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ABSTRACT:

Choreographic modeling, that is identification of key choreographic primitives, is a significant element for Intangible Cultural
Heritage (ICH) performing art modeling. Recently, deep learning architectures, such as LSTM and CNN, have been utilized for
choreographic identification and modeling. However, such approaches present sensitivity to capturing errors and fail to model the
dynamic characteristics of a dance, since they assume a stationarity between the input-output data. To address these limitations,
in this paper, we introduce an AutoRegressive Moving Average (ARMA) filter into a conventional CNN model; this means that
the classification output feeds back to the input layer, improving overall classification accuracy. In addition, an adaptive imple-
mentation algorithm is introduced, exploiting a first-order Taylor series expansion, to update network response in order to fit dance
dynamic characteristics. This way, the network parameters (e.g., weights) are dynamically modified improving overall classification
accuracy. Experimental results on real-life dance sequences indicate the out-performance of the proposed approach with respect to
conventional deep learning mechanisms.

1. INTRODUCTION

The domain of Intangible Cultural Heritage (ICH) comprises
a vast range of non-material elements, such as performing arts
(e.g., folklore dances), music and oral cultural traditions (Kurin,
2004). It is clear that ICH elements are of great importance and
therefore, these assets have been identified by UNESCO to en-
sure an efficient protection and preservation. As far as preserva-
tion of performing arts is concerned, kinesiology analysis and
choreographic modeling constitute a very important aspect of
folklore dance modelling. One of the most important elements
of choreographic analysis is the identification of the dancer’s
movements and poses (i.e., dancer’s postures). Recently mo-
tion capturing digitization systems are capable of providing 3D
measurements of the body parts of a dancer (Rallis et al., 2018).
Then, we can proceed to the identification of key primitives of
a dance.

In general, deep learning models receives as inputs either raw
visual signals of a choreographic sequence or transformed data,
that is, 3D features, and then they generate labelled classes cor-
responding to dance choreographic primitives. Recently, Long
Short Term Memory (LSTM) has proven especially useful in
choreographic modeling (Rallis et al., 2019). The LSTM net-
works usually operates on 3D skeleton data of a dancer, instead
of RGB content. This way the complexity of the input data is
reduced, increasing choreographic classification performance.
Actually, the main advantage of an LSTM network is its recur-
rent characteristics, implemented also in a bi-directional way
(e.g., non causal modelling). Non-causality is necessary since
modeling and identification of choreographic primitives de-
pends on both backward and forward dancer’s steps.

The main drawback of using 3D skeleton data sequences
through an LSTM network is that the choreographic model-
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ing performance is highly sensitive to skeleton signal errors.
Missing skeleton points, as a result of errors of the motion cap-
turing devices, significantly affect the performance of choreo-
graphic primitives classification. Another limitation is the as-
sumption of stationarity between the input-output data. This
means that the network weights of the LSTM model remains
constant during choreographic modeling. However, a dance se-
quence presents several dynamics and dancer’s attributes such
as gender, age and personalized style, significantly affect the
overall dance performance.

Instead, using RGB content as input to a deep learning network,
we face the aforementioned skeleton error issues. Convolu-
tional Neural Network (CNNs) have proven, recently, to be ro-
bust classifiers, especially of processing high-dimensional RGB
visual data (LeCun et al., 1998), (Makantasis et al., 2017a).
Therefore, CNN networks have been used for human action re-
cognition (Varol et al., 2018), (Kamel et al., 2019).

However, issues related with the dynamic nature of a choreo-
graphic can not be addressed using conventional CNN models
since model parameters (i.e., network weights) remains con-
stant during the operation of the model. Additionally, the RGB
data alone deteriorate the overall choreographic modeling per-
formance due to the existence of enormous spatial-temporal
information, confusing the classification due to the following
reasons: First, the purpose of the convolutional layer of a CNN
is to transform the raw RGB visual data into low-forms of rep-
resentations, through the ”deep convolutions”. In this case, the
convolutional layer transforms the whole input image frame,
including the irrelevant visual background content to the cho-
reographic modeling, into low dimensional forms of represent-
ation, which are then fed to a fully connected neural network.
Second, a conventional CNN structure has not the recurrent
characteristics inherently existing in a LSTM model let alone
its main bi-directional capabilities. Finally, network weights are
assumed to be constant throughout network operation, failing,
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therefore, to address the dynamic characteristics of a dance.

