rapid progress in new hard-
ware development for DL and similarly improving networks,
DL based segmentation modules will most likely be available
as additional hardware components in most future systems.

In this paper, we explore the limits of VIO in dynamic scenes
and the potential of using semantic information for feature se-
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lection. This study is motivated by the frequent presence of
moving objects in IPS related datasets and their unknown in-
fluence on the localization result. Due to its applications, long
focal length cameras with a relatively small field of view are
favored, which can lead to large occluded image areas by mov-
ing objects. Here, we use a straight-forward mask approach to
ensure the exclusion of features also on slowly moving objects.
The focus of this work is the evaluation based on challenging
high dynamic datasets. Therefore, we deploy a hand-held sys-
tem and its synthetic clone to create a dataset combining similar
synthetic and real data with high dynamic human based content.
Simulation is applied to evaluate the methods using ideal seg-
mentation and substantial ground truth, and real data with DL

Figure 1. Illustration of selected features (green crosses) used
for pose estimation in VIO without (Normal) and with (Masked)
segmentation aid (red area) for a hand-held navigation on an
escalator (a) and vehicle navigation at night (b, the brightness
was increased for better visualization).
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based segmentation is used to validate the observations. Further
large-scale datasets from pedestrian- and vehicle navigation are
utilized to generalize the observations. Exemplified in Figure 1,
they include challenging scenes for localization on excalators
and at night. Thus, our main contribution is a comprehensive
evaluation of the application of a segmentation aid for feature
selection in the existing IPS, a method for stereo camera based
VIO. This contribution composes of the following aspects.

e We evaluate the influence of the segmentation aid on the
performance of IPS using ground truth data.

o We extend and investigate ORBSLAM (Mur-Artal, Tardds,
2016) similarly, as baseline for pure visual localization.

e We consider different frame rates, which show to have a
similar strong effect on IPS in dynamic scenes.

e We deploy different datasets from pedestrian- and vehicle
navigation in dynamic indoor- and outdoor scenarios, re-
corded with different IPS sensor systems.

2. RELATED WORK

The susceptibility of methods for optical localization and odo-
metry to moving objects is a well-known issue and different
approaches are frequently proposed to tackle this problem. In
the following, we summarize important approaches for feature-
based optical localization and their improvements. A compre-
hensive overview of different approaches to increase the robust-
ness of VO and SLAM is provided by (Saputra et al., 2018).

Feature-based methods for VO (Nister et al., 2004) and SLAM
(Klein, Murray, 2007) typically rely on the same basic prin-
ciples for robust localization. Geometric models in form of
fundamental matrices and homographies are estimated based
on matched image features, while random samples consensus
(RANSAC) (Fischler, Bolles, 1981) is used to statistically ex-
clude outliers and non-static feature points. Thereby, different
geometric constraints are applied, such as epipolar or motion
constraints. For instance, (Wu et al., 2017) used motion con-
straints in a stereo camera vehicle setup to predict feature po-
sitions in sequential images and use them as initialization for
a feature tracker. The resulting camera pose is usually refined
in an iterative cost minimization manner based on the reprojec-
tion error, while the choice of the cost function is important for
robustness against outliers (MacTavish, Barfoot, 2015). Differ-
ently to VO that estimates an ego-motion only, SLAM provides
precise long-term localization in known environments, but de-
pends on well-defined 3D maps. (Mur-Artal, Tardés, 2016) pro-
posed ORBSLAM that combines mapping of 3D points, key-
frames, bundle adjustment, and loop closure, but has shown to
be prone to dynamic environments (Kaneko et al., 2018).

A common approach to increase the robustness of navigation is
sensor fusion, e.g. in combination with an IMU. A comprehens-
ive overview for visual-inertial navigation is provided in (Chen
et al., 2018a). The fusion can be realized using a Kalman filter
(GrieBbach et al., 2014) or in a combined minimization of the
photogrammetric and IMUs measurement errors (Stumberg et
al., 2018). Similar to motion constraints, the pose estimation of
the IMU based on the strapdown mechanism can be used to pre-
dict feature positions to improve feature tracking. (Zhang et al.,
2018a) found superior performance of visual-inertial navigation
over pure visual methods in a dynamic office environment, by
experimenting on datasets consisting of pedestrians and strong
camera motion. We also investigate VIO in an office environ-
ment, but we concentrate on the application of semantic inform-
ation and also use dynamic large scale datasets.

