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ABSTRACT: 

 

Nowadays, digitizing roadside objects, for instance traffic signs, is a necessary step for generating High Definition Maps (HD Map) 

which remains as an open challenge. Rapid development of deep learning technology using Convolutional Neural Networks (CNN) 

has achieved great success in computer vision field in recent years. However, performance of most deep learning algorithms highly 

depends on the quality of training data. Collecting the desired training dataset is a difficult task, especially for roadside objects due to 

their imbalanced numbers along roadside. Although, training the neural network using synthetic data have been proposed. The 

distribution gap between synthetic and real data still exists and could aggravate the performance. We propose to transfer the style 

between synthetic and real data using Multi-Task Generative Adversarial Networks (SYN-MTGAN) before training the neural network 

which conducts the detection of roadside objects. Experiments focusing on traffic signs show that our proposed method can reach mAP 

of 0.77 and is able to improve detection performance for objects whose training samples are difficult to collect. 

 

 

1. INTRODUCTION 

In recent years, images, including panoramic images, and point 

cloud collected by Mobile Mapping System (MMS) are used to 

generate HD maps, which can be applied to autonomous driving, 

smart city, etc. The HD Maps conclude specific information on 

roadside environments, including road objects (road lines, 

crosswalk, etc.) and roadside objects such as traffic signs. 

However, data creation of these objects still heavily depends on 

operators’ manual work, which is costly in terms of both time and 

money. 

 

Benefit from advances that deep learning technology has 

achieved in recent years, several have been proposed to extract 

objects of interest from images or point clouds using CNN based 

algorithms. (Wolf et al., 2019) proposed a method to detect 

manholes and road markings by semantic segmentation using 

images rendered from point clouds. A CNN algorithm proposed 

by (Mori et al., 2018) classifies the categories of pole-like objects. 

Meanwhile, CNN based algorithms are highly dependent on the 

quality of training dataset, whose creation is both time-

consuming and costly. Besides, the number of roadside objects in 

the real condition is highly imbalanced. Take a traffic sign as an 

example. Figure 1 shows the sample numbers of each category of 

traffic signs which are collected from MMS in Japan(Lin et al., 

2018). Approximately 70 categories of traffic signs can hardly 

collect enough samples to train a CNN model. On the other hand, 

the rest 20 categories of traffic signs contribute more than 90% 

samples of the dataset. This is known as a long-tail phenomenon 

which could cause a significant performance drop. 

 

To tackle the aforementioned problem, we propose a method to 

generate synthetic training samples for training an object detector. 

The flowchart of our proposed method is shown in Figure 2. To 

be more specific, we propose an SYN-MTGAN architecture, 
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which transfers the style between synthetic data and real data, to 

generate training samples that can improve the detection 

performance of objects whose real training samples are difficult 

to collect in the real scene. The proposed SYN-MTGAN 

generates training samples along with predicting the category of 

the generated samples. In this study, we focus on traffic signs to 

verify the effectiveness of our proposed method. 

 

 
 

Figure 1. The number of Traffic Sign Samples in Real Scene 

 

 
 

Figure 2. Flowchart of our proposed Method 
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2. RELATED WORK 

2.1 Object Detection 

In the Object Detection task, the category and position of a target 

object are predicted at the same time. R-CNN (Girshick et al., 

2014) first adopted CNN to tackle this task by a two-stage 

strategy, which generates proposals of target region using 

Selective Search (Uijlings et al., 2013) and classifies the category 

of each region using AlexNet (Krizhevsky et al., 2012), a classic 

CNN architecture for image classification. R-CNN was improved 

in terms of performance and speed in the following years. Faster 

R-CNN (Ren et al., 2015) proposed a trainable neural network, 

Region Proposal Network (RPN), to generate proposals of a 

target region. This framework influences numerous methods that 

have been proposed in the following years. On the contrary, one-

stage strategy methods focus on the real-time processes. SSD 

(Liu et al., 2016) and YOLO (Redmon et al., 2016) can be 

considered as representative ones. The key idea of a one-stage 

method is that predicting proposal regions and category of the 

target object at the same time using a single network, meanwhile 

a two-stage strategy predicts these two tasks in separate networks.  