1.1 Related Works

Kinesiology modelling are distinguished into methods that ex-
ploit supervised learning and those algorithms of using an unsu-
pervised paradigm. In the literature, the works proposed cover
human activity indexing (Ben-Arie et al., 2002), pose identifica-
tion (Chéron et al., 2015), action prediction (Hadfield, Bowden,
2013), emotion recognition (Fan et al., 2016) and background
subtraction (Piccardi, 2004). In (Milbich et al., 2017), an unsu-
pervised approach is proposed for modelling human activities,
while in (Rallis et al., 2018), summarization of folklore dances
have been introduced using an hierarchical SMRS algorithm. In
this context, the work of (Wang et al., 2011) has introduced an
action recognition framework exploiting dense trajectories. Fi-
nally, in (Kolekar, Dash, 2016) hidden Markov models (HMM)
has proposed for human activity recognition.

Recently deep machine learning methods have been introduced
for analysis of folklore sequences. A brief review of deep
learning for computer vision applications one can be found
at (Voulodimos et al., 2018). In (Zeng et al., 2014), a CNN
neural network model have been introduced for human activity
analysis, while the work of (Khaire et al., 2018) uses RGB-
D and skeleton data for activity analysis. In (Simonyan, Zis-
serman, 2014), the authors introduce a two-stream convolu-
tional neural network structure for action recognition in videos.
In this context, the work of (Wang et al., 2017) introduces a
three-stream CNN for action recognition modelling, while the
work of (Kamel et al., 2018) proposes CNNs structures on
depth maps and postures for human action recognition. Fi-
nally, Makantasis el al. (Makantasis et al., 2016) introduces
a behavioural understanding approach for industrial environ-
ments, while in (Gan et al., 2015), the authors introduces a flex-
ible Deep CNN for detecting spatio-temporal relationships in
videos.

Another area of research related with this paper is background
modeling and consequently foreground extraction. Towards
this direction salient maps have been proposed in (Makantasis
et al., 2013) exploiting concepts of visual attention algorithms.
In this context, the work of (Babaee et al., 2018) introduces a
background modeling algorithm using CNN structures. Simil-
arly, in (Varadarajan et al., 2015), the authors introduce meth-
ods of Mixture of Gaussians to face background dynamics. In
(Bianchi et al., 2019), the authors proposed a neural network
implementation of the ARMA filter with a recursive and dis-
tributed formulation, obtaining a convolutional layer that is ef-
ficient to train, localized in the node space, and can be trans-
ferred to new graphs unseen during training. In (Defferrard et
al., 2016) the authors are interested in generalizing CNN from
low-dimensional regular grids to high-dimensional irregular do-
mains, such as social networks, brain connectomes or words’
embedding, represented by graphs.

1.2 Paper contribution

To face the aforementioned limitations, in this paper, we intro-
duce a novel CNN model with Autoregressive Moving Average
(ARMA) capabilities. In addition, we introduce adaptive cap-
abilities into the proposed non-linear ARMA model in a way
that the network weights are dynamically adapted to face the
current choreographic dynamics. We call this model adaptable
ARMA-based CNN filer due to its adaptive and Autoregressive-
Moving Average capabilities.

In particular, the proposed network filter feeds back its classific-
ation output to the input layer, implementing an autoregressive
triggering mechanism; the output variable depends on its own
previous values. In addition, we introduce a Tapped Delay Line
(TDL) input to the CNN model in order to capture the temporal
dependencies of a choreography. The TDL filter implements a
moving average (Doulamis et al., 2003).

Finally, we introduce a computationally efficient and adaptive
algorithm for dynamically modifying the network weights of
the fully connected layer of the CNN model to fit the dynamic
nature of a choreography. The proposed way of adaptation al-
lows to the new ARMA-enriched CNN to automatically adapt
its behavior to the current conditions while simultaneously re-
specting the already accumulated knowledge as much as pos-
sible. This way, the new model is able to capture the non-
stationary behaviors of a choreography.

