
GENERATING SYNTHETIC TRAINING DATA FOR OBJECT DETECTION USING

MULTI-TASK GENERATIVE ADVERSARIAL NETWORKS

Y. Lin *, K. Suzuki, H. Takeda, K. Nakamura

 Dept. of R&D, KOKUSAI KOGYO CO., LTD., 2-24-1 Harumi-cho, Fuchu-shi, Tokyo, 183-0057, JAPAN

 (utei_rin, kumiko_suzuki, hiroshi1_takeda, kazuhiro_nakamura)@kk-grp.jp

Commission II, WG II/5

KEY WORDS: Mobile Mapping System, Object Detection, Convolutional Neural Networks, Generative Adversarial Networks,

Multi-Task Training, Synthetic to Real

ABSTRACT:

Nowadays, digitizing roadside objects, for instance traffic signs, is a necessary step for generating High Definition Maps (HD Map)

which remains as an open challenge. Rapid development of deep learning technology using Convolutional Neural Networks (CNN)

has achieved great success in computer vision field in recent years. However, performance of most deep learning algorithms highly

depends on the quality of training data. Collecting the desired training dataset is a difficult task, especially for roadside objects due to

their imbalanced numbers along roadside. Although, training the neural network using synthetic data have been proposed. The

distribution gap between synthetic and real data still exists and could aggravate the performance. We propose to transfer the style

between synthetic and real data using Multi-Task Generative Adversarial Networks (SYN-MTGAN) before training the neural network

which conducts the detection of roadside objects. Experiments focusing on traffic signs show that our proposed method can reach mAP

of 0.77 and is able to improve detection performance for objects whose training samples are difficult to collect.

1. INTRODUCTION

In recent years, images, including panoramic images, and point

cloud collected by Mobile Mapping System (MMS) are used to

generate HD maps, which can be applied to autonomous driving,

smart city, etc. The HD Maps conclude specific information on

roadside environments, including road objects (road lines,

crosswalk, etc.) and roadside objects such as traffic signs.

However, data creation of these objects still heavily depends on

operators’ manual work, which is costly in terms of both time and

money.

Benefit from advances that deep learning technology has

achieved in recent years, several have been proposed to extract

objects of interest from images or point clouds using CNN based

algorithms. (Wolf et al., 2019) proposed a method to detect

manholes and road markings by semantic segmentation using

images rendered from point clouds. A CNN algorithm proposed

by (Mori et al., 2018) classifies the categories of pole-like objects.

Meanwhile, CNN based algorithms are highly dependent on the

quality of training dataset, whose creation is both time-

consuming and costly. Besides, the number of roadside objects in

the real condition is highly imbalanced. Take a traffic sign as an

example. Figure 1 shows the sample numbers of each category of

traffic signs which are collected from MMS in Japan(Lin et al.,

2018). Approximately 70 categories of traffic signs can hardly

collect enough samples to train a CNN model. On the other hand,

the rest 20 categories of traffic signs contribute more than 90%

samples of the dataset. This is known as a long-tail phenomenon

which could cause a significant performance drop.

To tackle the aforementioned problem, we propose a method to

generate synthetic training samples for training an object detector.

The flowchart of our proposed method is shown in Figure 2. To

be more specific, we propose an SYN-MTGAN architecture,

* Corresponding author

which transfers the style between synthetic data and real data, to

generate training samples that can improve the detection

performance of objects whose real training samples are difficult

to collect in the real scene. The proposed SYN-MTGAN

generates training samples along with predicting the category of

the generated samples. In this study, we focus on traffic signs to

verify the effectiveness of our proposed method.

Figure 1. The number of Traffic Sign Samples in Real Scene

Figure 2. Flowchart of our proposed Method

0

5000

10000

15000

20000

25000

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

443

2. RELATED WORK

2.1 Object Detection

In the Object Detection task, the category and position of a target

object are predicted at the same time. R-CNN (Girshick et al.,

2014) first adopted CNN to tackle this task by a two-stage

strategy, which generates proposals of target region using

Selective Search (Uijlings et al., 2013) and classifies the category

of each region using AlexNet (Krizhevsky et al., 2012), a classic

CNN architecture for image classification. R-CNN was improved

in terms of performance and speed in the following years. Faster

R-CNN (Ren et al., 2015) proposed a trainable neural network,

Region Proposal Network (RPN), to generate proposals of a

target region. This framework influences numerous methods that

have been proposed in the following years. On the contrary, one-

stage strategy methods focus on the real-time processes. SSD

(Liu et al., 2016) and YOLO (Redmon et al., 2016) can be

considered as representative ones. The key idea of a one-stage

method is that predicting proposal regions and category of the

target object at the same time using a single network, meanwhile

a two-stage strategy predicts these two tasks in separate networks.

