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ABSTRACT:

The performance of semantic segmentation in high-resolution aerial imagery has been improved rapidly through the introduction of
deep fully convolutional neural network (FCN). However, due to the complexity of object shapes and sizes, the labeling accuracy
of small-sized objects and object boundaries still need to be improved. In this paper, we propose a neighboring pixel affinity
loss (NPALoss) to improve the segmentation performance of these hard pixels. Specifically, we address the issues of how to
determine the classifying difficulty of one pixel and how to get the suitable weight margin between well-classified pixels and hard
pixels. Firstly, we convert the first problem into a problem that the pixel categories in the neighborhood are the same or different.
Based on this idea, we build a neighboring pixel affinity map by counting the pixel-pair relationships for each pixel in the search
region. Secondly, we investigate different weight transformation strategies for the affinity map to explore the suitable weight margin
and avoid gradient overflow. The logarithm compression strategy is better than the normalization strategy, especially the common
logarithm. Finally, combining the affinity map and logarithm compression strategy, we build NPALoss to adaptively assign different
weights for each pixel. Comparative experiments are conducted on the ISPRS Vaihingen dataset and several commonly-used state-
of-the-art networks. We demonstrate that our proposed approach can achieve promising results.

1. INTRODUCTION

Semantic segmentation aims to assign each pixel to a semantic
class label, which plays an essential role in many applications
in the field of remote sensing, e.g., environmental modeling,
land planning, and disaster assessment. Recently, with the in-
troduction of deep fully convolution neurons network (FCN)
(Shelhamer et al., 2017), the performance of semantic segment-
ation has been improved rapidly, and many state-of-the-art FCN
based methods (Zhao et al., 2017; Chen et al., 2017b; Fu et al.,
2019; Huang et al., 2019) have achieved significant segment-
ation quality on several benchmark datasets. However, there
is still a challenge on how to improve the prediction quality
of small-sized objects and object boundaries in high-resolution
aerial imagery.

As shown in Figure 1, an example is taken from the ISPRS
Vaihingen dataset (Cramer, 2010; Rottensteiner et al., 2012).
There is a vast difference in size between objects, not only
between different categories, such as the Car class and Tree
class, but also between the same category, such as the Building
class. Besides, the shapes of objects are extremely irregular,
especially the Impervious Surfaces and Low vegetation class,
which lead to complex boundaries. However, since the stand-
ard cross-entropy loss function fairly calculates the cost value
of each pixel, the gradients of these small-sized objects and ob-
ject boundaries are overwhelmed by a large number of well-
classified pixels, which make the networks tend to be biased
towards the well-classified pixels and produce poor results for
such hard pixels during inference.

One way to mitigate this issue is under-sampling well-classified
pixels or over-sampling small-sized objects and object bound-
∗ Corresponding author

(a) True orthophoto (b) Ground truth

Figure 1. An example patch is taken from the ISPRS Vaihingen
dataset. There are great differences in the size and shape of

objects. The classes of interest are given by Impervious Surfaces
(white), Building (blue), Low Vegetation (cyan), Tree (green)

and Car (yellow).

aries. Such methods (Jeatrakul et al., 2010) may lead to sub-
optimal exploitation of available data and increase the risk of
over-fitting. Another widely used approach is introducing spe-
cific weights. For example, the class weighted methods, which
assign different weights for each class via an inverse frequency
re-weighting (Audebert et al., 2018; Mostajabi et al., 2015) or
median frequency balancing (Eigen, Fergus; Badrinarayanan et
al., 2017). However, these methods mainly improve the per-
formance of the minority class. Recently, some researches util-
ize the focal loss (Lin et al., 2017) to reduce the weight of
well-classified pixels to improve the performance of the above-
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mentioned hard pixels, but the effect is unstable and easily leads
to over-fitting when applied to the multi-class semantic seg-
mentation tasks. In addition, dice loss (Milletari et al., 2016)
proposes a solution to the imbalances based on the dice coef-
ficient. However, this loss function is generally used in binary
classification tasks. We find that there is no suitable method to
improve the performance of small objects and object boundar-
ies in high-resolution aerial imagery.