Due to the great success of DL based classification methods in
recent years, different researchers introduced semantic inform-
ation as prior knowledge into feature selection in the presence
of moving objects. An overview of state of the art methods
for semantic segmentation is provided by (Song et al., 2019).
(Barnes et al., 2018) trained a DNN to learn the segmentation
of static image areas in monocular VO. They used an additional
3D sensor setup and an offline mapping approach to automat-
ically generate training data. (An et al., 2017) used semantic
segmentation to assign higher weights to specific object classes
during feature selection in VO. (Kaneko et al., 2018) developed
Mask-SLAM and used semantic segmentation based on Deep-
Lab v2 (Chen et al., 2018b) to create a mask for cars and the sky
to exclude feature points in monocular ORBSLAM. (Bescos et
al., 2018) combined multi-view geometry models and semantic
segmentation to exclude features on moving objects for pose es-
timation and mapping. Also, (Yu et al., 2018) used semantic in-
formation to reject all keypoints belonging to an object, if a cer-
tain number of them where found to be moving by a consistency
check, and during dense mapping. (Ganti, Waslander, 2019)
investigated the application of uncertainties from a segmenta-
tion network in ORBSLAM. (Wang et al., 2019) simultaneously
improved SLAM and semantic segmentation by distinguishing
between features on moving, potentially moving and on the
static background for SLAM and using the 3D pose informa-
tion to refine the segmentation. (Schorghuber et al., 2019) dis-
tinguished between similar object states in a dynamic fashion,
using a continuously updated confidence factor. In contrast, we
decided to use the basic masking approach, since many slowly
moving objects are only observed for a short time in our hand-
held datasets. Representative for VIO, (Murali et al., 2017) used
semantic information to classify visual landmarks as static in a
tightly-coupled visual-inertial navigation system and evaluate
this method on a self-recorded dataset for vehicle navigation.
Similar to them, we use self-recorded datasets to evaluate our
visual-inertial method, since current VIO benchmarks are less
focused on high dynamic content. In contrast, our focus is on
the evaluation of loosely-coupled VIO in highly dynamic envir-
onments, using vehicle datasets, but also hand-held datasets.

3. METHOD

The focus of this work is on IPS, a stereo-vision-aided inertial
navigation system (GrieBbach et al., 2014). It loosely-couples
VO and inertial navigation. We extend IPS by introducing se-
mantic segmentation based feature selection in the VO com-
ponent. In the following, we review the method‘s main com-
ponents, and our implemented segmentation aid extension in
Subsection 3.3. All components are illustrated in Figure 2.
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Figure 2. [llustration of the components of IPS and their
relations, including sensor system /PS-HW and the navigation
module /PS-SW, and the proposed segmentation aid.
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3.1 [Inertial constraint stereo visual odometry

To estimate VO, point features have to be detected, matched
between both cameras (intra-matching) and tracked over con-
secutive frames (inter-matching). The matching is implemented
as a patch-wise matching with a sliding window, which requires
the detection of features in the left camera only. In this work,
AGAST (Mair et al., 2010) is chosen as feature detector and
Normalized Cross-Correlation as matching metric. To estimate
the relative transformation AT from time k to k+1, the intra-
matched features at k are triangulated. The resulting 3D points
M, are projected into the stereo camera at k+1. AT is then es-
timated through least square optimization of the reprojection er-
ror, which is the distance between the projection of M, and the
inter-matched feature points mx1. Equation (1) describes the
objective for the left camera only, where K describes the cam-
era matrix. The right camera is formulated accordingly, while
respecting the calibrated stereo transformation.

min [KATM; — s ||? (D

Single outliers in (1) can introduce significant errors or even
cause the minimization to fail. Therefore, following approaches
are applied in IPS to prohibit and reject outliers. First, epi-
polar constraints restrict the search space for the sliding window
based intra-matching around the epipolar line with a distance
threshold. Second, the inertial strapdown navigation solution
is used to predict the image positions of M;, at time k+1. The
search space around this position is restricted by the covariance,
estimated through error propagation throughout the navigation
pipeline. Third, RANSAC is applied to filter out mismatches.

