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ABSTRACT: 

Depth is an essential component for various scene understanding tasks and for reconstructing the 3D geometry of the scene. Estimating 

depth from stereo images requires multiple views of the same scene to be captured which is often not possible when exploring new 

environments with a UAV. To overcome this monocular depth estimation has been a topic of interest with the recent advancements in 

computer vision and deep learning techniques. This research has been widely focused on indoor scenes or outdoor scenes captured at 

ground level. Single image depth estimation from aerial images has been limited due to additional complexities arising from increased 

camera distance, wider area coverage with lots of occlusions. A new aerial image dataset is prepared specifically for this purpose 

combining Unmanned Aerial Vehicles (UAV) images covering different regions, features and point of views. The single image depth 

estimation is based on image reconstruction techniques which uses stereo images for learning to estimate depth from single images. 

Among the various available models for ground-level single image depth estimation, two models, 1) a Convolutional Neural Network 

(CNN) and 2) a Generative Adversarial model (GAN) are used to learn depth from aerial images from UAVs. These models generate 

pixel-wise disparity images which could be converted into depth information. The generated disparity maps from these models are 

evaluated for its internal quality using various error metrics. The results show higher disparity ranges with smoother images generated 

by CNN model and sharper images with lesser disparity range generated by GAN model. The produced disparity images are converted 

to depth information and compared with point clouds obtained using Pix4D. It is found that the CNN model performs better than GAN 

and produces depth similar to that of Pix4D. This comparison helps in streamlining the efforts to produce depth from a single aerial 

image.  

1. INTRODUCTION

Depth is an important component for understanding 3D 

geometrical information of objects from a 2D scene. It can be 

used for improvements in scene understanding tasks like 

semantic labelling, object recognition, topography reconstruction 

etc., (Chen et al., 2018). In Photogrammetry, depth is extracted 

using stereo images that are acquired from different camera 

positions by visualising the same portion of the scene. The 

camera calibration parameters along with the parallax  of the 

images will be used to estimate the depth from the stereo pairs 

(Kang et al., 1999). However, acquiring multiple images 

covering the same scene with sufficient base may not be possible 

for complex terrains/environments. This, along with the necessity 

to extract information from uncalibrated cameras has led to the 

increased research and development of computer vision 

techniques for depth estimation. Different techniques that 

combine computer vision and photogrammetry had been 

developed for this task. Among that, deep learning has wide 

range of applications in scene understanding, segmentation, 

classification and depth estimation tasks (Luo et al., 2018). This 

successful performance of deep learning techniques in extracting 

high level features and its applications, makes it a preferable tool 

for single image depth estimation (Amirkolaee and Arefi, 2019). 

There are multiple approaches through which single image depth 

estimation can be achieved. This includes supervised learning 

where the models are trained with ground truth depths (Eigen et 

al., 2014; Liu et al., 2016; Laina et al., 2016; Li et al., 2017; Mou 

and Zhu, 2018; Amirkolaee and Arefi, 2019). The collection of 

ground truth depths is a time consuming, expensive and difficult 
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process for complex outdoor scenes (Amiri et al., 2019). Another 

approach involves the use of semantic or other useful information 

(other than depth) to enhance the depth estimation  (Jafari et al., 

2017; Ramirez et al., 2018; Amiri et al., 2019; Chen et al., 2019). 

Although labelled semantic information is easier to obtain than 

ground truth depth, it is still an added complexity. To overcome 

the inherent difficulties in these methods, an alternative is given 

by estimating the depth without ground truth depths and semantic 

information. This involves using stereo views to learn depths by 

reconstruction of images during the training stage in a self-

supervised manner and then using the trained model to find depth 

from single images (Godard et al., 2017; Repala and Dubey, 

2018; Pilzer et al., 2018; Aleotti et al., 2018).  Though these 

methods have proven to decrease the ambiguity in depth 

estimation from a single image, they have been applied only on 

indoor or outdoor scenes taken at ground level. The single image 

depth estimation from aerial images have been very sparse due to 

its increased viewpoint complexity and lower resolution images. 