In this paper, we propose a neighboring pixel affinity loss (NPA-
Loss) to improve the performance of the small-sized objects and
object boundaries. To achieve this purpose, we need a way to
measure the classifying difficulty of each pixel. The values of
well-classified pixels should be small and the values of small-
sized objects and object boundaries should be large. Therefore,
we convert the problem of how to determine the classifying dif-
ficulty of one pixel into a problem that the pixel categories in the
neighborhood are the same or different. Based on this idea, we
build a neighboring pixel affinity map by counting the pixel-pair
relationships for each pixel in the search region. Then, we in-
vestigate different weight transformation strategies for the affin-
ity map and find that too large or too small weight margin will
affect the performance of our proposed NPALoss. Combining
the affinity map and weight transformation strategy, our NPA-
Loss helps the network pay more attention to the pixels cor-
responding to small-sized objects and object boundaries. Note
that our NPALoss is only calculated based on the ground truth
map, which can be combined with any existing architectures
without adding any computational complexity. Results on the
ISPRS Vaihingen dataset (Cramer, 2010; Rottensteiner et al.,
2012) and various popular segmentation networks prove the ef-
fectiveness and robustness of our method.

After briefly summarizing related work in Section 2, we ex-
plain the proposed methodology in Section 3. Subsequently, we
demonstrate the performance of our methodology by presenting
and discussing results achieved for a standard benchmark data-
set in Sections 4 and 5. Finally, we provide concluding remarks
and suggestions for future work in Section 6.

2. RELATED WORK

Since the great success of the deep fully convolutional neural
network (FCN) (Shelhamer et al., 2017) in semantic segmenta-
tion, various methods have been proposed to improve the seg-
mentation performance. Some researches introduce the wider
and deeper backbone networks, e.g., ResNet (He et al., 2016)
and DenseNet (Huang et al., 2017), to extract richer feature
map. SegNet (Badrinarayanan et al., 2017) utilizes a well-designed
encode-decoder network to reduce errors caused by upsampling.
Besides, dilated convolution (Yu, Koltun; Chen et al., 2017a)
has been introduced to segmentation networks to reduce the
output stride while preserving the resolution of the feature map.
PSPNet (Zhao et al., 2017) proposes a pyramid pooling mod-
ule (PPM) and DeepLab (Chen et al., 2017a,b) proposes at-
rous spatial pyramid pooling (ASPP) layer to exploit multi-
scale context information. Recently, DANet (Fu et al., 2019)
and CCNet (Huang et al., 2019) introduce the non-local (Wang
et al., 2018) operation to learn long-range dependencies, which
achieve state-of-the-art segmentation performance on several
benchmark datasets.

However, these works cannot handle the problem of imbalanced
distributions, especially for small-sized objects and object bound-
aries in the high-resolution aerial imagery. A relatively simple

solution for many semantic segmentation networks is to intro-
duce weighted loss functions. The purpose is to assign weak
classes a higher cost value than the strong classes (usually, the
criteria of weak and strong classes are determined based on the
number of pixels in each category). For example, based on the
original data statistics, the weights can be obtained by an in-
verse frequency re-weighting scheme (Audebert et al., 2018;
Mostajabi et al., 2015) or median frequency balancing (Eigen,
Fergus; Badrinarayanan et al., 2017). Although these methods
improve the performance of the minority class, the prediction
results of majority classes may be degraded. Besides, some
works introduce the hard negative mining strategy (Shrivastava
et al., 2016) to sample hard examples during the training pro-
cess. In (Wu et al., 2016), the number of pixels to be updated
during backpropagation is limited. The pixel losses are sorted
and only the k highest loss positions are updated. However,
this method increases the training epochs and it is difficult to
find a suitable hyper-parameter k. Another recent work pro-
poses a focal loss (Lin et al., 2017) to assign the weight for
each pixel based on the prediction probability. This loss func-
tion helps detection networks efficiently train on all examples
without sampling. There are also some methods (Feng et al.,
2019; Wang et al., 2019) to solve the imbalance distributions in
object detection in remote sensing. However, for semantic seg-
mentation in the field of remote sensing, we find that there is no
suitable method to solve the problem of imbalanced distribu-
tion, especially how to improve the performance of small-sized
objects and object boundaries.

3. METHODOLOGY

In this section, we describe our proposed NPALoss for semantic
segmentation in high-resolution aerial imagery. Thereby, we
first describe an overview of the segmentation network and how
to combine our NPALoss with the networks. (Section 3.1). Sub-
sequently, we provide a detailed explanation of our proposed
neighboring pixel affinity map, which is the basis of our NPA-
Loss (Section 3.2). Finally, Section 3.3 introduces the weight
transformation strategies in detail.