2.2 Synthetic to Real

Both one-stage and two-stage Object Detection algorithms suffer

from imbalanced training samples during training. A common

solution is to carry out the hard negative mining. Online Hard

Example Mining (OHEM) (Shrivastava et al., 2016) proposed to

use hard negative samples more frequently than normal ones

during training according to a loss. Instead of collecting samples

from real scenes, another solution is generating synthetic data

from a simulator. (Hinterstoisser et al., 2017) trained an object

detector model using synthetic data and pre-trained features of

real data. (Abu Alhaija et al., 2018) augmented real scene images

by synthetic images to train a network for driving scene

recognition. (Cordts et al., 2016) trained Faster R-CNN using a

large synthetic dataset and a small real scene dataset. (Wu et al.,

2017) raised the proportion of real scene data by combining

synthetic data created from the Grand Theft Auto game and

KITTI (Geiger et al., 2012) data for training a neural network.

Furthermore, to reduce the gap between synthetic and real scenes’

distribution, (Shrivastava et al., 2017), (Bujwid et al., 2018),

(Huang et al., 2018) and (Yu et al., 2019) developed GAN-based

frameworks to generate more realistic synthetic images by

projecting or mapping real feature distribution onto synthetic

images. (Zheng et al., 2018) employed this idea on depth

estimation and revealed pleasant results. Domain randomization

or domain adaptation is further applied to minimize the gap.

(Tremblay et al., 2018) used domain randomization to force the

network to focus on learning semantic features other than

features, i.e. color, brightness, and texture, which are usually

determined by the dataset. Such strategies are proved to be

effective to minimize the gap between synthetic data (source

domain) and real scene data (target domain).

However, these proposed algorithms cannot solve the

aforementioned problem when the target domain does not exist,

which is caused by a lack of real scene samples. Creating

synthetic data that is similar to real scene data is needed to solve

the problem that we are facing, meanwhile, there is little research

that focuses on transferring synthetic images to the real one for

object detection tasks, especially multiple similar categories exist.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GAN) was proposed to

generate images (Goodfellow et al., 2014) and has achieved

significant results in many computer vision tasks. Commonly,

GAN consists of two neural networks, the Generator and the

Discriminator. The Generator generates a synthetic image from a

random vector. On the other hand, Discriminator classifies if the

input image is a synthetic image created by the Generator or a

real one. The training of Generator and Discriminator is carried

out simultaneously, which is called adversarial training. And

eventually, the Generator is trained to generate synthetic images

whose appearances are close to real images. The quality of

images generated by GAN has been improved notably. (Karras et

al., 2019) proposed a Generator with hierarchical architecture to

recover details such as eyes and expressions of human faces.

Besides using random vectors, GAN can also use images and

natural languages as input to generate images. (Reed et al., 2016)

used natural languages to generate a user-preferred image using

GAN. GAN also had been proved to be effective to solve tricky

Object Detection tasks, for instance small object detection. SOD-

MTGAN (Bai et al., 2018) used a multi-task Discriminator to

help Generator to generate better super-resolution images of a

human head, which achieved higher performance on human head

detection task, especially a small head. The experiments (Bai et

al., 2018) show that GAN is useful to generate images that are

able to improve the performance of Object Detection.

Additionally, GAN can also transfer the style between two sets

of images. CycleGAN with two Generators and Discriminators,

proposed by (Zhu et al., 2017), learns the style and transfers it

between two sets of images. The architecture that CycleGAN

proposed enables the model to learn consistency loss between

two Generators and results in generating more stable and better

outputs. These previous studies of GAN show that images

generated by GAN can be utilized as training samples to train an

object detector.

3. METHODOLOGY

3.1 Overview

We propose an SYN-MTGAN architecture, inspired by SOD-

MTGAN and CycleGAN, to generate synthetic data as training

data for Object Detection while real scene samples are difficult

to collect. Specifically, our method takes fake images and real

images of target objects as input data for training the SYN-

MTGAN. It learns the distributions of features, such as texture,

illumination et al. that exist in the real scenes but difficult to

reproduce by a simulator, from real images, and transfers them to

fake images. There are two key points in our proposed method.