The increased usage of Unmanned Aerial Vehicle (UAVs) and 

its widespread availability has made the collection of high-

resolution aerial images affordable. This has led to the prevalent 

use of UAV platforms especially for 3D modelling or 3D digital 

elevation models (Nex and Remondino, 2014). However, as 

discussed earlier, it is not always possible to extract stereo pairs 

and hence the techniques for single image depth estimation at 

ground level should be extended to aerial images taken from 

UAVs. Also, such methods could be useful for certain monitoring 

tasks which does not require acquisition of classical 

photogrammetric image block and can use the depth estimated 

from single images with a reduced quality. Besides, there can also 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-451-2020 | © Authors 2020. CC BY 4.0 License. 451



 

be other applications like object detection and tracking where 

there is a need to know the distance of the objects in complex 

environments. 

 

The depth estimation uses cues like shading, occlusion, 

perspective, texture variations and scaling of objects to 

differentiate and understand the scene (Godard et al., 2017).  

Also, Hu et al., (2019) suggested the importance of edges for the 

deep learning models for grasping the geometry of the scene. 

There are different deep learning models available to estimate 

depth from monocular indoor images. Amongst them, the models 

that use stereo pairs to learn depth by reconstruction are 

comparable in performance with those that use pixel-wise ground 

truth depth (Godard et al., 2017). Since stereo images are much 

more accessible than ground truth depths, it is desirable to use 

models which learn using stereo pairs. Applying such models to 

aerial images is necessary to understand the required architecture 

for complex tasks. Aerial images differ from ground-level 

images, as they may lack information like shading, texture etc., 

making it more difficult for learning process than ground level 

images. It’s varied perspectives along with its increased distance 

from the camera point also makes this a challenging task to be 

addressed. This necessitates the use of deep learning models that 

can overcome these shortcomings and be able to learn to estimate 

depth from aerial images. To test that, two deep learning models 

are used. The first one is a simple Convolution Neural Network 

(CNN) architecture as proposed by Repala and Dubey, (2018) 

and the second one is a complex adversarial learning using 

Generative Adversarial Neural Networks (GAN) as proposed by 

Aleotti et al., (2018). The importance of choosing the right model 

can help in increasing the accuracy of depth estimation from 

aerial images. 

 

Section 2 of this paper explains the UAV images dataset prepared 

for the training process. The architecture of the deep learning 

models used in this study is described in section 3 and the 

evaluation of the test images along with the results and 

discussions are presented in section 4. The conclusions and the 

scope for future works are provided in section 5. 

 

 

2. DATASET 

 

The dataset consists of a collection of different sets of high-

resolution aerial images captured by UAVs over various land 

use/landcover features. The number of images from each region 

and the number of patches extracted from these images is given 

in Table 1. All the images have been selected from large image 

blocks: in particular, adjacent images along the same strip have 

been used to maximize their overlapping area. The pre-

processing involved the generation of undistorted images from 

the UAV datasets and then image rectification to produce stereo 

pairs (Monasse et al., 2010). By computing the rectification 

transformations, the images can further be transformed such that 

the corresponding points lie along the same rows.  The generated 

stereo pairs are both undistorted and rectified for computing 

precise depth information. The accuracy of depth estimation are 

limited by the quality of the stereo images produced for the 

reconstruction of disparities (Amiri et al., 2019). The errors 

generated during the rectification and stereo pair generation 

might get accumulated and carried through the model, which 

significantly could affect the quality of the generated disparity 

maps.  

 

 

Dataset 

Average 

GSD 

(cm) 

Full Images 
Image 

patches 

EPFL Quartier  

Nord, 

Switzerland 

3.5 100 1500 

Rwanda, East 

Africa 
3.01 950 17120 

Zeche zollern, 

Germany 
2.05 300 4500 

Table 1. Number of training images-stereo pairs along with 

extracted patches 

 

In total 1300 stereo pairs are generated from the available UAV 

images. The images in the dataset are taken from a mixture of 

nadir and oblique view, with predominantly nadir view images. 