3.2 Vision-aided inertial navigation

Next to the VO, IPS deploys an IMU consisting of each three
mutually perpendicular accelerometers and gyroscopes. Us-
ing the strapdown mechanism (Wendel, 2011), an ego-motion
based on the measured accelerations a and angular rates @ is
estimated. Unknown varying bias terms b,, b., on the acceler-
ation and angular rate measurements can lead to a strong drift
if left uncompensated. Therefore, they are dynamically estim-
ated and corrected during an initialization phase and navigation.
The sensor fusion is implemented as an error state Kalman filter.
Error propagation throughout the VO and the filtering process
provides essential covariances for a robust solution. The estim-
ated relative transformation of the VO is used as a measurement
aid in the Kalman filter to update and correct the dynamic para-
meters of the strapdown equations. Next to the estimated pose
and velocities, these parameters include the bias terms bq, b,

3.3 Masked based feature selection

Semantic segmentation is used to support the rejection of de-
tected features on moving objects in the VO component. Based
on pixel wise classification of defined object classes, a mask is
generated that is used to accept or reject a point feature can-
didate during feature detection. We consider the classes human
and car, which we assume to be constantly moving to be able to
exclude all small movements. The implementation is inspired
by (Kaneko et al., 2018). For pixel wise classification, we apply
a DeepLab v2 ResNet implementation in Tensorflow with pre-
trained weights (Chen et al., 2018b, Nekrasov, 2016). It utilizes
a deep convolutional neural network to obtain a pixel wise ob-
ject assignment probability map for each considered class, while

the final classification is given by the class with the highest
score. Based on the segmentation of the target object classes, a
mask is generated that defines the belonging to forbidden object
classes. The mask is additionally edited based on a predefined
default mask that covers static elements in the image, such as
the own bonnet in case of vehicle navigation. To compensate
inaccurate segmentation borders and difficult object-assignable
or object-close image features, the mask is dilated by 4 pixels,
oriented on the feature radius of AGAST. The application of
the mask is implemented in the feature detection phase. After a
point candidate is proposed by the specific corner detector, the
image position is verified with the mask and accepted or rejec-
ted accordingly. Further selections of the features to use, e.g.
with non-max suppression, follow and remain unchanged.

4. DATA ACQUISITION

IPS provides different hardware systems and a synthetic clone
for data acquisition. The systems used in this work are illus-
trated in Figure 2. In this section, first the hardware systems are
described and the simulation framework, which we extended to
provide ideal semantic segmentation. Then, the datasets for the
evaluation are introduced.

1D \ R-V \ R-HH \ S-HH
Cameras Prosilica GC1380H synthetic
Sensor type CCD-monochrome monochrome
Resolution 1360x1024 pizxel
Pixel size 6.45 ym
Focal length | 8.2 mm 4.8 mm
Baseline 045m 0.20 m

Table 1. IPS camera sensor parameters

R-V) (R-HH)

(S-HH)

Figure 3. Used IPS sensor-heads: (R-V) Real world system on a
vehicle, (R-HH) real world hand-held system, (S-HH) simulated
hand-held system. (Ernst et al., 2018, Irmisch et al., 2019)

4.1 Real world

Two different IPS sensor systems are considered. Both are com-
posed of the same IMU (ADIS-16488) and camera sensors, lis-
ted in Table 1, but differ in their focal length and baseline due
to different target applications. Hardware system R-HH is a
hand-held device that targets pedestrian navigation and 3D re-
construction in indoor, outdoor and underground environments.
Hardware system R-V targets vehicle navigation and also pro-
vides a GNSS receiver (OEM625S). A FPGA is used to syn-
chronously trigger the cameras and for accurate timestamp as-
signments of all sensor data.

4.2 Simulation
The simulation framework of (Irmisch et al., 2019) was de-

ployed to generate synthetic datasets with substantial ground
truth information. By transferring the estimated trajectory of
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Dataset | Distance Velocity Ang. Rate
[m] [m/s] [°/s]
3 D mean max mean max

Corr-Sim 17.7 0.73 1.62 | 19.1 251
Corr-Real 18.9 0.63 1.64 19.5 148

Ipin-1 874 1.06 192 | 220 156
Ipin-2 902 0.9 1.63 | 183 129

Road-Day 6080 1.1 17.1 7.0 447
Road-Night 6260 10.1  16.1 6.7 372
Town-1 3060 4.6 11.3 | 48 48.1
Town-2 5190 33 124 | 34 417