First, the Discriminator (hereinafter, called D) of SYN-MTGAN

not only classifies the input as fake or real but also predicts the

category of the target object at the same time, which is i.e. a

multi-task neural network. Second, we propose a new loss

function in order to encourage SYN-MTGAN to only transfer the

style of foreground, other than background.

We conducted experiments using the images that SYN-MTGAN

generated to train an Object Detection model, comparing to the

model that is trained by real scene data, to verify its effectiveness.

3.2 SYN-MTGAN Architecture

The architecture of a normal GAN is shown in Figure 3 (a). In

normal GAN, fake images (hereinafter, called y') generated by

Generator (hereinafter, called G) from input x, along with real

images (hereinafter, called y), are fed into D for classification,

which predicts whether the input is the generated y' or y

(fake/real).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

444

(a) Normal GAN (b) CylceGAN and Proposed SYN-MTGAN

Figure 3. Architecture of GAN

Figure 4. Flowchart of the Cycle Consistent Training

In this study, intending to improve the quality of generated

images and stabilize the training process of GAN, we designed a

GAN architecture, inspired by CycleGAN. The architecture of

CycleGAN is shown in Figure 3 (b), which is an end-to-end

framework for image style transfer. CycleGAN contains 4

networks, two Generators, and two Discriminators. The basic

idea of CycleGAN is training the 4 networks to learn the style of

image x and transfer this learned style to image y, which as a

different style, using the cycle consistent loss. CycleGAN also

learns the style of y and transfers it to x, which is proved effective

for boosting performance. In the training process of CycleGAN,

a Generator G is trained to generate a fake image y' by learning

feature distribution (style) of real image y and transferring it to

synthetic image x, meanwhile another Generator F is trained to

generate x'' by mapping from real image feature distribution to

fake ones. As a result, x'' is remapped to its original style and

should be as similar to x as possible. This is called a forward

cycle. This process can be considered as a recovery of y. y' and y

are the input to Discriminator Dy for fake/real classification. The

reverse cycle performs oppositely. Generator F is trained to

generate another kind of fake images (hereinafter, called x')

which learn the style of synthetic image x and transfer it to real

image y, meanwhile x' is remapped as y'', similar to its original

style, by G. x' and x perform as the input to Discriminator Dx for

classifying fake/real. The cycle consistent loss calculates the

divergence between x', x and y', y, and encourages the Generators

to learn the mapping of two distributions respectively. The

flowchart of cycle consistent training is shown in Figure 4.

Besides, the purpose of G and F is to learn the distribution from

two sets of images. Note that it is possible to train the CycleGAN-

style architecture using unpaired images, which can reduce the

cost of preparing synthetic and real images.

The D of our proposed SYN-MTGAN is a multi-task architecture.

Besides fake/real classification as general GAN Discriminator

does, it also predicts the category of target objects, in both Dx

and Dy. The classification task predicts the category of a target

object, similar to normal image classification.

3.3 Network Architecture

The details of the network architecture are shown in Figure 5.

The G adopts Encoder-Decoder style, which contains two

convolutions with a stride size of 2, nine Residual Blocks (He et

al., 2016), and two transposed convolutions with a stride size of

1/2. Instance normalization (Ulyanov et al., 2016) is adopted in

both G and D as it showed better performance in an image style

transfer. The architecture of D is also based on CycleGAN. To be

specific, four convolutions with a stride size of 2 and one

convolution with stride 1 are implemented to extract feature map,

whose size is 1/16 of the original input image. This feature map

is shared with two parallel branches, discriminative recognition

and classification. The classification branches are connected to

the feature map by one convolution and two fully connected

layers.

3.4 Loss Function

We adopted five loss functions to train the SYN-MTGAN.

Adversarial loss and cycle consistency loss, the same as

CycleGAN, are adopted to optimize the G and D. We adopted

classification loss to optimize G and D. We propose a revised

version of identity loss of CycleGAN to strength G to focus on

the target area other than the background.

Figure 5. Details of Network Architecture. Conv denotes

convolution. k means kernel size. s denotes stride size. For

example, k3s2 denotes convolution with kernel size of 3 and

stride size of 2.