The Ground sampling distance (GSD) of the stereo pairs are 

around 2-3 cm and the average forward overlap is 80%. Due to 

its high resolution, the size of the aerial images are large.  The 

images are divided into smaller patches of size as per the 

admissible input size of the CNNs to be used without reducing 

the resolution. The patches from the same position from the left 

and right images are matched to produce the patch stereo pairs. 

The total number of pairs of image patches generated are 22600. 

From this 22000 patch pairs are used for training while 600 single 

image patches are used for testing. A sample stereo pair along 

with the extracted patches is shown in Figure 1. 

 

 

Figure 1. a) Training images-Stereopairs along with extracted 

patches from left image 

 

 

3. METHODOLOGY 

 

Depth can be perceived using monocular or stereo cues. 

Monocular cues include contextual information like object 

texture variations, gradients, shading etc., (Saxena et al., 2007). 

Knowing monocular cues alone will not help in obtaining the 

depth as they deal only with local variations and hence difficult 

to estimate accurate depth. Stereo cues capture different views of 

the same object and can be used for 3D reconstruction. The 

difference between the corresponding points from the left and 

right pairs forms the disparity map of the image. The disparity is 

inversely proportional to the object distance from the viewpoint 
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and can be used to calculate the depth variations as shown in 

equation (1) (Kang et al., 1999). 

 

                     𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑋𝑙 −  𝑋𝑟 =  
𝐵𝑓

𝑑
                            (1) 

 

where Xl and Xr denote the corresponding image points, B 

represents the baseline distance between cameras, f is the camera 

constant and d is the depth or object distance from the viewpoint. 

In this study, disparity maps which contain depth information are 

generated using deep learning techniques. 

Figure 2. General workflow of the performed tests 

 

To begin with, the UAV images are pre-processed to generate 

left-right stereopairs. The single image depth estimation problem 

is treated as an image reconstruction problem, using the encoder-

decoder deep CNN model. The model takes only the left image 

from the stereo pair to produce disparity, which is warped with 

the right image through bilinear sampling to reconstruct the left 

image. The difference between the reconstructed left image and 

the input left image is calculated as a loss. The model 

backpropagates the loss and learns to produce better disparity 

from the single left image. This is the general approach of the 

deep learning models used in this study for learning disparity in 

an unsupervised manner. Two models - CNN and GAN are 

trained using the dataset to produce disparity from single image. 

The detailed methodology for each model is explained in section 

3. The internal qualities of the models are evaluated and the 

disparity images generated from the test images are inter-

compared. This helps in understanding the relative performance 

of different architectures for such ill-posed problems. The 

process is explained in the flowchart given Figure 2. 

 

3.1 Models Used 

 

In this study, the performance of CNN in estimating depth from 

a single aerial image is compared with that of GAN. As CNN has 

been successfully demonstrated for many image reconstruction 

tasks it is chosen for this study. On the other hand, many studies 

report that adversarial learning can improve the performance of 

image generation tasks and hence a GAN model is chosen.  

 

CNNs are deep networks that have been widely applied to various 

tasks like image classification, detection, semantic segmentation 

and other computer vision applications (Bhandare et al., 2016). 

The use of these networks for the depth estimation problem has 

increased due to its proven success in other domains. This deep 

learning architecture is tested using the aerial images taken by 

UAVs.  The introduction of GAN by Goodfellow et al., (2016) 

proved to be an active area of research for such complex 

problems. The GAN consists of a generator that learns to produce 

realistic images and discriminator that learns to find the 

difference with real images. Mehta et al., (2018) introduced 

structured adversarial training for predicting depth from 

synthesised stereo image pairs. Many other developments in 

adversarial learning led to different network modifications like 

MonoGAN (Aleotti et al., 2018), Cycle GAN (Pilzer et al., 2018), 

Pix2Pix (Julian et al., 2017) and other adversarial frameworks 

(Chen et al., 2018). The adversarial learning models marks the 

current state of the art in many areas where deep learning is being 

used. Almost all these models are implemented on images taken 

from a fixed viewing angle on the ground level in contrast to the 

aerial images captured by UAVs. Also, the distance from the 

point of view in aerial images is much higher as compared to the 

datasets in which these models are trained. Due to larger camera 

distance in aerial view compared to ground level images, absolute 

values of disparity are much lesser and hence finding local 

variations in depth are complicated.  The models have to be 

appropriately modified to accommodate the differences brought 

in by the aerial image dataset. Dual CNN proposed by Repala and 

Dubey, (2018) and MonoGAN proposed by Aleotti et al., (2018) 

have been used in this study for inter-comparison as their model 

produced better accuracy for benchmark KITTI dataset. 