3.1 Overview

The overall architecture of our proposed method is illustrated
in Figure 2. We adopt the fully convolution neurons network,
which composed of the backbone network and the head net-
work. The backbone network takes the images as the input
to extract its feature maps. Then the head network aggregates
higher-level information based on the output of the backbone
network to produce the pixel-wise prediction. The only differ-
ence is that we replace the standard cross-entropy loss function
to our proposed neighboring pixel affinity loss function. Our
NPALoss introduces the neighboring pixel affinity map to ad-
aptively assign a different weight for each pixel.

3.2 Neighboring Pixel Affinity Map

In general, the prediction results for small-sized objects and ob-
ject boundaries are worse than results for the easily classified
regions, because the gradients of well-classified pixels domin-
ate the backpropagation. However, we want the loss function to
shift its attention from well-classified pixels to the hard pixels.
In other words, the hard pixels in the backpropagation should
assign large weights while well-classified pixels should assign
small weights.
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Input Image Segmentation DCNN Pixel-wise prediction Ground truth

Affinity map

Search region k

NPALossNPALoss

Figure 2. Overview of our framework. We replace the standard cross-entropy loss to our proposed NPALoss, which is only calculated
by ground truth map and can be combined with any existing semantic segmentation networks.

To achieve this purpose, we build a neighboring pixel affinity
map based on the ground truth. Specifically, we count the pixel-
pair relationships in the neighborhood to measure the classify-
ing difficulty of each pixel. As shown in Figure 3, for the top-
left pixel in the ground truth map, when the search region is the
neighboring eight pixels, all adjacent pixels have the same cat-
egory with the top-left pixel, so the affinity value is zero, which
means the top-left pixel is easy to classify. On the contrary, the
neighboring pixels of small-sized objects and object boundar-
ies always have different categories, resulting in large affinity
values. When enlarging the search region, the affinity map can
further judge the classifying difficulty of each pixel based on
richer local context information.

We now explain the neighboring pixel affinity map more form-
ally. Give the search region k, For each pixel px,y in the ground
truth, the pixel in its search region can be denoted as qu,v , where
0 6 |x−u|, |y−v| 6 k. Then, the affinity map can be obtained
as follow:

Ax,y =
∑
u

∑
v

C(px,y)⊕ C(qu,v), (1)

where C(·) denotes the ground truth class of the pixel and ⊕
means the XOR operation, the result is 1 only when the cat-
egories of two pixels are different. As shown in Figure 4, we
visualize the affinity maps with different search region k. It can
be seen that the closer to the center of the hard regions (small-
sized objects and object boundaries), the greater the value of
the affinity maps.

3.3 Weight Transformation

According to Eq. 1, the range of value of the neighboring pixel
affinity map is [0, (2k + 1)2 − 1]. For example, when k = 32,
the range is [0, 4224]. If the affinity map is used directly as the
weights of each pixel, the weight margin may be unsuitable and
cause gradient overflow. Therefore, it is necessary to introduce
a suitable weight transformation strategy.

In this work, we consider two transformation strategies, one is
normalization operation, the other is logarithm operation. More
specifically, we define the normalization operation as follow:

ATx,y =
Ax,y −min(Ax,y)

max(Ax,y)−min(Ax,y)
+ L, (2)

k = 1 
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Figure 3. Illustration of how neighboring pixel affinity map
calculated when search region k = 1. The ground truth map is

padded with the values from edge pixels.

where L(L > 0) is a constant, which is used to guarantee the
minimum value of the affinity map. The normalization opera-
tion may result in low weight margin between the well-classified
and hard pixels. Therefore, we also consider the logarithm com-
pression operation to achieve weight transformation:

ATx,y = loga(Ax,y + aL), (3)

where a means the base of the logarithm. The larger the value
of a, the smaller the range of the affinity map. In this work,
we consider common logarithm (a = 10) and natural logarithm
(a = e), respectively.

To this end, combining the neighboring pixel affinity map and
the weight transformation strategy, the NPALoss can be defined
as follow:

NPALoss(yp, yg) = − 1

N

H∑
i

W∑
j

ATi,jy
g
i,j log(y

p
i,j), (4)

where N,H,W are the mini-batch size and spatial dimension,
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(a) True orthophoto (b) Ground truth (c) k = 8 (d) k = 16 (e) k = 32 (f) k = 64

Figure 4. The effect of neighboring pixel affinity maps with the search region k = 8, 16, 32, and 64. The higher the value of the pixel
closer to the small-sized objects and object boundaries. The affinity map is only calculated based on ground truth.

respectively. yp and yg denote the softmax probability and the
corresponding ground truth label. Note that our method not
only supports cross-entropy loss function, other loss functions
are also possible.