3.4.1 Adversarial Loss: Adversarial loss (hereinafter, called

𝐿𝐺𝐴𝑁) encourages the G to generate fake images that are as close

as possible to real ones that can fool D, and D not to be fooled by

images that G generated. The equation is shown in Equation (1),

which 𝐷𝑦(𝐺(𝑥𝑖)) denotes the probability of generated real

image 𝐺(𝑥𝑖), or y', being a real image.

𝐿𝐺𝐴𝑁 = − ∑ log (𝐷𝑦(𝑦𝑗))𝑚
i=0 − ∑ log (1 − 𝐷𝑦(𝐺(𝑥𝑖)))𝑛

𝑗=0 (1)

where 𝑥𝑖, 𝑦𝑗 = training sample

 n, m = numbers of training sample

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

445

3.4.2 Cycle Consistency Loss: The CycleGAN calculates the

difference between x and x'', y and y'' as cycle consistency loss

(hereinafter, called 𝐿cyc) to encourage G and F to learn the

perfect distribution of synthetic and real images, as Equation (2)

shows. F(G(𝑥𝑖)) denotes the images 𝑥𝑖′′, generated by F from 𝑦𝑖′,
which are generated by G. Smaller loss indicts that G and F can

recover x'' or y'' better. 𝐿cyc uses L1 loss to calculates the

difference.

𝐿cyc = ∑ ‖F(G(𝑥𝑖)) − 𝑥𝑖‖
1

𝑛
i=0 + ∑ ‖G (F(𝑦𝑗)) − 𝑦𝑗‖

1

𝑚
𝑗=0 (2)

3.4.3 Identity Loss: The objective of G and F is to learn the

distribution of target features from two sets of images. However,

the Generator of GAN tends to transfers the feature it learns and

transfers the feature to the whole image, including the

background. CycleGAN uses identity loss (hereinafter, call

𝐿𝑖𝑑𝑒𝑛), which calculates the L1 loss between the input and output

of the Generator, to encourage G and F to focus on learning the

features of target object other than background. We propose a

revised version of 𝐿𝑖𝑑𝑒𝑛, shown in Equation (3). Proposed 𝐿𝑖𝑑𝑒𝑛

only focuses on the change of background by blocking the

foreground target object using the bounding box information.

𝐿𝑖𝑑𝑒𝑛 = ∑ ‖F(𝑥𝑖
∗) − 𝑥𝑖

∗‖1
𝑛
i=0 + ∑ ‖G(𝑦𝑗

∗) − 𝑦𝑗
∗‖

1

𝑚
𝑗=0 (3)

where 𝑥𝑖
∗, 𝑦𝑖

∗ = background area of an image

3.4.4 Classification Loss: The classification branch in the

Discriminator is reported to encourage the Generator to generate

fake images that are easier to be classified by Object Detection

(Bai et al., 2018). We calculate classification loss (hereinafter,

called 𝐿𝑐𝑙𝑠) using Cross Entropy Loss for each D. The equation

of 𝐿𝑐𝑙𝑠 for Dy is shown in Equation (4), where 𝐷𝑦(𝐺(𝑥𝑖)) and

𝐷𝑦(𝑦𝑖) denote the probabilities of the generated fake image 𝑦𝑗
′

and the real image belonging to the true category respectively.

𝐿𝑐𝑙𝑠 = ∑ −𝑙𝑜𝑔 (𝐷𝑦(𝐺(𝑥𝑖)))𝑛
𝑖=0 − ∑ 𝑙𝑜𝑔 (𝐷𝑦(𝑦𝑗)) −𝑚

𝑗=0

 ∑ −𝑙𝑜𝑔 (𝐷𝑥(𝐹(𝑦𝑗)))𝑚
𝑗=0 − ∑ 𝑙𝑜𝑔(𝐷𝑥(𝑥𝑖))𝑛

𝑖=0 (4)

3.4.5 Overall Loss Function:

Equation of overall loss function is shown in Equation (5), which

calculates the weighted sum of five aforementioned loss

functions.

𝐿𝑂𝑆𝑆 = 𝐿𝐺𝐴𝑁 + λ𝐿cyc + α𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 + 𝜇(𝐿𝑐𝑙𝑠) (5)

where λ, α, 𝜇 = weights

4. EXPERIMENTS

We take a traffic sign as the target object to evaluate our proposed

method, SYN-MTGAN, in this section. More specifically, we

focus on the traffic signs collected by MMS panorama images,

which is due to two reasons. (1) A traffic sign is a common object

along the roadside. And the distribution of the number of traffic

signs, as shown in Figure 1, causes the training data collection

problem aforementioned. (2) A traffic sign is an important object

to be included in an HD map, meanwhile, its detection still

remains an open challenge.