 

2.2 Synthetic to Real 

Both one-stage and two-stage Object Detection algorithms suffer 

from imbalanced training samples during training. A common 

solution is to carry out the hard negative mining. Online Hard 

Example Mining (OHEM) (Shrivastava et al., 2016) proposed to 

use hard negative samples more frequently than normal ones 

during training according to a loss. Instead of collecting samples 

from real scenes, another solution is generating synthetic data 

from a simulator. (Hinterstoisser et al., 2017) trained an object 

detector model using synthetic data and pre-trained features of 

real data. (Abu Alhaija et al., 2018) augmented real scene images 

by synthetic images to train a network for driving scene 

recognition. (Cordts et al., 2016) trained Faster R-CNN using a 

large synthetic dataset and a small real scene dataset. (Wu et al., 

2017) raised the proportion of real scene data by combining 

synthetic data created from the Grand Theft Auto game and 

KITTI (Geiger et al., 2012) data for training a neural network. 

Furthermore, to reduce the gap between synthetic and real scenes’ 

distribution, (Shrivastava et al., 2017), (Bujwid et al., 2018), 

(Huang et al., 2018) and (Yu et al., 2019) developed GAN-based 

frameworks to generate more realistic synthetic images by 

projecting or mapping real feature distribution onto synthetic 

images. (Zheng et al., 2018) employed this idea on depth 

estimation and revealed pleasant results. Domain randomization 

or domain adaptation is further applied to minimize the gap. 

(Tremblay et al., 2018) used domain randomization to force the 

network to focus on learning semantic features other than 

features, i.e. color, brightness, and texture, which are usually 

determined by the dataset. Such strategies are proved to be 

effective to minimize the gap between synthetic data (source 

domain) and real scene data (target domain).  

However, these proposed algorithms cannot solve the 

aforementioned problem when the target domain does not exist, 

which is caused by a lack of real scene samples. Creating 

synthetic data that is similar to real scene data is needed to solve 

the problem that we are facing, meanwhile, there is little research 

that focuses on transferring synthetic images to the real one for 

object detection tasks, especially multiple similar categories exist. 

 

2.3 Generative Adversarial Networks 

Generative Adversarial Networks (GAN) was proposed to 

generate images (Goodfellow et al., 2014) and has achieved 

significant results in many computer vision tasks. Commonly, 

GAN consists of two neural networks, the Generator and the 

Discriminator. The Generator generates a synthetic image from a 

random vector. On the other hand, Discriminator classifies if the 

input image is a synthetic image created by the Generator or a 

real one. The training of Generator and Discriminator is carried 

out simultaneously, which is called adversarial training. And 

eventually, the Generator is trained to generate synthetic images 

whose appearances are close to real images. The quality of 

images generated by GAN has been improved notably. (Karras et 

al., 2019) proposed a Generator with hierarchical architecture to 

recover details such as eyes and expressions of human faces. 

Besides using random vectors, GAN can also use images and 

natural languages as input to generate images. (Reed et al., 2016) 

used natural languages to generate a user-preferred image using 

GAN. GAN also had been proved to be effective to solve tricky 

Object Detection tasks, for instance small object detection. SOD-

MTGAN (Bai et al., 2018) used a multi-task Discriminator to 

help Generator to generate better super-resolution images of a 

human head, which achieved higher performance on human head 

detection task, especially a small head. The experiments (Bai et 

al., 2018) show that GAN is useful to generate images that are 

able to improve the performance of Object Detection. 

Additionally, GAN can also transfer the style between two sets 

of images. CycleGAN with two Generators and Discriminators, 

proposed by (Zhu et al., 2017), learns the style and transfers it 

between two sets of images. The architecture that CycleGAN 

proposed enables the model to learn consistency loss between 

two Generators and results in generating more stable and better 

outputs. These previous studies of GAN show that images 

generated by GAN can be utilized as training samples to train an 

object detector.  

 

3. METHODOLOGY 

3.1 Overview 

We propose an SYN-MTGAN architecture, inspired by SOD-

MTGAN and CycleGAN, to generate synthetic data as training 

data for Object Detection while real scene samples are difficult 

to collect. Specifically, our method takes fake images and real 

images of target objects as input data for training the SYN-

MTGAN. It learns the distributions of features, such as texture, 

illumination et al. that exist in the real scenes but difficult to 

reproduce by a simulator, from real images, and transfers them to 

fake images. There are two key points in our proposed method. 