Table 2. Camera motion characteristics for the different datasets.
The distance describes the traveled 3D path. Each entry
describes a separate run, only Corr-Sim and Corr-Real composes
of 5 and 7 runs respectively, where the median distance is noted.

a real-world IPS into simulation, it allows to generate synthetic
image- and IMU data with a realistic motion profile of the target
platform. It can be used in any virtual environment with differ-
ent camera configurations, including intrinsic-, extrinsic- and
radiometric calibration, motion blur, exposure and frequency.
In this work, the parameters of the real world device R-HH for
camera simulation are used, including radiometric and geomet-
ric camera parameters. The synthetic clone is noted as S-HH.
To ensure image quality, we used a super-sampling grid of 3
and accumulated 21 images to simulate motion blur with an ex-
posure time of Sms. The IMU is simulated with a frequency of
400Hz and noise parameters, oriented on the real-world IMU.

This simulation framework was extended to generate ideal se-
mantic segmentation. Similar to (Gaidon et al., 2016), we render
the scene a second time to generate per-pixel category- and
instance-level ground-truth. During the second rendering, we
disable all lighting-, shading and material effects and assign a
unique label to each object, decoded in a RGB color value and
set as ambient material property. An animated human model
(Microsoft XNA, 2010) was used in the experiments, which is
limited to straight walking with adjustable speed.

4.3 Datasets

The Corridor Dataset consists of 7 real and 5 synthetic record-
ings (Corr-Real and Corr-Sim) in a similar corridor environ-
ment with systems R-HH and S-HH. Table 2 provides informa-
tion about camera dynamics and path length. The trajectories of
both sources consist each of walking a short distance, illustrated
in Figure 4 (a), but the individual recordings differ in the level
of dynamic and presence of humans. For instance, the second
session consists of two humans walking consistently in front of
the camera. Or, the fourth sessions consists of two humans walk
towards the camera, while another two are observed starting to
walk slowly. The camera images were acquired with a frame
rate of 30Hz and sorted out for 10Hz and 5Hz. The simulation
provides complete ground truth, while for the real world dataset
two Ground Control Points (GCPs) at the beginning and end of
each session are used as reference.

The IPIN Dataset provides recordings in a mall like environ-
ment for the system R-HH with 10Hz frame rate. It was recor-
ded in 2014 for the indoor navigation competition at the interna-
tional conference on Indoor Positioning and Indoor Navigation
(IPIN). This dataset is challenging for optical navigation due
to the presence of densely crowded areas, strong light reflec-

0 y [m] 16.1
(a) Corridor Dataset, based on a simulated trajectory
04
E
N
-151 : = -
-170 y [m] 0

Figure 4. lustration of exemplary trajectories (black dotted,
yellow solid lines) and real world GCPs (red points).

tions, numerous escalators scenes between three floors, as illus-
trated in Figure 4 (b), and dynamic camera motion, as shown in
Table 2. GCPs were provided by the IPIN team, from which we
choose 6 as reference, where the system was hold for 5s.

The NZ-Road Dataset provides recordings for vehicle naviga-
tion on a high road and in an urban area. It was recorded in
the context of Digital Roads New Zealand (Ernst et al., 2018,
Zhang et al., 2018b) with focus on 3D-reconstruction using the
system R-V with 10Hz frame rate. We reconsider four datasets
for our systematic analysis of the segmentation aid. Two runs
on a high road are selected, recorded on the same road at day
and night. Both consist of a ride back and forth and another
car driving consistently in front of the vehicle in safety distance
(Figure 1 (b)). Two urban sets are used that contain pedestrians
and numerous vehicles, both driving and parking (Figure 7 (e)).
The recorded GPS data was utilized to select a number of GCPs
per hand as reference (Figure 4 (c)).