In addition, to face the first limitation of using a conventional
CNN model for choreographic modeling, we prior to the clas-
sification stage. In this context, the irrelevant to the choreo-
graphic modeling background content is isolated, creating an
RGB mask of dancers’ postures. In this way, the hierarchies
of convolutions of the CNN transforms the RGB dancers’ pos-
tures into low forms of representations, e.g., kinesiology dan-
cers’ features, which are then used for choreographic model-
ing. Therefore, the proposed approach faces the skeleton error
sensitive issues of the current LSTM filters and simultaneously
addresses the previous discussed limitations of using conven-
tional CNN models on the raw RGB data (that is dynamic train-
ing and adaptive since the output of a dance pose estimator
should affect its own previous value). This paper is organized
as follows: Section 1.1 describes previous works. The new pro-
posed ARMA-enriched CNN model is discussed in Section 2.
In this section, the adaptive behavior of the model is also given
along with the proposed optimization process to maximize its
efficiency and the variational inference-based background sub-
traction method. Experimental results on real-life dances are
presented in Section 3. Finally, Section 4 draws the conclu-
sions.

2. AN ARMA-ENRICHED CNN FOR
CHOREOGRAPHY MODELING

Fig. 1 indicates our proposed overall architecture for choreo-
graphic modeling. As is observed, our proposed framework
encompasses the following components. The first is respons-
ible for the data acquisition (the motion capturing sensors) that
is used to obtain the RGB images of a choreographic sequence
as well as the skeleton data. The second component is related
with the background subtraction for reducing the irrelevant to
choreographic modeling content. This information is fed as in-
put to the proposed adaptive ARMA-enriched CNN model (the
third component). The adaptive ARMA-enriched CNN filter is
a conventional CNN enriched with an ARMA Filter as well as
with adaptive network weight strategies for dynamically adjust
model response to fit dance dynamics. The MA component is
responsible for delaying the input signals into several taps. In
addition, the AR filter is responsible to feed back the classifica-
tion output to the input in a way that the current choreographic
modeling is related with its own previous values. Finally, the
adaptive algorithm is responsible for dynamically modifying
the weights of the fully connected layer of the CNN to face
the dynamic nature of a choreography.
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Figure 1. The overall proposed architecture adopted in this paper for choreographic modeling.

Figure 2. The architecture of the Kinect-II motion capturing
interface used for digitising dance choreographic performances

2.1 The Kinect-based Acquisition Component

The acquisition module adopted for modeling the dancer’s mo-
tion trajectories in 3D space exploits the Kinect-II motion cap-
turing System. It should be mentioned that the Kinect motion
capturing system also extracts the respective RGB visual data.
Fig. 2 shows a snapshot of the proposed Kinect-II architecture
used for motion capturing of the dance sequences.

The recorded data from the Kinect system is to extract a) the
RGB visual content of the choreography and b) the respective
3D skeleton joints. In this paper, we use only the RGB informa-
tion as sensorial input to identify the choreographic primitives,
since skeleton sensorial data are sensitive to errors, especially
in case of using low-cost motion capturing systems such as the
Kinect.

2.2 The Autoregressive Moving Average Convolutional
Neural Network

In the following we assume a non-linear relationship, denoted
as g(·). This relationship relates the output of the neural net-
work model y(n) with input sensorial signals x(n) at a time
instance n. Actually, the purpose of g(·)) is to transform the
raw RGB input signals x(n) into labeled choreographic primit-
ives classes. Therefore, we have that

y(n) = g(x(n), x(n− 1), · · · , x(n− q),
y(n− 1), · · · , y(n− p)) + e(n)

(1)

where q expresses a time window of previous observations af-
fecting the choreographic classification of the current image
frame n, while p the order of the previous classification out-
puts affecting the choreographic modeling. Error e(n) is an
independent and identically distributed (i.i.d) process.

In order to approximate the non-linear function of g(·), we use
machine learning methods. The machine learning algorithms
minimizes the error e(n) through training. In particular, it has
been proven that a Tapped Delay Line (TDL) input filter can

approximate the non-linear function of (1) with any degree of
accuracy (Doulamis et al., 2003).