First, the Discriminator (hereinafter, called D) of SYN-MTGAN 

not only classifies the input as fake or real but also predicts the 

category of the target object at the same time, which is i.e. a 

multi-task neural network. Second, we propose a new loss 

function in order to encourage SYN-MTGAN to only transfer the 

style of foreground, other than background. 

 

We conducted experiments using the images that SYN-MTGAN 

generated to train an Object Detection model, comparing to the 

model that is trained by real scene data, to verify its effectiveness. 

 

3.2 SYN-MTGAN Architecture 

The architecture of a normal GAN is shown in Figure 3 (a). In 

normal GAN, fake images (hereinafter, called y') generated by 

Generator (hereinafter, called G) from input x, along with real 

images (hereinafter, called y), are fed into D for classification, 

which predicts whether the input is the generated y' or y 

(fake/real). 
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(a) Normal GAN     (b) CylceGAN and Proposed SYN-MTGAN 

 

Figure 3. Architecture of GAN 

 

 
 

Figure 4. Flowchart of the Cycle Consistent Training 

 

In this study, intending to improve the quality of generated 

images and stabilize the training process of GAN, we designed a 

GAN architecture, inspired by CycleGAN. The architecture of 

CycleGAN is shown in Figure 3 (b), which is an end-to-end 

framework for image style transfer. CycleGAN contains 4 

networks, two Generators, and two Discriminators. The basic 

idea of CycleGAN is training the 4 networks to learn the style of 

image x and transfer this learned style to image y, which as a 

different style, using the cycle consistent loss. CycleGAN also 

learns the style of y and transfers it to x, which is proved effective 

for boosting performance. In the training process of CycleGAN, 

a Generator G is trained to generate a fake image y' by learning 

feature distribution (style) of real image y and transferring it to 

synthetic image x, meanwhile another Generator F is trained to 

generate x'' by mapping from real image feature distribution to 

fake ones. As a result, x'' is remapped to its original style and 

should be as similar to x as possible. This is called a forward 

cycle. This process can be considered as a recovery of y. y' and y 

are the input to Discriminator Dy for fake/real classification. The 

reverse cycle performs oppositely. Generator F is trained to 

generate another kind of fake images (hereinafter, called x') 

which learn the style of synthetic image x and transfer it to real 

image y, meanwhile x' is remapped as y'', similar to its original 

style, by G. x' and x perform as the input to Discriminator Dx for 

classifying fake/real. The cycle consistent loss calculates the 

divergence between x', x and y', y, and encourages the Generators 

to learn the mapping of two distributions respectively. The 

flowchart of cycle consistent training is shown in Figure 4. 

Besides, the purpose of G and F is to learn the distribution from 

two sets of images. Note that it is possible to train the CycleGAN-

style architecture using unpaired images, which can reduce the 

cost of preparing synthetic and real images. 

 

The D of our proposed SYN-MTGAN is a multi-task architecture. 

Besides fake/real classification as general GAN Discriminator 

does, it also predicts the category of target objects, in both Dx 

and Dy. The classification task predicts the category of a target 

object, similar to normal image classification. 

 

3.3 Network Architecture 

The details of the network architecture are shown in Figure 5. 

The G adopts Encoder-Decoder style, which contains two 

convolutions with a stride size of 2, nine Residual Blocks (He et 

al., 2016), and two transposed convolutions with a stride size of 

1/2. Instance normalization (Ulyanov et al., 2016) is adopted in 

both G and D as it showed better performance in an image style 

transfer. The architecture of D is also based on CycleGAN. To be 

specific, four convolutions with a stride size of 2 and one 

convolution with stride 1 are implemented to extract feature map, 

whose size is 1/16 of the original input image. This feature map 

is shared with two parallel branches, discriminative recognition 

and classification. The classification branches are connected to 

the feature map by one convolution and two fully connected 

layers. 

 

3.4 Loss Function 

We adopted five loss functions to train the SYN-MTGAN. 

Adversarial loss and cycle consistency loss, the same as 

CycleGAN, are adopted to optimize the G and D. We adopted 

classification loss to optimize G and D. We propose a revised 

version of identity loss of CycleGAN to strength G to focus on 

the target area other than the background. 

 

 
 

Figure 5. Details of Network Architecture. Conv denotes 

convolution. k means kernel size. s denotes stride size. For 

example, k3s2 denotes convolution with kernel size of 3 and 

stride size of 2. 