 

3.1.1 Dual CNN: Repala and Dubey, (2018) successfully 

demonstrated the use of CNNs to estimate depth from single 

images. They utilised two CNN architectures for left and right 

stereo images. During the training phase, the left image was given 

as an input to left CNN (CNN-L) to produce left disparity and the 

right image was given as an input to right CNN (CNN-R) to 

produce right disparity as shown in Figure 3. The left and right 

images are then reconstructed using bilinear sampling with the 

opposing disparity maps.  For instance, the left disparity image, 

generated from the left CNN was warped with the right image to 

reconstruct the left image as output and similarly, the right 

disparity image, generated from right CNN was warped with the 

left image to produce a right image. The reconstructed left and 

right images were compared with the original input images to 

calculate the losses.  

Figure 3. Dual CNN with 6 losses. Adapted from “Dual CNN 

Models for Unsupervised Monocular Depth Estimation”, by 

Repala, V. K., & Dubey, S. R. (2018)., p.3. 

 

The three types of losses used for comparison were, matching 

loss, disparity smoothness loss and left-right consistency loss for 
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both CNN architecture. The matching loss estimates whether 

generated image was similar to the original image, disparity 

smoothness loss was to ensure the generated disparity maps to be 

smooth by calculating the gradients and the left-right consistency 

loss was to check whether the generated disparity maps were 

consistent for left and right images. The loss terms was calculated 

and back-propagated to improve network performance. This 

forms the main structure of the Dual CNN with 3 pairs of losses 

(3 for the left image and 3 for the right image).  

Repala and Dubey, (2018) reported an RMSE value between the 

estimated depth maps and ground truth depth maps of 6.162 

pixels before post-processing on KITTI (Geiger et al., 2012) 

driving dataset with the use of 6 losses.  

 

 

 
Figure 4. Simple CNN architecture with Image reconstruction loss 

 

Implementation – CNN 

 

Compared to Repala and Dubey, (2018), a single CNN for left 

image with a VGG based network architecture is utilised as it had 

less number of computational parameters. The VGG network 

consists of an encoder and decoder structure for generating the 

feature maps. The encoder consists of 7 convolutional layers with 

the increasing number of filters to extract the information. The 

decoder also consists of 7 convolutional layers with decreasing 

number of filters to reach the original input size. During training 

phase, the left image is sent through the encoder for extracting 

the features through downsampling and back to original input 

size through the decoder for upsampling which is then warped 

with the right image to produce a warped left image. In order to 

improve the reconstruction of the images, a simple loss to 

calculate the appearance mismatch between the generated left 

image and the raw left image is included.  The model architecture 

and the image reconstruction process is shown in Figure 4. 

Repala and Dubey, (2018), utilised three losses for the 

reconstruction of images, however the left-right consistency loss 

is not meaningful as there is only left CNN in present study. A 

single image loss is then used for this study as given in equation 

(2) which compares the generated left image with the original left 

image. This image loss is in simpler terms a combination of L1 

norm and Structural Similarity Index Metric (SSIM) for left and 

right images as shown below. 

 

 𝐼𝑚𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ 𝛼

(1−𝑆𝑆𝐼𝑀(𝐼𝑖,𝑗
𝛽

,Î𝑖,𝑗
𝛽

)

2𝑖,𝑗 + (1 − 𝛼)||𝐼𝑖,𝑗
𝛽

− Î𝑖,𝑗
𝛽

|| 

                                                                                                  (2) 

 

Where α represents the weight between L1 norm and SSIM, I 

denotes the original image and the Î represents the warped image, 

β={l,r} for left and right images and i,j represents pixel position. 