The main limitation of using a simple fully connected neural
network (e.g., a feedforward one) is the training procedure
are unstable especially in cases where large amount of multi-
dimensional data are used as input signals, such as series of
RGB image content. To face these difficulties, CNN models
have been proposed as an alternative classification mechanism
for processing RGB input signals compared to conventional
feedforward structures (LeCun et al., 1998). A CNN model
includes a pre-training layer, the convolutional layer, with the
purpose of transforming the high-dimensional RGB data into
low forms of representations. This means that the convolutional
layer extracts from the raw visual inputs appropriate features
for maximizing the overall classification performance. A CNN
model have been shown very promising results in effective fea-
ture selection in a high dimensional space for choreographic
modeling (Bakalos et al., 2019).

However, conventional CNN structures have not designed to
approximate a non-linear ARMA filter as the one of Eq. (1).
For this reason, in this paper, we extent the conventional CNN
models to have ARMA characteristics

2.2.1 The Moving Average behavior: A folklore video se-
quence depends on several previous frames. Therefore, choreo-
graphic modeling is not relationship of only a single folklore
input frame. Instead, several dance sequence frames contrib-
ute to the video modeling. For this reason, a moving average
operator is adopted to model this temporal relationship.

To model a MA property into a CNN filter, we include a Tapped
Delay Line (TDL) layer to the network. This is illustrated in
Fig. 3. The TDL layer is responsible for delaying the input sig-
nal for q discrete time instances. Therefore, it is responsible for
implementing the x(n), x(n− 1), · · · , x(n− q) relationship of
(1). MA behavior means that identification of a choreographic
primitive at a time instance n should not limited to a single im-
age frame, but rather to a set of q frames. That is, vector y(n)
depends on q previous samples x(n− j), j = 0, · · · , q − 1.

2.2.2 The AutoRegressive behavior: On the other hand,
the output of the pose estimator should not only depend on ex-
ternal, even cumulative, input but also on its classification out-
put history, so as to eliminate abrupt spikes in the recognition
output. Therefore, including an additional time window of pre-
vious classification outputs in the input of the model can effect
the consideration of previous identification behavior and ensure
smoother output. This is also illustrated in Fig. 3, where the
classification output feeds back to the input layer. Actually, the
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AR behavior implements the second part of (1), that is the non
linear function of y(n) is related with its own previous values
y(n− 1), · · · , y(n− p).

2.2.3 The Convolutional Layer: The purpose of this layer
is extract descriptors from the sensorial input signals with a lat-
ent way. In the following, the outputs of the convolutional layer
of the CNN is denoted as f1, f2, · · · , fL. These outputs are fed
as inputs to the classification layer which is resposible for cho-
reographic modeling. The structure of the convolutions layer
adopted in this paper are the following: It consists of convolu-
tions and RELU, max pooling filters. The first layer of convo-
lutions consists of 32 filters of a size of 5x5x3. ON the other
hand, the second layer composes of 64 convolutional filters of a
size of 5x5x32. The classification layer uses the descriptors of
the convolutional layer, that is the f1, f2, . . . , fL, to provide the
final choreographic modeling. Fig.3 depicts the structure of the
proposed deep learning model for choreographic modeling.

Therefore, our proposed ARMA-enriched CNN architecture
supports both input- and output memory to the model, thus ap-
proximating a Non-linear NARMA filter, functioned with the
power of a CNN. We call this model Autoregressive Mov-
ing Average Convolutional Neural Network, named in short
ARMA-CNN model. Fig. 3 presents the proposed ARMA-
CNN) architecture adopted for choreographic modeling.

2.3 The Adaptive Behavior of the ARMA-Enriched CNN

The main limitation of the aforementioned architecture is that it
is assume a stationary input-output relationship. However, this
is not valid in a choreographic modeling since many dynam-
ics are involved. Therefore, adaptable strategies are required to
update the model response in a highly dynamic way.

Let us now denote as wb the parameters of the fully connected
neural layer, that is the network weights, before the network
adaptation. Let us also assume that wa is the network weights
are the adaptation. We assume that these weights are related as
follows

wa = wb + dw (2)

In Eq.(2) dw refers to a small perturbation of the network
weights. Eq. (2) means that we only need to compute the small
perturbation of the network weights dw in order to estimate the
new network weights (that is after the adaptation) from the pre-
vious ones, wb. Usually, a choreography consists of a constant
main choreographic pattern. For example, the main choreo-
graphic pattern of two different choreographies are depicted in
Fig. 4. A frequency domain approach is adopted for estimat-
ing the main choreographic pattern as in (Baihua Li, Holstein,
2002). Let us denote that using the method of (Baihua Li, Hol-
stein, 2002), the main choreographic pattern have been estim-
ated as