4. EXPERIMENTS

In the following, we first briefly describe the dataset used in
our experiments (Section 4.1). Subsequently, we explain im-
plementation details and experimental configurations before in-
troducing the derived results (Section 4.2).

4.1 Dataset

We validate our proposed method on the ISPRS Vaihingen data-
set (Cramer, 2010; Rottensteiner et al., 2012). The dataset con-
tains 33 tiles, each of which is a true orthophoto (with three
channels corresponding to the near-infrared, red and green do-
mains) and corresponding Digital Surface Models (DSM) gen-
erated via dense image matching. The dataset has a resolution
of 9 cm/pixel with tiles of approximately 2400 × 2000 pixels.
In addition, the dataset contains 16 available tiles with ground
truth labels and contains five foreground classes (Impervious
Surfaces, Building, Low Vegetation, Tree, Car) and one back-
ground class (Clutter, includes water bodies and other objects
such as containers, tennis courts or swimming pools). Follow
the prior works (Paisitkriangkrai et al., 2015; Volpi, Tuia), we
divide the labeled images into 11 training images (1, 3, 5, 7,
13, 17, 21, 23, 26, 32, 37) and 5 validation images (11, 15, 28,

30 and 34). Note that we do not use DSM or normalized DSM
(nDSM) data (Gerke, 2014; Audebert et al., 2016; Chen et al.,
2018a), only true orthophoto images are used as input of all
networks.

4.2 Experimental Setup

Our implementations are based on the publicly available Pyt-
orch (Paszke et al., 2017) deep learning framework and tested
on a workstation with 32 GB RAM, an Intel Core i7-6700k pro-
cessor, and one NVIDIA GeForce GTX 1080Ti GPU card. In
this paper, we choose four popular networks, FCN (Shelhamer
et al., 2017), FCN-dilated (Yu, Koltun), PSPNet (Zhao et al.,
2017) and DeepLabV3 (Chen et al., 2017b), to evaluate our
proposed method. The backbone network is set as ResNet101
(He et al., 2016) and pre-trained on ImageNet (Russakovsky
et al., 2015). During the training process, we use mini-batch
stochastic gradient descent (SGD) with batch size 6, momentum
0.9, and weight decay 0.0001. We train all models for 5000 it-
erations and crop the input size to 513 × 513. Each patch fed
into the network is cropped randomly and then normalized by
the subtraction of the mean value and a subsequent division by
the standard deviation. We set the base learning rate to 0.01 and
use the poly learning rate strategy in which the current learning
rate is multiplied by (1 − iter

max iter
)power each iteration with

power 0.9. Besides, the random seed is fixed for a fair compar-
ison. For quantitative evaluation, we report the Overall Accur-
acy (OA) and the mean Intersection-over-Union (mIoU) using
the median of 3 runs. To evaluate the performance for each
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Method Imp. Surf. Building Low Veg. Tree Car mF1 mIoU OA
FCN 89.89 95.35 78.57 86.83 64.88 83.10 72.44 87.80

FCN + class weighted 89.91 95.44 78.38 86.85 68.03 83.72 73.14 87.72
FCN + focal loss 89.09 94.13 76.41 85.82 63.40 81.77 70.53 86.60
FCN + dice loss 82.47 89.04 68.22 80.48 42.72 72.58 59.33 79.58

FCN + NPALoss (ours) 90.59 95.49 79.18 87.27 73.32 85.17 75.01 88.33

Table 1. The performance of FCN with different loss functions.

Strategy L Imp. Surf. Building Low Veg. Tree Car mF1 mIoU OA
Baseline — 89.89 95.35 78.57 86.83 64.88 83.10 72.44 87.80

Norm 0 89.18 94.28 76.43 86.27 70.93 83.42 72.47 86.77
Norm 0.5 90.37 95.46 78.46 86.93 71.50 84.54 74.16 87.99

Ln 0.5 90.41 95.32 79.54 87.24 72.84 85.07 74.86 88.28
Log10 0.5 90.59 95.49 79.18 87.27 73.32 85.17 75.01 88.33

Table 2. The influence of different weight transformation strategies based on the FCN.

class, we additionally consider F1 score which is defined as the
harmonic mean of precision and recall.