5. EVALUATION

Based on the proposed datasets with dynamic content, we in-
vestigate the effect of the segmentation aid for VIO, represented
by IPS. We apply the same segmentation aid in the stereo cam-
era approach of ORBSLAM as pure vision-based baseline. For
IPS we apply two different configurations. IPS Fast provides
real-time localization at 10Hz by processing the images in half
resolution (680x512 pixel), while the feature matching prop-
erties are optimized for maximum speed. IPS Accurate runs
in near real-time and is usually used for accurate offline pro-
cessing. IPS Accurate and ORBSLAM are applied using full im-
age resolution (1360x 1024 pixel). Depending on the method,
the semantic segmentation is processed in different resolutions.
For IPS Accurate Masked and ORBSLAM Masked full resolu-
tion was used. The approaches with segmentation at full res-
olution with the chosen neural network as well as localization
at 30Hz are currently not real-time capable with our hardware
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Figure 5. Results for the Corridor Dataset in CDF-representation, for different frame rates and for synthetic and real data respectively.
The vertical lines mark the mean nATE or CDE respectively for each CDF. Navigation results that are considered as failed, are hidden.

setup, but still included in our experiments to exploit the full
potential of the segmentation aid. In IPS Fast Masked, the seg-
mentation was applied on a downscaled image of (320x256
pixel) to investigate our method with less-effort segmentation.
In the following, we first introduce the applied metrics for eval-
uation. Then, we evaluate the methods on the Corridor Dataset
in detail, where we also consider different camera frame rates.
Finally, we apply the methods on the real-world datasets from
pedestrian- and vehicle navigation.

5.1 Maetrics

The availability of ground truth data varies for the different
datasets. A complete ground truth is provided for the synthetic
datasets, whereas only a few ground control points (GCPs) are
available for the real world datasets.

In simulation, we use a (normalized) Absolute Trajectory Error
(nATE) in (3) at timestamp i for the online localization result
of IPS and ORBSLAM. It is based on the ATE from (Sturm
et al., 2012) in (2), while we focus on the translational com-
ponents using their norm ||.||. We align the estimated tra-
jectory Py, ..., P, € SE(3) with the ground truth trajectory
Qo, ---, Qn € SE(3) by the transformation S that aligns the start
pose Po with the ground truth start pose Qo. This corresponds
to the “alignment using a single state” (Zhang, Scaramuzza,
2018). Since IPS estimates an initial roll and pitch based on
the IMU, only the heading is aligned, whereas for ORBSLAM
all angles need to be aligned. To compensate increasing drift of
the odometry method, we additionally normalize the error by
the traveled distance d; and use [%] as error unit.

ATE; := ||Q; 'SP, )

ATE; N
o b :_Z;HQj_leHT 3)
p=

nATE; :=

In real world, the ground truth is limited to GCPs G, ..., G €
R3, where we apply two metrics. First, we consider relative
distances between GCPs and compare them to the estimated re-
lative distances of the applied methods. Therefore, we define a

Cross Distance Error (CDE) in (4), which considers the estim-
ated distances between all GCPs, with 0 < k <1 < m. Py
describes the estimated pose when placed on GGi,. The CDE is
normalized by the traveled distance dj,;, defined by the sum of
distances between visited GCPs between Gy, and G;.

I1PGi Pyl — 11Gx = Gl
§=

CDE, y ,
k,l

“)

l

dii= Y |G- =Gl ®)

j=k+1

Second, we use the ATE by aligning the positions of the GCPS
G, with the corresponding trajectory positions of P . For this,
we use the implementation of the method in (Umeyama, 1991)
provided by (Zhang, Scaramuzza, 2018).

For each metric we compute the mean based on the results of
a dataset-specific number of runs and each 5 repetitions to ac-
count for the non-deterministic nature of the RANSAC com-
ponent in VO. We further classify a method as succeeded or
failed based on the following conditions. The method succeed-
ed, if it was able to estimate a solution for at least 75% of the
data, the mean of nATE or CDE is less than 5% (rounded) and
the mean of ATE is less than 50m, if applied.