4.1 Dataset

Table 1. The number of Samples

(a) Example of Synthetic Scene Image X

(b) Example of Real Scene Image Y

(c) Example of Template Image of Traffic Sign

(d) Example of Synthetic Image x

(e) Example of Real Image y

Figure 6. Example of Our Dataset

We prepared both synthetic and real images of a traffic sign since

there are few open data of MMS panorama images that are

collected in both urban and rural areas in Japan, which are

necessary to train SYN-MTGAN. We collected 30,688 and 570

panorama images from several urban areas, inside and near

Tokyo Prefecture, Japan, as train and test data respectively and

labeled traffic signs with bounding boxes as training data. We

targeted 12 categories of them, which concludes categories that

have sufficient or insufficient samples. Categories with

insufficient samples was included in test data only. The sample

quantity of each category of real images is listed in Table 1. The

procedure for generating a synthetic image x is as follows. (1)

Collect one template image from the internet, as shown in Figure

6 (c), for each category of traffic signs. (2) Render the template

image onto panorama images where traffic signs do not exist. The

rotation degree, size, and brightness are randomly determined

during the rendering. Result (hereinafter, called Synthetic Scene

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

446

Image X) examples of step (2) are shown in Figure 6 (a). (3) Crop

a traffic sign region to generate synthetic image x (hereinafter,

called Synthetic Image X). In addition, the location where

Synthetic Image X locates in a panorama image is randomly

determined. The category is exported as ground truth for training

SYN-MTGAN. Real image y is generated by step (3) from real

scene panorama images (hereinafter, called Real Scene Image Y).

Examples of x and y are shown in Figure 6 (d) and (e). We

generated 20,000 images of x and 23,736 images of y for training

SYN-MTGAN. The sample quantity of each category is listed in

Table 1. The distribution of size in pixel of synthetic image x and

real image y is shown in Figure 7. The size of most training data

samples is larger than 322 pixels, which indicates that the object

size, more specifically the resolution of the object, is not a major

difficulty in this study.

Figure 7. Size Distribution of Training Data. Small, middle, large

refers objects whose size are smaller than 322 pixels, between 322

and 962 pixels, and larger than 962 pixels respectively.

The evaluation of the proposed SYN-MTGAN was conducted by

comparing the performance of traffic detection using the classic

Object Detection method, Faster R-CNN. Faster R-CNN was

trained by three sets of data, Synthetic Scene Image X, Real

Scene Image Y, and the result of SYN-MTGAN. The number of

images par the category is shown in Table 1. Three categories of

a traffic sign are not included in Y due to their number is less than

100.

4.2 Implementation Details

Our implementation of proposed SYN-MTGAN is based on open

source machine learning platform PyTorch (Paszke et al., 2017).

We mostly follow the original CycleGAN’s implementation to

train SYN-MTGAN. We use an image size of 256×256 for both

x and y. We set the batch size to 24 and the epoch number to 120

for training. Weights of the loss function, which are hyper-

parameters, are set inspiring by original SOD-MTGAN and

CycleGAN experiments settings: 𝜆 = 10, 𝛼 = 0.5, 𝜇 = 0.5

Faster R-CNN is implemented on another open-source machine

learning platform, Chainer (Tokui et al., 2015). We use an image

size of 3,000×1,125 to train Faster R-CNN. The initial learning

rate is set to 0.0001 and reduced every 2 epochs. The epoch

number is 5 as we use pre-trained VGG16 (Simonyan et al.,

2015) on ImageNet (Russakovsky et al., 2015) as a backbone

network for training Faster R-CNN, which leads to quick

convergence. The rest of the parameters follow the original Faster

R-CNN’s implementation details.

4.3 Experiment Results

We carry out several experiments to evaluate our proposed

method. First, we compare the performance of Faster R-CNN on

traffic sign with four kinds of training data, SYN-MTGAN result

(fake image y'), synthetic scene image X, the result of original

CycleGAN and real scene image Y. Second, we make an ablation

study to evaluate three components of proposed SYN-MTGAN.