Deep Supervision: Except for the FCN (Shelhamer et al., 2017),
we utilize deep supervision (Zhao et al., 2017) on the other three
networks. An auxiliary loss branch is applied apart from the
main loss and we set the weight to 0.4 in all experiments.

Data Augmentation: There are only 54 million pixels in 11
training images. Therefore, it is necessary to adopt some ap-
propriate data augmentation strategies to avoid the problem of
overfitting. In this work, we adopt random mirror, random
Gaussian blur and random resize between 0.5 and 2.0, and ad-
ditionally add random rotation between -10 and 10 degrees on
the input images to enhance the dataset in the training process.

Inference Strategy: Due to the large difference between the
size of the tiles and the training size of the network, using the
entire image directly as an input to the network may reduce
prediction accuracy. Therefore, we choose the sliding window
strategy (Chen et al., 2018b; Fu et al., 2020) when making in-
ference. Specifically, we crop the patches from the tiles in an
overlapping manner and set the overlapping stride to 1/3. The
final results of the pixels in the overlapping areas are determ-
ined by the average prediction results.

4.3 Results

The prediction results derived for different loss functions are
provided in Table 1, which shows the mIoU, OA and class-
wise F1 scores. The Table 2 details the results of the different
weight transformation strategies. Figure 5 and Figure 6 show
the effects of the different search regions. Finally, we show the
performance of our proposed method on different networks in
Table 3 and visualizations of the predictions in Figure 7.

5. DISCUSSION

5.1 Effectiveness of Proposed NPALoss

In this section, we compare the performance of different loss
functions on FCN (Shelhamer et al., 2017). As shown in Table
1, we compare our NPALoss with class weighted loss (Badrin-
arayanan et al., 2017), focal loss (γ = 2) (Lin et al., 2017) and
dice loss (Milletari et al., 2016). The class weighted denotes
the weighted cross-entropy loss with a medium frequency bal-
ancing on the classes. Note that we do not use a weight on the
background class. Instead, we apply the same weight on this

class as the lowest weight on all the other classes. The results
reveal that our proposed NPALoss makes further improvement
on small-sized objects and object boundaries. Using our pro-
posed NPALoss instead of the standard cross-entropy loss func-
tion, our method yields an improvement of 2.07% in mF1 score,
2.57% in mIoU, respectively. Especially for the Car class, a typ-
ical small sized objects, the F1 score can be improved by 8.44
points. Besides, the performance of the classes with complex
boundaries, such as the Impervious Surfaces and Low vegeta-
tion class, also achieves significant improvements. On the con-
trary, the focal loss and the dice loss result in poor performance,
which implied that these loss functions do not suitable for the
multi-classes semantic segmentation tasks. Besides, applying
the class weighted cross-entropy loss achieves a slight improve-
ment on mIoU and mF1 score while the OA shows a drop. This
drop is due to the F1 score of the Low vegetation class drops
from 78.57% to 78.38%. Although the performance of minor-
ity classes are improved, the performance of other classes may
be degraded. As a comparison, our method can achieve prom-
ising results in each class, especially for small-sized classes and
irregularly shaped classes.

5.2 Effects of Weight Transformation

The weight transformation strategies will affect accuracy. We
explored the effects of different strategies, and the results can
be seen in Table 2. When using the normalization strategy to
generate weights from 0 to 1, only the F1 score of the Car class
shows a significant improvement. However, the performance of
the other four classes is degraded. This is because the weights
of most pixels belonging to these classes are set to 0. When
setting the value of L to 0.5, the mIoU is further increased by
1.69%. However, the F1 score of the Low vegetation class is
still lower than the baseline network. We think the weight mar-
gin between the well-classified and hard pixels is not enough.
In order to enlarge the margin, we use the logarithm compres-
sion strategy and test the effects of the different bases of the
logarithm. The results in Table 2 show that the logarithm com-
pression strategy produces a better segmentation accuracy, and
the common logarithm (a = 10) is better than natural logarithm
(a = e). The OA of common logarithm reaches 75.01% and
88.33%, respectively. Therefore, it is crucial to choose a suit-
able weight transformation strategy, and too large or too small
weight margin will affect the performance.