γ = {c1(ns), · · · , cL(ne)} (3)

In Eq. 3 ci(t) expresses the choreographic primitive that the im-
age frame at time instance t belongs to. This means that ns and
ne refers to the start and end time instance of the main choreo-
graphic pattern. In case that a misclassification occurs within
the a choreographic pattern group, network weight adaptation
is needed. Therefore, the new network weights are estimated
in a way that the network response, after the weight adaption,
approximates the main choreographic pattern group sequence.

ywa(n) ≈ ci(n) ∀ci(n) ∈ γ (4)

In Eq. (4), ywa(n) denotes the response of the network at the
time instance n of using the new adapted weights wa. Eq. (4)
means that the network response should respect the main cho-
reographic pattern sequence.

Using the assumption of Eq. (2), one can apply first-order
Taylor series expansion for estimating the small weight perturb-
ation dw. In this way, a system of linear equations are derived
as follows

ei(n) = Ai · dw (5)

In Eq. (5) matrix Ai expresses a matrix that it is derived from
the previous network weights, that is wb, while ei(n) is a scalar
expresses the difference of the network response before and
after the adaptation. Therefore,

ei(n) = ywa(n)− ywb(n) (6)

Solving Eq. (5) one can estimate the the small weight perturb-
ation dw and thus the new weights wa. The new ways are es-
timated in a way that the previous behavior of the network is
optimized (see Eq. (4)).

2.4 The Optimization Procedure

The main problem of solving Eq.(5) is that we have only one
equation whereas the number of weights are many. This means
that dw is a multi-dimensional vector of size equal to the num-
ber of network weights of the fully connected layer of the net-
work (see Fig.3). Therefore, there is no a unique solution of
solving Eq. (5).

To address this limitation, an additional constraint is introduced
in this paper. Particularly, we select among all possible solu-
tions that satisfy Eq. (5), the one that yields a minimum modi-
fication of the small perturbations dw. This means that we have
the following constraint optimisation framework

min ‖dw‖
subject to

ci(n+ 1) = Ai · dw
(7)

Solving Eq. (7), we can estimate the small perturbation of dw.
An alternative framework is not to modify the weights in a way
to have the minimum possible norm of dw subject to constraint
of (5). Instead, the previous network knowledge should be mod-
ified as discusses in (Doulamis et al., 2003).

2.5 Variational Inference of Gaussian Modeling for Back-
ground Subtraction

As far as background modeling is concerned, a a variational in-
ference approach of Gaussian Mixtures is adopted (Makantasis
et al., 2017b). The advantages of this algorithm compared to the
usage of traditional mixture of Gaussians schemes is that it sub-
stitute scalar parameters with probability distributions. There-
fore, more accurate background modeling is performed. In ad-
dition, this approach is less computationally complex compared
to traditional mixture of Gaussians schemes which is an import-
ant aspect for folklore analysis. Initially, every pixel is divided
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Figure 3. The architecture of the proposed Autoregressive Moving Average Convolutional Neural Network (ARMA-CNN) used for
choreographic modeling in this paper

by its intensity in RGB colour space. Each pixel is computed
expressing its probability whether it is included in the Fore-
ground or Background with the following equation:

P (Xt) =
K∑
i=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (8)

Actually, in a variational inference approach, variable ωi,t is a
probability density function, say P (Xt|ω), instead of a scalar
value as in a conventional Gaussian Mixture Model. However,
in Eq. (8), we have denoted as scalar for simplicity purposes
(More information can be found at (Makantasis et al., 2017b)).
In addition, in Eq. (8), Xt expresses the current pixel in frame
t and K the number of the distributions of the mixture. The
weight of the i-th distribution in frame t is expressed as ωi,t.
Additionally, the mean of the i-th distribution in frame t is ex-
pressed as µi,t and the standard deviation of the i-th distribution
in frame t is expressed as Σi,t. Moreover, the η(Xt, µi,t,Σi,t)
declares the probability density function and is defined as fol-
lowing as a Gaussian distribution.

The difference between a Gaussian mixture and a variational
inference is that the weights ωi,t of Eq. (8) are probability
distributions instead of scalar. Therefore, better function ap-
proximations are achieved, improving background/foreground
separation performance as it is discussed in (Makantasis et al.,
2017b).