This specific architecture with a single left CNN and a single loss 

for back propagation is found to be optimal to reach convergence. 

Using a single CNN instead of two also makes it more realistic 

to compare results from this model with that of the GAN model. 

To compute the gradients Adam optimizer is used due to its faster 

convergence compared to stochastic gradient descent. From 

experimental tests, the number of epochs is fixed as 70 and the 

learning rate is fixed as 10-5 decaying to half that value at the end. 

 

3.1.2 MonoGAN: Aleotti et al., (2018) proposed an 

architecture consisting of a generator and discriminator network 

jointly trained through adversarial learning for reconstructing 

disparity map in a cycle. The generator takes as input the left 

stereopair and generates a disparity image. This generated 

disparity image was then warped with the right image through 

bilinear sampling to synthesize a left image. The discriminator 

tries to distinguish between the generated left image and the 

original left image, producing a discriminator loss. The general 

architecture of the model is shown in Figure 5. The total loss was 

the sum of the generator loss and discriminator loss denoting the 

min-max game between the two. Min-max refers to minimising 

generator loss and maximising discriminator loss simultaneously 

(Goodfellow et al., 2016).  

 

 

Figure 5. MonoGAN for stereo depth estimation. Adapted from 

“Generative Adversarial Networks for unsupervised monocular 

depth prediction”, by Aleotti et al., (2018). 

 

The generator will compete with the discriminator to reconstruct 

better disparity maps and the discriminator will try to increase the 

probability of distinguishing between the original and generated 
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images. Aleotti et al., (2018) reported the RMSE values between 

estimated depth map and ground truth data as around 5.998 pixels 

on KITTI dataset using the monoGAN.

 

Figure 6. GAN architecture with Generator and Discriminator loss 

 

Implementation – GAN 

 

VGG based network architecture similar to the one described in 

section 3.1.1.1 was used for the generator network for feature 

map generation. The task of the discriminator is to distinguish 

between the real and fake images which is much easier compared 

to the generator which has to reconstruct images. Hence the 

discriminator has a simpler architecture with less number of 

feature maps generated from each of its layers. The discriminator 

consists of a set of 5 convolutional layers which reduces the size 

of the input image by a factor of 2. Both the generator and 

discriminator are trained simultaneously. The generated left 

image and the original left image is compared by the 

discriminator. The higher probability of identifying the generated 

images from the original images by the discriminator makes the 

generator to increase its performance in generating more realistic 

images. The total loss in this structure is the sum of the generator 

and discriminator loss as shown in equation (5). The generator 

loss is the combination of images loss and the probability of 

identifying the generated image as fake by discriminator as given 

in equation (3). While the discriminator loss is the probability 

that the original image and generated image is classified 

accordingly as given in equation (4). 

 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 =  Image Loss  +  𝛼𝑖,𝑗 ∗  𝐸Î(𝑙𝑜𝑔(𝐷(Î))   

                                                                                                  (3)            

 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = −1/2[𝐸𝐼(𝑙𝑜𝑔(𝐷(𝐼)))] −

                                                                1/2[𝐸Î(𝑙𝑜𝑔 (𝐷(1 − Î))]  (4)            

 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 + 𝑊𝑑 ∗ 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠   
                                                                                                  (5) 

where the Image loss is calculated similar to that given in 

equation (2), I is the original image and the Î is the warped image. 

The Adam optimizer is used for optimisation with a decaying 

learning rate of 10-5 due to its adaptive learning rate and 

momentum. In order to converge, both generator and 

discriminator models should achieve an optimal balance. In 

initial runs, the model suffered from collapses due to faster 

convergence of generator or discriminator. To resolve this 

several trials are required to identify the right balance between 

the generator and discriminator. The weighted adversarial term 

(𝛼𝑖,𝑗) and the weightage (𝑊𝑑) between the generator and 

discriminator loss are hyperparameters which are tuned to 

achieve the best results. The discriminator loss attained saturation 

much faster than generator loss and hence the ratio at which the 

weights are updated are more frequent in generator than the 

discriminator. 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Results 

 

The pixel-wise disparity map is generated using both the models 

for test images. The disparity can be converted to depth maps 

using equation (1). The time taken for training with 22000 images 

for both models is around 20~23 hours with a single Nvidia GPU 

memory of 16GB. The model is tested with images had objects 

like rooftops, walls, vegetation and the plain ground surface. 