4.3.1 SYN-MTGAN Evaluation Results: Examples of the

result images of SYN-MTGAN are shown in Figure 8, along with

the inputs which are synthetic image x and real image y. The

examples show that SYN-MTGAN has the ability to transfer the

style of real images, i.e. texture, resulting in generating more

realistic images compared to a synthetic image x. Besides, the

results of SYN-MTGAN indict that it can reproduce a more

realistic edge than x. The edge between traffic sign and

background in x is sharper than y. The reason is that x is

generated by rendering a template image onto a real scene

panorama image, while the edge is blurred using a Gaussian filter

with fixed parameters. This blur process cannot reproduce the

real scene. Furthermore, the brightness of the traffic sign is edited

to correspond with background by SYN-MTGAN, which makes

them more natural comparing to synthetic image x, as shown in

Figure 8 (c).

(a) Example of Input (Real Image y)

(b) Example of Input (Synthetic Image x)

(c) Example of SYN-MTGAN Result

Figure 8. Result of SYN-MTGAN

(a) Synthetic Image (b) SYN-MTGAN Result (c) Real Image

Figure 9. Example of the Sign of Speed Limit of 60 km/h

The quantitative evaluation result on real images dataset of traffic

signs collected by us (clarified in Section 4.1) is shown in Table

2. Faster R-CNN trained using the samples created by our

proposed SYN-MTGAN reached mAP of 0.77, which is better

than training Faster R-CNN using the result of the original

CycleGAN and the synthetic scene image X. Even though a real

scene image Y reached higher performance, SYN-MTGAN

reached considerable accuracy on the categories that real scene

images cannot collect, i.e. crossing ahead and no riding double.

However, some categories, i.e. speed limit of 30 and 60 km/h, do

not obtain expected performance. The reason is considered as an

unstable generation for these categories, especially with numbers

on them. For instance, some generated images of speed limit of

60 km/h are difficult to recognize as Figure 9 shows. This

unstable result may also cause the generation of unnatural fake

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

447

images such as the crossing ahead in Figure 8 (c). This problem

remains as future work for us.

Table 2. Accuracy of Faster R-CNN

4.3.2 Ablation Studies: To analyze the importance of each

component of our proposed method, we conduct ablation studies

by removing one of the proposed components, which is the

classification branch and the proposed identity loss. We take

original CycleGAN as a baseline. Furthermore, we also evaluate

the localization branch proposed by SOD-MTGAN (Bai et al.,

2018) which predicts the bounding box of target objects, similar

to Faster R-CNN. Specifically, it predicts the central point’s 2D

coordination, width and height of the target object in an image.

The localization branch is proved to be effective for encouraging

the Generators to generate better super-resolution images and

boosting Object Detection performance. We place the

localization branch in the Discriminators, which is parallel to the

discriminative branch and classification branch and calculates its

loss, localization loss (hereinafter, called 𝐿loc), using Equation

(6). Specifically, we use a Smooth L1 Loss (Ren et al., 2015),

shown in Equation (7), for both Dx and Dy to calculate the loss

of predicting bounding box. The weight for 𝐿loc is set to 0.5

inspiring by original SOD-MTGAN.

𝐿loc = ∑ 𝑆𝐿1(𝐷𝑦(𝐺(𝑥𝑖)) − 𝑣𝑖)𝑛
0 + ∑ 𝑆𝐿1(𝐷𝑦(𝑦𝑗) − 𝑣𝑗) +𝑚

0

∑ 𝑆𝐿1(𝐷𝑥(𝐹(𝑦𝑗)) − 𝑣𝑗)𝑚
0 + ∑ 𝑆𝐿1(𝐷𝑥(𝑥𝑖) − 𝑣𝑖)𝑛

0 (6)

in which,

𝑆𝐿1 = {
0.5𝜃2 𝑖𝑓(|𝜃| < 1)

|𝜃| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

where θ = (𝑡𝑖,𝑥 − 𝑣𝑖,𝑥 , 𝑡𝑖,𝑦 − 𝑣𝑖,𝑦 , 𝑡𝑖,𝑤 − 𝑣𝑖,𝑤, 𝑡𝑖,ℎ − 𝑣𝑖,ℎ)