5.2 Evaluation of the Corridor Dataset

The Corridor Dataset was deployed to determine the limits of
VIO and to exploit the potential of the segmentation aid. Con-
cerning the former, the dataset contains many humans that are
mostly walking or standing with small movements. For the
latter, the ideal segmentation was used in the synthetic data-
set. For comparability, we concentrate on the nATE and CDE,
which share the same error unit [%]. The data is visualized us-
ing the Cumulative Distribution Function (CDF) in Figure 5,
distinguished between simulation and real world with camera
frame rates 30Hz, 10Hz, 5Hz. Each line shows the result of one
method as a whole for 5 runs in simulation and 7 in real world
(see section 4.3). Vertical lines visualize the CDF mean.
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Run | Metric IPS Fast IPS Acc. ORBSL.
mean N M N M N M
Ipin- | ATE [m] | 2.94 3.12 - - - -
1 CDE [%]| 1.01 091 - - - -
Ipin- | ATE [m] 2.52 - - - -
2 CDE [%] - 0.79 - - - -
Road- | ATE [m] | 20.45 20.91{20.17 2094 | f f
Day |CDE[%]| 0.60 0.61 | 0.44 0.45 f f
Road- | ATE [m] | 20.46 20.35 18.6 f f
Night | CDE [%]| 0.75 0.74 0.61 f f
Town- | ATE [m] | 6.02 6.41 | 558 5.56 [39.64 94
1 CDE [%] | 0.49 0.54 | 0.37 0.37 | 3.67 0.70
Town- | ATE [m] | 9.18 10.18|10.87 10.67| f 20.64
2 CDE [%]| 0.58 0.61 | 0.55 0.55 f 0.78

Table 3. Results for IPIN- and NZ-Road Datasets for the
individual method without (N) and with (M) using a mask. Bolt
numbers mark noticeable relative differences between (N) and
(M) of at least 10 %. Particularities are marked with red
background. If a result is not given, the method was either
considered as failed (f) or was not applied (-).

First evaluating the pure vision-based method ORBSLAM, it
only succeeded for high frame rates (30Hz) when using the
mask, both in simulation and real world. Due to high dynam-
ics of the hand-held system, noted in Table 2, ORBSLAM fre-
quently failed for low frame rates. However, in simulation at
30Hz, ORBSLAM Masked performed the most accurate localiz-
ation of all methods for this dataset.

For VIO, the results show that the segmentation aid increased
navigation results in general for this specific dataset. This boost
is distinctive at 30Hz and negligible at SHz. Due to higher
frame rates, object motions are less pronounced in the image
and features on slowly moving objects are more likely to be
used in the VO estimation. Related, Figure 7 (b) shows single
used points on slowly moving humans. Similar, when using a
lower resolution in IPS Fast, this boost is still present at 10Hz,
where it is comparatively small for IPS Accurate. 1t also ap-
pears that more features are used from moving- than from static
objects, as in Figure 7 (a) for IPS Fast.

Comparing the results from simulation and real world, they
show strong correlations despite different evaluation metrics. It
is particularly striking that IPS Accurate Masked performs sim-
ilar at all frame rates, in simulation and real world respectively.

5.3 Evaluation of the IPIN Dataset

For the IPIN dataset, we only consider IPS Fast since the im-
ages are only available in half resolution at 10Hz. The results
for the two runs of the same trail are listed in Table 3. In Ipin-
1, the segmentation aid only slightly improves the base method
regarding the CDE. Figure 7 (c) depicts an example of a crowd
area from this dataset. In contrast, IPS Fast shows large errors
in Ipin-2, which do not occur when using the segmentation aid.
The cause of this error is shown in Figure 1 (a), where a person
stands in front of the camera during an escalator scene.

The behavior of the VIO during the escalator scene is analyzed
in Figure 6, exemplary for the determined height in local co-
ordinates. First, the body-frame up-axis z; of the IMU is shown
to delimit the escalator scene. Before and after the escalator,
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Figure 6. System- and localization parameters in local
coordinates of IPS Fast (Masked) on an escalator of run Ipin-2.

the IMU measures the walking motion profile and only meas-
ures the gravity during the ride. Second, the estimated normal-
ized relative translation of the VO is shown. While the relative
translation should be constantly high, IPS Fast VO frequently
estimates zero-movement due to a high number of detected fea-
tures on the person, as shown in Figure 1 (a). Using these VO
estimations as aid in the navigation filter leads to wrongly es-
timated bias terms, exemplified for b, on 2, in comparison with
IPS Fast Masked. As aresult, the navigation solution fails to es-
timate the change in height for this scene, compared with a ba-
rometer measurement as reference. Contrary, IPS Fast Masked
is able to estimate the height almost similar to the reference.

5.4 Evaluation of the NZ-Road Dataset

The results show that ORBSLAM is struggling with high velo-
cities at a low frame rate of 10Hz. Thus, both road runs are con-
sidered as failed. Figure 7 (d) shows that the segmentation aid
helps in the beginning of Road-Night to differentiate between
static and dynamic features, but the navigation still fails in the
later course. In the urban area (Town), ORBSLAM Masked suc-
ceeded, while ORBSLAM failed in Town-2.