 

3.4.1 Adversarial Loss: Adversarial loss (hereinafter, called 

𝐿𝐺𝐴𝑁) encourages the G to generate fake images that are as close 

as possible to real ones that can fool D, and D not to be fooled by 

images that G generated. The equation is shown in Equation (1), 

which 𝐷𝑦(𝐺(𝑥𝑖))  denotes the probability of generated real 

image 𝐺(𝑥𝑖), or y', being a real image. 

 

𝐿𝐺𝐴𝑁 = − ∑ log (𝐷𝑦(𝑦𝑗))𝑚
i=0 − ∑ log (1 − 𝐷𝑦(𝐺(𝑥𝑖)))𝑛

𝑗=0    (1) 

 

where  𝑥𝑖, 𝑦𝑗  = training sample 

                n, m = numbers of training sample 
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3.4.2 Cycle Consistency Loss: The CycleGAN calculates the 

difference between x and x'', y and y'' as cycle consistency loss 

(hereinafter, called 𝐿cyc ) to encourage G and F to learn the 

perfect distribution of synthetic and real images, as Equation (2) 

shows. F(G(𝑥𝑖)) denotes the images 𝑥𝑖′′, generated by F from 𝑦𝑖′, 
which are generated by G. Smaller loss indicts that G and F can 

recover x'' or y'' better. 𝐿cyc  uses L1 loss to calculates the 

difference. 

 

𝐿cyc = ∑ ‖F(G(𝑥𝑖)) − 𝑥𝑖‖
1

𝑛
i=0 + ∑ ‖G (F(𝑦𝑗)) − 𝑦𝑗‖

1

𝑚
𝑗=0   (2) 

 

3.4.3 Identity Loss: The objective of G and F is to learn the 

distribution of target features from two sets of images. However, 

the Generator of GAN tends to transfers the feature it learns and 

transfers the feature to the whole image, including the 

background. CycleGAN uses identity loss (hereinafter, call 

𝐿𝑖𝑑𝑒𝑛), which calculates the L1 loss between the input and output 

of the Generator, to encourage G and F to focus on learning the 

features of target object other than background. We propose a 

revised version of 𝐿𝑖𝑑𝑒𝑛, shown in Equation (3). Proposed 𝐿𝑖𝑑𝑒𝑛 

only focuses on the change of background by blocking the 

foreground target object using the bounding box information. 

  

𝐿𝑖𝑑𝑒𝑛 = ∑ ‖F(𝑥𝑖
∗) − 𝑥𝑖

∗‖1
𝑛
i=0 + ∑ ‖G(𝑦𝑗

∗) − 𝑦𝑗
∗‖

1

𝑚
𝑗=0            (3) 

 

where  𝑥𝑖
∗, 𝑦𝑖

∗ = background area of an image 

3.4.4 Classification Loss: The classification branch in the 

Discriminator is reported to encourage the Generator to generate 

fake images that are easier to be classified by Object Detection 

(Bai et al., 2018). We calculate classification loss (hereinafter, 

called 𝐿𝑐𝑙𝑠)  using Cross Entropy Loss for each D. The equation 

of 𝐿𝑐𝑙𝑠  for Dy is shown in Equation (4), where 𝐷𝑦(𝐺(𝑥𝑖)) and 

𝐷𝑦(𝑦𝑖) denote the probabilities of the generated fake image 𝑦𝑗
′ 

and the real image belonging to the true category respectively. 

 

𝐿𝑐𝑙𝑠 =  ∑ −𝑙𝑜𝑔 (𝐷𝑦(𝐺(𝑥𝑖)))𝑛
𝑖=0 − ∑ 𝑙𝑜𝑔 (𝐷𝑦(𝑦𝑗))  −𝑚

𝑗=0

 ∑ −𝑙𝑜𝑔 (𝐷𝑥(𝐹(𝑦𝑗)))𝑚
𝑗=0 − ∑ 𝑙𝑜𝑔(𝐷𝑥(𝑥𝑖))𝑛

𝑖=0       (4) 

 

3.4.5 Overall Loss Function: 

Equation of overall loss function is shown in Equation (5), which 

calculates the weighted sum of five aforementioned loss 

functions. 