 

4.1.1 Internal quality assessment: To assess the 

performance of the model in reproducing what it has learnt during 

training, the models are tested as an initial assessment with 

images from training dataset. The disparity learnt by the model 

during the training stage at the last epoch is compared with the 

disparity generated during testing for the same image.  The 

disparity images for both the models generated during training 

and testing are shown in Figure 7, 8. 

 

 
Figure 7. a) Input image b)Disparity from Training c) Disparity 

from Testing – for CNN model 
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Figure 8. a) Input image b) Disparity from Training c) Disparity 

from Testing – for GAN model 

 

The evaluation of the internal accuracy is done based on 

calculating several metrics between the disparity generated 

during training T(x) after fixing the model parameters and 

disparity generated during testing D(x). This includes Absolute 

Relative difference (Abs Rel) given in equation (6), Squared 

Relative difference (Sq Rel) given in equation (7), Root Mean 

Square Error (RMSE) given in equation (8), RMSE log and d1-

all given in equation (9).  

 

Abs Rel = 
1

𝑁
∑

|𝑇(𝑥𝑖)−𝐷(𝑥𝑖)|

𝑇(𝑥𝑖)
𝑁
𝑖=1                                                  (6) 

Sq Rel = 
1

𝑁
∑

|𝑇(𝑥𝑖)−𝐷(𝑥𝑖)|2

𝑇(𝑥𝑖)
𝑁
𝑖=1                                                   (7) 

 RMSE =√
1

𝑁
∑ (𝑇(𝑥𝑖) − 𝐷(𝑥𝑖))2𝑁

𝑖=1                                        (8) 

  D1-all = 
1

𝑛
∑ 𝑏𝑎𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 100                                              (9) 

 

Method 
Abs 

Rel 
Sq Rel RMSE 

RMSE 

log 
D1-all 

CNN 5.309 0.1614 0.016 1.468 0 

GAN 1.675 0.0314 0.009 1.042 0 

Table 2. Metrics on the internal accuracy between the disparity 

image during training and testing for the two models (in pixels). 

 

Also, the mean and standard deviations of the generated disparity 

during training and the generated disparity during testing is 

calculated to show the quality of the testing compared to its 

learning. 

 

Method 

Mean 
Standard. 

Deviation 

Trained 

disparity 

Tested 

disparity 

Trained 

disparity 

Tested 

disparity 

CNN 0.0101 0.0091 0.0135 0.0112 

GAN 0.0078 0.0063 0.0105 0.0089 

Table 3. Metrics on the disparity image during training and 

testing for the two models (in pixels). 

 

It is observed from the evaluation metrics from Table 2 and Table 

3 for both the models, that the trained and tested disparity 

generation is  very similar in terms of metrics like mean, standard 

deviation etc. This shows the quality of image generation of both 

the models in the training and testing phase.  The trained models 

are tested with single images to produce disparity images and the 

results are shown in Figure 9 - 12. The disparity results from 

CNN and GAN are different in terms of range variations. This 

could be due to the difference in learning process of both the 

models. CNN focuses only on image loss to improve the disparity 

generation while for GAN the task is to produce more realistic 

images as that of the original input image. This might have 

influenced GAN in reproducing the edges, texture variations 

similar to that of original image and may have limited its 

potential in producing more disparity range variations. 