 t𝑦
𝑖 = 𝐷𝑦(𝐺(𝑥𝑖)) = (𝑡𝑖,𝑥 , 𝑡𝑖,𝑦 , 𝑡𝑖,𝑤 , 𝑡𝑖,ℎ) denotes the

predicted bounding box of Dy

 𝑣𝑖 = (𝑣𝑖,𝑥 , 𝑣𝑖,𝑦 , 𝑣𝑖,𝑤 , 𝑣𝑖,ℎ) denote the ground truth of

bounding box of sample 𝑥𝑖

 x = x coordinate of bounding box

 y = y coordinate of bounding box

 w = width of bounding box

 h = height of bounding box

The results of ablation studies are shown in Table 3. The result

of Case 4 reveals that our proposed loss function can contribute

more than 7% of the performance boost for training Faster R-

CNN compared to Case 2. This result might indicate that

restricting the change of background and emphasizing the change

of foreground during training a GAN for generating images is an

effective approach to improve the performance when these

images are used to train an Object Detection model.

Case 3 shows that the classification branch contributes a 4%

performance boost than the localization branch compared to Case

1. Architecture with the classification branch and the proposed

identity loss (Case3) reached the highest performance

(mAP=0.77) among all test cases. This result indicates that the

classification branch in Discriminator can encourage GAN to

generate images which contain more information that is helpful

to Object Detection. To be specific, such information can be well

extracted by feature extract CNN of object detector such as Faster

R-CNN and raise detection performance. On the other hand, the

localization branch could only provide a limited performance

boost for predicting the location of an object. The reason is

considered as follows. Faster R-CNN predicts the bounding box

of target objects from feature maps extracted by VGG16, whose

size is 1/16 of the original image. This down-sampling process

could cause ambiguity of bounding box prediction and degrade

information that the localization branch has encouraged to

generate.

where, loc = Localization Branch, cls = Classification Branch,

loss = Proposed Identity Loss

Table 3. Result of Ablation Studies

Furthermore, training the classification branch and the

localization branch simultaneously might aggravate the

performance of Faster R-CNN according to the result of Case 2.

The reason is considered as that, parameters of a discriminator

with three tasks to predict at the same time are hard to be

optimized simultaneously. Specific training schedule i.e.

optimizes the parameters of a certain branch while keep others

fixed, is a considerable solution to this problem. It remains as a

future work for us.

5. CONCLUSION

In this study, we proposed a multi-task GAN architecture, SYN-

MTGAN, to generate fake images from synthetic scene images,

which can be used as training data for an object detector such as

Faster R-CNN when the target objects in the real scene are hard

to be collected. We carried out experiments based on traffic signs

to evaluate our proposed method. The results showed that Faster

R-CNN trained by the result of SYN-MTGAN with the

classification branch and the proposed identity loss can reach

mAP of 0.77. Some categories of the traffic signs which cannot

be collected enough in the real scene have reached mAP of higher

than 0.8, which indicates that the proposed SYN-MTGAN is an

effective method to generate synthetic training data for rare

roadside objects. Results of ablation studies indicate that our

proposed components are effective. The multi-task training,

especially the classification branch and loss function encourages

GAN to generate synthetic images that are more suitable to be

detected by deep learning-based Object Detection model.

For future works: (1) evaluate the human performance in

distinguishing the synthetic and real images to see if the

generated images are really realistic, (2) evaluate settings of loss

function weights, which are the hyper-parameters of SYN-

MTGAN, (3) modify the architecture to be end-to-end trainable.

REFERENCES

Abu Alhaija, H., Mustikovela, S. K., Mescheder, L., Geiger, A.,

Rother, C., 2018. Augmented Reality Meets Computer Vision:

Efficient Data Generation for Urban Driving Scenes. Int J

Comput Vis, 126, 961-972. doi.org/10.1007/s11263-018-1070-x.

Bai, Y., Zhag, Y., Ding, M., Ghanem, B., 2018. SOD-MTGAN:

Small Objec Detection via Multi-Task Generative Adversarial

Network. (eds) Computer Vision – ECCV 2018. Lecture Notes in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

448

Computer Science, 11217, 210-226. doi.org/10.1007/978-3-030-

01261-8_13.

Geiger, A., Lenz, P., Urtasun, R.,2012. Are we ready for

autonomous driving? the KITTI vision benchmark suite. 2012

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 3354-3361.

doi.org/10.1109/CVPR.2012.6248074.

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich

Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation. 2014 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 580-587. doi.org/

10.1109/CVPR.2014.81.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative

Adversarial Nets. Advances in Neural Information Processing

Systems 28 (NIPS2014), 2672-2680.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning

for Image Recognition. 2016 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 770-778.

doi.org/10.1109/CVPR.2016.90.

Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K., 2017.

On pre-trained image features and synthetic images for deep

learning. In arXiv:1710.10710.

Karras, T., Laine, S., Aila, T., 2019. A Style-Based Generator

Architecture for Generative Adversarial Networks. 2019

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 4396-4405.

doi.org/10.1109/CVPR.2019.00453.

Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet

Classification with Deep Convolutional Neural Networks.

Advances in Neural Information Processing Systems 26

(NIPS2012), 1097-1105. doi.org/10.1145/3065386.

Lin, Y., Takeda, H., Suzuki, K., Takahashi, G., Nakamura, K.,

2018. A Study on Object Detection from Omnidirectional

Camera Image u sing Deep Learning. Journal of Applied Survey

Technology 29 (2018), 95-106. (published in Japanese)

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, R., Fu, C.,

Berg, C., 2016. SSD: Single Shot MultiBox Detector. (eds)

Computer Vision – ECCV 2016. Lecture Notes in Computer

Science, 9905, 21-37. doi.org/10.1007/978-3-319-46448-0_2.

Mori, Y., Kohira, K., and Masuda, H., 2018. Classification of

Pole-like Objects Using Point Clouds and Images Captured by

Mobile Mapping Systems, Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci., XLII-2, 731-738. doi.org/10.5194/isprs-

archives-XLII-2-731-2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, Adam., 2017.

Automatic differentiation in PyTorch. Advances in Neural

Information Processing Systems 31 Autodiff Workshop

(NIPSW2017).

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee,

H., 2016. Generative Adversarial Text to Image Synthesis.

Proceedings of the 33rd International Conference on

International Conference on Machine Learning (ICML2016), 48,

1060-1069. https://doi.org/10.5555/3045390.3045503.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You

Only Look Once: Unified, Real-Time Object Detection. 2016

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 779-788. doi.org/10.1109/CVPR.2016.91.

Ren, S., He, K. Girshick, R., Sun, J., 2015. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks. Advances in Neural Information Processing Systems

29 (NIPS2015), 91-99.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,

S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.,

L, F., 2015. ImageNet Large Scale Visual Recognition Challenge.

Int J Comput Vis, 115, 211–252. doi.org/10.1007/s11263-015-

0816-y.

Shrivastava, A., Gupta, A., Girshick, R., 2016. Training Region

Based Object Detectors with Online Hard Example Mining. 2016

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 761-769. doi.org/10.1109/CVPR.2016.89.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional

networks for large-scale image recognition. in International

Conference on Learning Representations 2015 (ICLR2015).

Tokui, S., Oono, K., Hido, S. and Clayton, J. 2015. Chainer: A

Next-Generation Open Source Framework for Deep Learning. In

Proceedings of Workshop on Machine Learning Systems

(LearningSys) in Conference on Neural Information Processing

Systems 29 (NIPS2015).

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani,V.,

Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.,

2018. Training deep networks with synthetic data: Bridging the

reality gap by domain randomization. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), 1082-10828.

doi.org/10.1109/CVPRW.2018.00143.

Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders.

A.W.M., 2013. Selective Search for Object Recognition. Int J

Comput Vis, 104, 154-171. doi.org/10.1007/s11263-013-0620-5.

Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance

normalization: The missing ingredient for fast stylization. In

arXiv:1607.08022.

Wolf, J., Richter, E., Discher, S., Dollner, J., 2019. Applicability

of Neural Networks for Image Classification on Object Detection

in Mobile Mapping 3D Point Clouds. Int. Arch. Photogramm.

Remote Sens. Spatial Inf. Sci., XLII-4/W15, 111-115.

doi.org/10.5194/isprs-archives-XLII-4-W15-111-2019.

Wu, B., Wan, A., Yue, X., Keutzer, K., 2017. SqueezeSeg:

Convolutional Neural Nets with Recurrent CRF for Real-Time

Road-Object Segmentation from 3D LiDAR Point Cloud. In

arXiv:1710.07368.

Zhu, J., Park, T., Isola, P., Efros, A., 2017. Unpaired Image-to-

Image Translation using Cycle-Consistent Adversarial Network.

2017 IEEE International Conference on Computer Vision

(ICCV2017), 2242-2251.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-443-2020 | © Authors 2020. CC BY 4.0 License.

449