5.3 Effects of Search Region

The size of the search region k also produces different perform-
ance gains for the segmentation network. As shown in Fig-
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Method Imp. Surf. Building Low Veg. Tree Car mF1 mIoU OA
FCN-dilated 91.98 95.68 80.18 88.25 87.94 88.80 80.70 89.35

+ NPALoss (ours) 92.04 95.81 80.69 88.43 90.63 89.52 81.39 89.56
PSPNet 91.96 95.91 80.55 88.38 88.66 89.09 80.83 89.51

+ NPALoss (ours) 92.44 95.93 81.38 88.58 89.56 89.58 81.47 89.84
DeepLabV3 92.33 96.03 80.96 88.85 88.02 89.24 80.94 89.83

+ NPALoss (ours) 92.48 96.10 81.44 88.85 90.27 89.83 81.88 90.00

Table 3. The performance of our proposed NPALoss on different segmentation networks.
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Figure 6. The mF1 score curves for the training process with
different search region k. k = 0 means the baseline network.

ure 4, there are huge differences between the different affinity
maps. When the search region k = 8, only the pixels around
boundaries have large weights. With the increase of the search
region, the small-sized objects are also beginning to receive at-
tention. For example, the weights of the pixels corresponding
to the Car class are higher not only in the edge areas but also
in the center areas when k = 32. Therefore, we explored the
effects of the different search regions k. As shown in Figure 5,
when k = 8, the results show an improvement from 83.10% to
84.61%, and when the search region becomes larger, the mF1

score increased again. It is found that the mF1 score is highest
at k = 32, which reaches 85.17%. However, the performance
will drop when the search region is further enlarged. Because
the over-sized search region may begin to assign high weights to
well-classified pixels, which reduce the network’s attention to
hard pixels. Furthermore, we show the mF1 score curves for the

training process. As shown in Figure 6, with the same number
of iterations, the NPALoss achieves better performance, which
proves our method can help the network converge quickly and
improve the performance.

5.4 Robustness on Various Networks

To further prove the robustness of our proposed method, we use
our NPALoss on FCN-dilated (Yu, Koltun), PSPNet (Zhao et
al., 2017) and DeepLabV3 (Chen et al., 2017b), respectively.
The FCN-dilated introduces the dilated convolution (Chen et
al., 2017a) in the backbone network to enlarge the receptive
field. The PSPNet and DeepLabV3 add the PPM module and
ASPP module based on the FCN-dilated, respectively. The ex-
perimental results are presented in Table 3. The performance
of the classes with small sized objects and complex boundaries
is further improved. The mF1 score of the three models can be
improved by 0.72 points, 0.49 points, and 0.45 points, respect-
ively. Note that the performance of FCN-dilated with our pro-
posed NPALoss has exceeded the performance of PSPNet and
DeepLabV3, which means the performance gains of our pro-
posed NPALoss function exceeds the gains of the PPM module
and ASPP module.

5.5 Visual Improvements

Figure 7 shows the visual results of DeepLabV3 and our pro-
posed method. Although cars are only a few pixels and are
parked densely, our method can distinguish each other. Des-
pite being affected by shadows between adjacent classes, our
method can produce more accurate boundaries. The improve-
ment of segmentation quality of small-sized objects and object
boundaries is obvious by introducing our NPALoss.

6. CONCLUSION

In this work, we propose a neighboring pixel affinity loss (NPA-
Loss) for semantic segmentation in high-resolution aerial im-
agery to improve the segmentation accuracy of small-sized ob-
jects and object boundaries. Firstly, we convert the problem
of how to determine the classifying difficulty of one pixel into
a problem that the pixel categories in the neighborhood are the
same or different. Therefore, we build an affinity map by count-
ing the pixel-pair relationships in the search region. Then, we
further investigate different weight transformation strategies to
explore the suitable weight margin of the affinity map and avoid
the problem of gradient overflow. We find that too large or too
small weight margins will affect the performance of our pro-
posed NPALoss. The logarithm compression strategy is better
than the normalization strategy, especially the common logar-
ithm. Combining the affinity map and the weight transform-
ation strategy, our NPALoss helps the network pay more at-
tention to the pixels corresponding to small-sized objects and
object boundaries. Experiments on the ISPRS Vaihingen data-
set and various segmentation networks prove the effectiveness
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(a) True orthophoto (b) Ground truth (c) DeepLabV3 (d) Ours

Figure 7. Visualization of the ground truth and the segmentation results achieved with the DeepLabV3 and our method. There is a
significant improvement on small-sized objects and object boundaries.

and robustness of our method. In the future, we will introduce
multi-scale affinity maps to build the NPALoss. Furthermore,
an adaptive weight transformation strategy is also in our plan.
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