3. EXPERIMENTAL EVALUATION

3.1 Description of the dataset used

For evaluating and comparing the proposed algorithm against
SOA methods folklore video sequences are used as presented
in Table 1. A Kinect-II is exploited for the capturing process.
it should be mentioned that in the presented approach the skel-
eton data of the Kinect-II sensor have been disregarded. The
motion capturing procedure carried out at the School of Phys-
ical Education and Sport Science of the Aristotle University of

Type
of
Dance

Description Main Choreographic Steps

Sirtos
(3-
Beat)

A Greek folk-
lore dance in
a slow three-
beat rhythm
performed by
both women
and men.

1) Initial Posture (IP); 2)
Cross Leg (CL); 3) Initial
Posture (IP); 4) Left Leg
Up (LLU); 5) Initial Pos-
ture (IP); 6) Right Leg Up
(RLU)

Sirtos
(5-
Beat)

A Greek folk-
loric circular
dance per-
formed by both
women and
men, with a 7/8
musical beat.

1) Initial Posture (IP); 2)
Left Leg Back (LLB); 3)
Cross Legs (CL); 4) Cross
Legs (CL); 5) Cross Legs
(CL); 6) Initial Posture (IP);
7) Right Leg Back (RLB);

Kalama-
tianos

A very popular
Greek folk-
dance through
Peloponnese
and the Greek
Islands. The
tempo is at 7/8
beat.

1) Initial Posture (IP); 2)
Cross Legs (CL); 3) Cross
Legs (CL); 4) Cross Legs
(CL); 5) Cross Legs (CL);
6) Initial Posture (IP); 7)
Cross Legs Backwards
(CLB)

Trehatos A circle dance,
performed by
both women
and men.

1) Initial Posture (IP); 2)
Cross Legs (CL); 3) Cross
Legs (CL); 4) Cross Legs
(CL); 5) Initial Posture (IP);
6) Left Leg Up (LLU);
7) Right Leg Up (RLU);
8) Left Leg Up (LLU);
9) Cross Legs Backwards
(CLB)

Enteka A folkloric
dance per-
formed by
women and
men by at a
line.

1)Initial Posture (IP); 2)
Right Leg Up (RLU);
3) Dancer’s Right Turn
(DRT); 4) Initial Posture
(IP) 5) Dancer’s Left Turn
(DLT)

Table 1. A brief description of the dances recorded.

Thessaloniki. All video sequences are Greek traditional folk-
loric dances, the selection of which was made by dance experts
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Figure 4. Choreographic primitives of two dance sequences.

Figure 5. Performance Evaluation of different machine learning
network set-ups for choreographic primitive classification

from the Aristotle University of Thessaloniki to achieve vari-
ability in terms of styling, rhythm and gender. The selection
of different human sexes is due to the fact that men and wo-
men follow different style in their dance performance. Table 1
describe the folklore dance sequences used in this experiment.
For every dance video sequence a small description is provided
for clarification purposes. The adopted frame rate is of about
30 fps. This results in an estimate of a time window of about 15
to 30 frames, meaning of about 0.5 to 1 sec delay. In this table,
we depict the main choreographic primitives of each dance. It
should be mentioned that these primitives does not refer to the
steps of the choreography as being taught to a dancer trainer but
to the main ”activities” of the dance in the digitized manner.
Fig. 4 visually depicts the main choreographic primitives of
two dance sequences. As is observed, the choreographic prim-
itives same similarities with each other, imposing difficulties in
the recognition process.

3.2 Choreographic Identification Performance

The proposed approach was compared with traditional adop-
ted classifiers such as k-Nearest-Neighbor (kNN), kernel-based
SVM structures, Feedforward Neural Network (FNN1) with 1
hidden layer of 10 neurons, and another FNN2 with 2 hidden
layers of 10 neurons/layer. Finally, the CNN classifier was
tested with a normal input layer as well as an input layer with
autoregressive moving average behavior as proposed in this pa-
per. For comparison, we include metrics from information re-
trieval such as precision and recall, accuracy and F1-score. Dur-
ing the experiments the dataset was split into a training set and
a test set following an 90 to 10 ratio. Fig. 5 presents the afore-
mentioned metrics for different machine learning configuration
networks. As is observed, the proposed method, that is of us-
ing Autoregressive and Moving Average (ARMA), through an
adaptive implementation, outperforms the compared machine

Figure 6. Simulation results regarding background/foreground
estimation.