 

𝐿𝑂𝑆𝑆 = 𝐿𝐺𝐴𝑁 + λ𝐿cyc + α𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 + 𝜇(𝐿𝑐𝑙𝑠)           (5) 

 

where  λ, α, 𝜇 = weights 

 

4. EXPERIMENTS 

We take a traffic sign as the target object to evaluate our proposed 

method, SYN-MTGAN, in this section. More specifically, we 

focus on the traffic signs collected by MMS panorama images, 

which is due to two reasons. (1) A traffic sign is a common object 

along the roadside. And the distribution of the number of traffic 

signs, as shown in Figure 1, causes the training data collection 

problem aforementioned. (2) A traffic sign is an important object 

to be included in an HD map, meanwhile, its detection still 

remains an open challenge. 

 

4.1 Dataset 

 
 

Table 1. The number of Samples 

 

 
(a)  Example of Synthetic Scene Image X 

 

 
(b) Example of Real Scene Image Y 

 

 
(c) Example of Template Image of Traffic Sign 

 

 
(d) Example of Synthetic Image x 

 

 
(e) Example of Real Image y 

 

Figure 6. Example of Our Dataset 

 

We prepared both synthetic and real images of a traffic sign since 

there are few open data of MMS panorama images that are 

collected in both urban and rural areas in Japan, which are 

necessary to train SYN-MTGAN. We collected 30,688 and 570 

panorama images from several urban areas, inside and near 

Tokyo Prefecture, Japan, as train and test data respectively and 

labeled traffic signs with bounding boxes as training data. We 

targeted 12 categories of them, which concludes categories that 

have sufficient or insufficient samples. Categories with 

insufficient samples was included in test data only. The sample 

quantity of each category of real images is listed in Table 1. The 

procedure for generating a synthetic image x is as follows. (1) 

Collect one template image from the internet, as shown in Figure 

6 (c), for each category of traffic signs. (2) Render the template 

image onto panorama images where traffic signs do not exist. The 

rotation degree, size, and brightness are randomly determined 

during the rendering. Result (hereinafter, called Synthetic Scene 
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Image X) examples of step (2) are shown in Figure 6 (a). (3) Crop 

a traffic sign region to generate synthetic image x (hereinafter, 

called Synthetic Image X). In addition, the location where 

Synthetic Image X locates in a panorama image is randomly 

determined. The category is exported as ground truth for training 

SYN-MTGAN. Real image y is generated by step (3) from real 

scene panorama images (hereinafter, called Real Scene Image Y). 

Examples of x and y are shown in Figure 6 (d) and (e). We 

generated 20,000 images of x and 23,736 images of y for training 

SYN-MTGAN. The sample quantity of each category is listed in 

Table 1. The distribution of size in pixel of synthetic image x and 

real image y is shown in Figure 7. The size of most training data 

samples is larger than 322 pixels, which indicates that the object 

size, more specifically the resolution of the object, is not a major 

difficulty in this study. 

 

 
 

Figure 7. Size Distribution of Training Data. Small, middle, large 

refers objects whose size are smaller than 322 pixels, between 322 

and 962 pixels, and larger than 962 pixels respectively. 

 

The evaluation of the proposed SYN-MTGAN was conducted by 

comparing the performance of traffic detection using the classic 

Object Detection method, Faster R-CNN. Faster R-CNN was 

trained by three sets of data, Synthetic Scene Image X, Real 

Scene Image Y, and the result of SYN-MTGAN. The number of 

images par the category is shown in Table 1. Three categories of 

a traffic sign are not included in Y due to their number is less than 

100. 

 

4.2 Implementation Details 

Our implementation of proposed SYN-MTGAN is based on open 

source machine learning platform PyTorch (Paszke et al., 2017). 

We mostly follow the original CycleGAN’s implementation to 

train SYN-MTGAN.  We use an image size of 256×256 for both 

x and y. We set the batch size to 24 and the epoch number to 120 

for training. Weights of the loss function, which are hyper-

parameters, are set inspiring by original SOD-MTGAN and 

CycleGAN experiments settings: 𝜆 = 10, 𝛼 = 0.5, 𝜇 = 0.5 

Faster R-CNN is implemented on another open-source machine 

learning platform, Chainer (Tokui et al., 2015). We use an image 

size of 3,000×1,125 to train Faster R-CNN. The initial learning 

rate is set to 0.0001 and reduced every 2 epochs. The epoch 

number is 5 as we use pre-trained VGG16 (Simonyan et al., 

2015) on ImageNet (Russakovsky et al., 2015) as a backbone 

network for training Faster R-CNN, which leads to quick 

convergence. The rest of the parameters follow the original Faster 

R-CNN’s implementation details. 