Regarding VIO, IPS Accurate struggled at the night dataset.
Due to low light conditions and a car driving constantly in front
of the cameras, comparatively many features are detected on
this car at high image resolution and are frequently used for VO,
exemplary shown in Figure 1 (b). This results in an unreli-
able navigation result, similar to the analyzed scene of the /PIN
Dataset. For the other runs, the difference between the IPS
methods with and without the mask is largely negligible. In
the town datasets, the accuracy slightly decreased for IPS Fast
Masked, which uses low image resolution and the segmentation
aid that equally masks out parking cars (Figure 7 (e)).

6. DISCUSSION

Our results show that VIO naturally provides a good perform-
ance in dynamic scenes, even without a segmentation aid. Due
to inertial constraints in the VO component, the method can be
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Figure 7. Illustration of selected features (green crosses) of the methods without (Normal) and with (Masked) applied segmentation
aid (red area) for scenes from (a,b) the Floor-, (c) IPIN- and (d,e) NZ-Road Dataset. (a,b,c,e) show features used for pose estimation
in IPS for the current frame. (d) shows the tracked keys that found ORBSLAM valid for the current frame.

effectively applied to low frame rates, such as 10Hz, where ob-
ject motions are more pronounced and associated features are
easier to sort out. However, inaccuracies and even complete
failures of the navigation still arise. In direct comparison to
ORBSLAM as pure visual baseline, we found, based on the
presented datasets, that the used VIO method is mostly superior
in terms of robustness and accuracy, despite ORBSLAM:s key-
frame and loop closure modules. However, this comparison is
limited to the applied 10Hz in the vehicle datasets, the dynamic-
only environments and limited amount of closed loops.

The combination with segmentation based feature selection has
shown to prevent complete failures of VIO in selected scen-
arios, while the accuracy is generally consistent. Only in scenes
with a high rate of parking cars and a low image resolution, the
accuracy slightly decreased due to the chosen mask approach
that we used in this study to ensure the exclusion of features on
all slowly moving objects. The improvements were even more
drastic for ORBSLAM with a similar segmentation aid. Thus,
we can confirm the conclusion of (Bescos et al., 2018, Kaneko
etal., 2018, Murali et al., 2017, Yu et al., 2018) that a segment-
ation aid can greatly improve optical localization and substan-
tiate its applicability in the VIO-based localization system IPS.

For the evaluation based on different applications, we deployed
a hand-held system, both in simulation and real world, and
a sensor system for vehicle navigation. While the simulation
provided complete and perfect ground truth, the real world ex-
periments were limited by the number of reference points and
sensor quality. Extensive public benchmarks (Blanco-Claraco
et al., 2014, Geiger et al., 2013, Schubert et al., 2018, Sturm
et al., 2012) exist, but met our requirements for this evaluation
less, due to the necessary connection of a stereo camera with
a synchronized IMU, the need of a short initialization phase
and our focus on high dynamic content. Even though the effect
of the segmentation aid was clearly visible, future experiments
could benefit from extensive real world ground truth generation.

7. CONCLUSION

In this work, we evaluated the performance of Visual-Inertial
Odometry (VIO), represented by the Integrated Positioning Sys-
tem (IPS), with an additional segmentation based feature se-
lection in dynamic environments. We deployed ORBSLAM as
pure-visual navigation baseline for comparison. For evaluation,
we deployed different challenging large-scale datasets recorded

with sensor systems for pedestrian- and vehicle navigation. For
the former, we additionally created a combined real world and
synthetic dataset with high dynamic content, to evaluate the
methods at different frame rates. Using the segmentation aid
for ORBSLAM, we could confirm an outstanding performance
gain. While VIO at low frame rates has shown a relatively good
performance in dynamic environments itself, we conclude that
the segmentation aid mainly contributes in terms of robustness
as it is able to prevent rare but significant failures. In selected
scenarios however, the chosen basic mask approach lead to a
slight decrease in localization accuracy, e.g. with many parking
cars. In future, we will target this issue and explore this method
for robust localization in environments with other dynamic ele-
ments, such as vegetation, steam, or water. We also plan to use
such semantic information for 3D reconstruction of the static
scene in these dynamic environments.
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