Algorithms Method Metrics
Accuracy Precision Recall F1-score

SVM No BS
Bs

46,10%
63,51%

37,85%
57,05%

45,14%
58,94%

41,17%
57.98%

kNN No BS
BS

29,38%
31,76%

23,46%
25,07%

32,23%
33,38%

27,15%
28,63%

Neural 1 No BS
BS

51,13%
54,83%

43,44%
47,07%

55,81%
61,94%

48,85%
53,48%

Neural 2 No BS
BS

54,28%
57,27%

46,50%
49,43%

59,60%
60,88%

52,24%
54,56%

CNN No BS
BS

69,99%
74,47%

65,15%
72,65%

65,05%
65,96%

65,10%
69,14%

ARMA-
CNN

No BS
BS

71,44%
76,82%

66,06%
73,26%

67,31%
70,39%

66,68%
71,80%

Table 2. Performance evaluation of the proposed model for pose
identification compared with other learning methods.In this

table, we have provided the effect of background subtraction as a
pre-processing method

Figure 7. The effect of memory, that is the length of the tapped
delay filter, on the choreographic modeling performance

learning network structures in terms of choreographic model-
ing. The effect of background modeling and therefore fore-
ground separation is depicted in Table 2. It is clear that back-
ground modeling improves the overall classification perform-
ance. This is mainly due to the fact that irrelevant visual in-
formation (that is the background content) is isolated from the
classification process. It should be mentioned that in Fig. 5 the
results are obtained using the background separation algorithm.

The effect of the background modeling and therefore, the fore-
ground estimation is depicted in Fig.6. Background removal is
very important for choreographic modeling, since irrelevant to
the choreography content is discarded. Fig. 7 indicates the ef-
fect of the size of a window (e.g., memory of window) as far
as classification performance is concerned. As it is observed
the implementation of the Memory Window in the classifica-
tion procedure increases the total accuracy in each algorithm
(SVM, kNN, FNN1, FNN2, CNN).
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4. CONCLUSIONS

This paper presents an adaptable autogressive and moving av-
erage layer (R-ARMA) into a conventional CNN filter to model
the dynamic behavior of a choreography. The proposed archi-
tecture improves the performance of LSTM networks which is
currently used for a choreography modeling, receiving as input
3D skeleton points of the dancers. The main issues of using 3D
skeleton features is that the classification performance is quite
sensitive to errors of the skeleton. For this reason, an alternat-
ive approach is adopted in this paper based on the capabilities
of CNN models.

In particular, we use RGB input data towards choreographic
modeling. RGB inputs are less sensitive to skeleton errors.
However, the main drawback of this approach is that a) they can
not have the recurrent characteristics of the LSTM structures,
failing, therefore to handle the dynamics inherently present-
ing in a choreography, b) the background visual content con-
fuses the classification accuracy since it is irrelevant to the cho-
reography and c) they assume stationarity between the input-
output data which is contradictory with the dynamic nature of a
choreography. To address the aforementioned issues, we intro-
duce, in this paper, a novel AutoRegressive, Moving Average
(ARMA) filter to a CNN model in order to stimulate recurrent
network characteristics. In addition, to face the choreography
dynamics, we introduce an adaptation mechanisms in a way
that the network weights of the fully connected hidden layer
is dynamically updated to fit current environmental character-
istics. Experimental results on real-life sequences illustrate the
efficiency of the proposed model against conventional deep ma-
chine learning filters.

As future work, such a framework can be used in the context
of educational or entertainment applications for Intangible Cul-
tural Heritage.
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Chéron, G., Laptev, I., Schmid, C., 2015. P-cnn: Pose-based
cnn features for action recognition. Proceedings of the IEEE
international conference on computer vision, 3218–3226.

Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convo-
lutional neural networks on graphs with fast localized spectral
filtering. Advances in neural information processing systems,
3844–3852.

Doulamis, A. D., Doulamis, N. D., Kollias, S. D., 2003. An
adaptable neural-network model for recursive nonlinear traffic
prediction and modeling of MPEG video sources. IEEE Trans-
actions on Neural Networks, 14(1), 150–166.