 

4.3 Experiment Results 

We carry out several experiments to evaluate our proposed 

method. First, we compare the performance of Faster R-CNN on 

traffic sign with four kinds of training data, SYN-MTGAN result 

(fake image y'), synthetic scene image X, the result of original 

CycleGAN and real scene image Y. Second, we make an ablation 

study to evaluate three components of proposed SYN-MTGAN. 

 

4.3.1 SYN-MTGAN Evaluation Results: Examples of the 

result images of SYN-MTGAN are shown in Figure 8, along with 

the inputs which are synthetic image x and real image y. The 

examples show that SYN-MTGAN has the ability to transfer the 

style of real images, i.e. texture, resulting in generating more 

realistic images compared to a synthetic image x. Besides, the 

results of SYN-MTGAN indict that it can reproduce a more 

realistic edge than x. The edge between traffic sign and 

background in x is sharper than y. The reason is that x is 

generated by rendering a template image onto a real scene 

panorama image, while the edge is blurred using a Gaussian filter 

with fixed parameters. This blur process cannot reproduce the 

real scene. Furthermore, the brightness of the traffic sign is edited 

to correspond with background by SYN-MTGAN, which makes 

them more natural comparing to synthetic image x, as shown in 

Figure 8 (c).  

 

 
(a) Example of Input (Real Image y) 

 

 
(b) Example of Input (Synthetic Image x) 

 

 
(c) Example of SYN-MTGAN Result 

 

Figure 8. Result of SYN-MTGAN 

             
(a) Synthetic Image  (b) SYN-MTGAN Result  (c) Real Image 

 

Figure 9. Example of the Sign of Speed Limit of 60 km/h 

 

The quantitative evaluation result on real images dataset of traffic 

signs collected by us (clarified in Section 4.1) is shown in Table 

2. Faster R-CNN trained using the samples created by our 

proposed SYN-MTGAN reached mAP of 0.77, which is better 

than training Faster R-CNN using the result of the original 

CycleGAN and the synthetic scene image X. Even though a real 

scene image Y reached higher performance, SYN-MTGAN 

reached considerable accuracy on the categories that real scene 

images cannot collect, i.e. crossing ahead and no riding double. 

However, some categories, i.e. speed limit of 30 and 60 km/h, do 

not obtain expected performance. The reason is considered as an 

unstable generation for these categories, especially with numbers 

on them. For instance, some generated images of speed limit of 

60 km/h are difficult to recognize as Figure 9 shows. This 

unstable result may also cause the generation of unnatural fake 
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images such as the crossing ahead in Figure 8 (c). This problem 

remains as future work for us. 

 

 
Table 2. Accuracy of Faster R-CNN 

 

4.3.2 Ablation Studies: To analyze the importance of each 

component of our proposed method, we conduct ablation studies 

by removing one of the proposed components, which is the 

classification branch and the proposed identity loss. We take 

original CycleGAN as a baseline. Furthermore, we also evaluate 

the localization branch proposed by SOD-MTGAN (Bai et al., 

2018) which predicts the bounding box of target objects, similar 

to Faster R-CNN. Specifically, it predicts the central point’s 2D 

coordination, width and height of the target object in an image. 

The localization branch is proved to be effective for encouraging 

the Generators to generate better super-resolution images and 

boosting Object Detection performance. We place the 

localization branch in the Discriminators, which is parallel to the 

discriminative branch and classification branch and calculates its 

loss, localization loss (hereinafter, called 𝐿loc), using Equation 

(6). Specifically, we use a Smooth L1 Loss (Ren et al., 2015), 

shown in Equation (7), for both Dx and Dy to calculate the loss 

of predicting bounding box. The weight for 𝐿loc  is set to 0.5 

inspiring by original SOD-MTGAN. 