 

 
Figure 9. a) Single image b)Disparity from CNN c) Disparity 

from GAN 

Figure 10. a) Single image b)Disparity from CNN c) Disparity 

from GAN 

 

Figure 11. a) Single image b)Disparity from CNN c) Disparity 

from GAN  
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Figure 12. a) Single image b)Disparity from CNN c) Disparity 

from GAN 

 

4.1.2 External quality assessment: To assess the quality of 

the generated depth images of both models, the results from these 

models are qualitatively compared with point clouds obtained 

from a commonly used Photogrammetric tool (Pix4D). The point 

clouds obtained from Pix4D are in real world coordinate system 

(WGS 1984, UTM 32N) with mean sea level as datum. On the 

other hand, the disparity generated from both the models are 

converted to depth using the equation (1), where the values of 

baseline and focal length are determined from Pix4D. It is to be 

noted that, the depth values in point clouds from Pix4D are 

determined with respect to the mean sea level while the depth 

values from the deep learning models are relative variations of 

depth within the field of view. As an example, in Figure 13, the 

depth values ranges from 224m to 232m for a chosen scene of 

point clouds and the predicted depth values from the models 

ranges between 0.2 m to 15m. To make these results comparable, 

the depths in Pix4D are converted to relative depths by shifting 

the datum from mean sea level to the lowest point in the field of 

view ( by subtracting the ground level elevation value from all 

the points in point cloud).  

 

 

 
Figure 13. External quality assessment-Depth map 

 

Method Average Mean 
Standard. 

Deviation 

Pix4D 4 1.55 

CNN 4.58 2.30 

GAN 2.28 2.022 

 Table 4. Metrics for the depth estimated from the Pix4D and 

two models (in meters). 

The point clouds have a new range from 0 to 7.7m relatively 

where the lower value represents the bottom most part and higher 

value represents the top most part. The depth from the model 

ranges from 0.2m to 15m, however where the lower value 

represents the topmost and higher value represents the bottom 

most point in field of view. The mean and standard deviations of 

all models are shown in Table 4 that are calculated based on 

relative depth variations. It can be seen from Figure 13 that the 

range of depth value produced by the models are mostly within 

8m with some spikes of high values (represented by yellow). 

These spikes can be attributed to systematic errors (shadows). 

While comparing with Pix4D the performance of CNN is better 

than GAN which shows lots of artefacts. This behaviour of CNN 

might be attributed to its simple network architecture and loss 

parameter which makes it to learn better disparities.  

 

4.2 Discussion 

 

As can be seen from the generated disparity images, both CNN 

and GAN are capable of producing disparity maps.  This can be 

seen from the original image (Figure 9 - 12), that both models 

have reproduced well, easily identifiable features and/or features 

that are closer to camera. It can be seen from Figure 8 that, while 

CNN smoothens out  most of the sharp edges, GAN reproduces 

these edges. The range of disparity values produced by CNN is 

consistently higher than the range of values produced by GAN. 

After scaling and comparing the model results with Pix4D it is 

found that CNN produce better results whereas GAN 

underpredicts depth. It can be seen form Figure 13, that GAN 

produces lots of artefacts and blobs in the ground area. This might 

indicate the importance of image loss of CNN over discriminator 

loss of GAN in the learning process to produce disparity images.  

 

 

5. CONCLUSIONS AND FUTURE DEVELOPMENTS 

 

The present study extends the single image depth estimation 

techniques at ground level to aerial images. UAV aerial images 

from different regions consisting of various features are 

collected. The images are pre-processed to produce rectified 

stereopairs and divided into patch pairs to create an aerial image 

dataset. This dataset is used for training two deep learning models 

- CNN and GAN, to generate disparity from single images. The 

internal quality of the disparity generation is evaluated using 

error metrics and is found that both the models are of good 

internal quality. Both the models are tested with single aerial 

images and is found to produce realistic disparity images. It is 

found that CNN produces a higher range of disparity values 

compared to GAN. For external quality assessment, the results 

from both models are compared with the point clouds generated 

by Pix4D. The model generated disparities are converted to depth 

using baseline and focal length. The Pix4D point cloud depth 

values are converted to relative depths by shifting the datum. On 

comparison it is observed that CNN produces realistic depth 

values than GAN. 

 

To understand the results better, it will be compared with ground 

truth depth data to produce a comprehensive quantitative 

assessment. The models will be further improved by adding 

additional information that can help in achieving results that are 

closer to ground truth depth. Modification of the network 

architecture to include the baseline information such that depth 

can be learnt directly by the model is being taken up.    
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