Fan, Y., Lu, X., Li, D., Liu, Y., 2016. Video-based emotion re-
cognition using cnn-rnn and c3d hybrid networks. Proceedings
of the 18th ACM International Conference on Multimodal In-
teraction, ACM, 445–450.

Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., Hauptmann, A. G.,
2015. Devnet: A deep event network for multimedia event de-
tection and evidence recounting. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2568–
2577.

Hadfield, S., Bowden, R., 2013. Hollywood 3d: Recognizing
actions in 3d natural scenes. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 3398–3405.

Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D. D.,
2018. Deep convolutional neural networks for human action re-
cognition using depth maps and postures. IEEE Transactions
on Systems, Man, and Cybernetics: Systems.

Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D. D.,
2019. Deep Convolutional Neural Networks for Human Action
Recognition Using Depth Maps and Postures. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 49(9), 1806-
1819.

Khaire, P., Kumar, P., Imran, J., 2018. Combining CNN streams
of RGB-D and skeletal data for human activity recognition. Pat-
tern Recognition Letters, 115, 107–116.

Kolekar, M. H., Dash, D. P., 2016. Hidden markov model based
human activity recognition using shape and optical flow based
features. 2016 IEEE Region 10 Conference (TENCON), IEEE,
393–397.

Kurin, R., 2004. Safeguarding Intangible Cultural Heritage in
the 2003 UNESCO Convention: a critical appraisal. Museum
international, 56(1-2), 66–77.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. et al., 1998.
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11), 2278–2324.

Makantasis, K., Doulamis, A., Doulamis, N., 2013. Vision-
based maritime surveillance system using fused visual atten-
tion maps and online adaptable tracker. 2013 14th international
workshop on image analysis for multimedia interactive services
(WIAMIS), IEEE, 1–4.

Makantasis, K., Doulamis, A., Doulamis, N., Nikitakis, A.,
2017a. Tensor-Based Classifiers for Hyperspectral Data Ana-
lysis. arXiv preprint arXiv:1709.08164.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-467-2020 | © Authors 2020. CC BY 4.0 License.

 
473



Makantasis, K., Doulamis, A., Doulamis, N., Psychas, K.,
2016. Deep learning based human behavior recognition in in-
dustrial workflows. 2016 IEEE ICIP, IEEE, 1609–1613.

Makantasis, K., Nikitakis, A., Doulamis, A. D., Doulamis,
N. D., Papaefstathiou, I., 2017b. Data-driven background sub-
traction algorithm for in-camera acceleration in thermal im-
agery. IEEE Transactions on Circuits and Systems for Video
Technology, 28(9), 2090–2104.

Milbich, T., Bautista, M., Sutter, E., Ommer, B., 2017. Unsu-
pervised video understanding by reconciliation of posture sim-
ilarities. Proceedings of the IEEE International Conference on
Computer Vision, 4394–4404.

Piccardi, M., 2004. Background subtraction techniques: a re-
view. 2004 IEEE International Conference on Systems, Man
and Cybernetics (IEEE Cat. No. 04CH37583), 4, IEEE, 3099–
3104.

Rallis, I., Bakalos, N., Doulamis, N., Voulodimos, A., Doula-
mis, A., Protopapadakis, E., 2019. Learning choreographic
primitives through a bayesian optimized bi-directional lstm
model. 2019 IEEE International Conference on Image Pro-
cessing (ICIP), IEEE, 1940–1944.

Rallis, I., Doulamis, N., Doulamis, A., Voulodimos, A.,
Vescoukis, V., 2018. Spatio-temporal summarization of dance
choreographies. Computers & Graphics, 73, 88–101.

Simonyan, K., Zisserman, A., 2014. Two-stream convolutional
networks for action recognition in videos. Advances in neural
information processing systems, 568–576.

Varadarajan, S., Miller, P., Zhou, H., 2015. Region-based mix-
ture of gaussians modelling for foreground detection in dy-
namic scenes. Pattern Recognition, 48(11), 3488–3503.

Varol, G., Laptev, I., Schmid, C., 2018. Long-Term Temporal
Convolutions for Action Recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(6), 1510-1517.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis,
E., 2018. Deep learning for computer vision: A brief review.
Computational intelligence and neuroscience, 2018.
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