 

𝐿loc = ∑ 𝑆𝐿1(𝐷𝑦(𝐺(𝑥𝑖)) − 𝑣𝑖)𝑛
0 + ∑ 𝑆𝐿1(𝐷𝑦(𝑦𝑗) − 𝑣𝑗) +𝑚

0

∑ 𝑆𝐿1(𝐷𝑥(𝐹(𝑦𝑗)) − 𝑣𝑗)𝑚
0 + ∑ 𝑆𝐿1(𝐷𝑥(𝑥𝑖) − 𝑣𝑖)𝑛

0      (6) 

 

in which, 

 

𝑆𝐿1 = {
0.5𝜃2          𝑖𝑓(|𝜃| < 1)

|𝜃| − 0.5    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (7) 

 

where  θ = (𝑡𝑖,𝑥 − 𝑣𝑖,𝑥 , 𝑡𝑖,𝑦 − 𝑣𝑖,𝑦 , 𝑡𝑖,𝑤 − 𝑣𝑖,𝑤, 𝑡𝑖,ℎ − 𝑣𝑖,ℎ) 

 t𝑦
𝑖  = 𝐷𝑦(𝐺(𝑥𝑖)) = (𝑡𝑖,𝑥 , 𝑡𝑖,𝑦 , 𝑡𝑖,𝑤 , 𝑡𝑖,ℎ)  denotes the 

predicted bounding box of Dy 

 𝑣𝑖  = (𝑣𝑖,𝑥 , 𝑣𝑖,𝑦 , 𝑣𝑖,𝑤 , 𝑣𝑖,ℎ)  denote the ground truth of 

bounding box of sample 𝑥𝑖 

 x = x coordinate of bounding box 

 y = y coordinate of bounding box 

 w = width of bounding box 

 h = height of bounding box 

 

The results of ablation studies are shown in Table 3. The result 

of Case 4 reveals that our proposed loss function can contribute 

more than 7% of the performance boost for training Faster R-

CNN compared to Case 2. This result might indicate that 

restricting the change of background and emphasizing the change 

of foreground during training a GAN for generating images is an 

effective approach to improve the performance when these 

images are used to train an Object Detection model.  

 

Case 3 shows that the classification branch contributes a 4% 

performance boost than the localization branch compared to Case 

1. Architecture with the classification branch and the proposed 

identity loss (Case3) reached the highest performance 

(mAP=0.77) among all test cases.  This result indicates that the 

classification branch in Discriminator can encourage GAN to 

generate images which contain more information that is helpful 

to Object Detection. To be specific, such information can be well 

extracted by feature extract CNN of object detector such as Faster 

R-CNN and raise detection performance. On the other hand, the 

localization branch could only provide a limited performance 

boost for predicting the location of an object. The reason is 

considered as follows. Faster R-CNN predicts the bounding box 

of target objects from feature maps extracted by VGG16, whose 

size is 1/16 of the original image. This down-sampling process 

could cause ambiguity of bounding box prediction and degrade 

information that the localization branch has encouraged to 

generate. 

 

 
where, loc = Localization Branch, cls = Classification Branch, 

loss = Proposed Identity Loss 

Table 3. Result of Ablation Studies 

 

Furthermore, training the classification branch and the 

localization branch simultaneously might aggravate the 

performance of Faster R-CNN according to the result of Case 2. 

The reason is considered as that, parameters of a discriminator 

with three tasks to predict at the same time are hard to be 

optimized simultaneously. Specific training schedule i.e. 

optimizes the parameters of a certain branch while keep others 

fixed, is a considerable solution to this problem. It remains as a 

future work for us. 

 

5. CONCLUSION 

In this study, we proposed a multi-task GAN architecture, SYN-

MTGAN, to generate fake images from synthetic scene images, 

which can be used as training data for an object detector such as 

Faster R-CNN when the target objects in the real scene are hard 

to be collected. We carried out experiments based on traffic signs 

to evaluate our proposed method. The results showed that Faster 

R-CNN trained by the result of SYN-MTGAN with the 

classification branch and the proposed identity loss can reach 

mAP of 0.77. Some categories of the traffic signs which cannot 

be collected enough in the real scene have reached mAP of higher 

than 0.8, which indicates that the proposed SYN-MTGAN is an 

effective method to generate synthetic training data for rare 

roadside objects. Results of ablation studies indicate that our 

proposed components are effective. The multi-task training, 

especially the classification branch and loss function encourages 

GAN to generate synthetic images that are more suitable to be 

detected by deep learning-based Object Detection model. 

 

For future works: (1) evaluate the human performance in 

distinguishing the synthetic and real images to see if the 

generated images are really realistic, (2) evaluate settings of loss 

function weights, which are the hyper-parameters of SYN-

MTGAN, (3) modify the architecture to be end-to-end trainable. 
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