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ABSTRACT:

This paper deals with bundle adjustment with constrained cameras, i.e. where the orientation of certain cameras is expressed relat-
ively to others, and these relative orientations are part of the unknowns. Despite the remarkable interest for oblique multi-camera
systems, an empirical study on the effect of enforcing relative orientation constraints in bundle adjustment is still missing. We
provide experimental evidence that indeed these constraints improve the accuracy of the results, while reducing the computational
load as well. Moreover, we report for the first time in the literature the complete derivation of the Jacobian matrix for bundle
adjustment with constrained cameras, to foster other implementations.

1. INTRODUCTION

Over the past two decades almost all existing companies in
the geospatial sector have opened up for oblique imaging tech-
nology and included multi-head oblique camera units in their
portfolios. Either as stand-alone solutions (Remondino, Gerke,
2015) or more recently in combination with a LiDAR unit (Tos-
chi et al., 2019), these oblique systems have expanded the po-
tentialities of the area-wide mapping market towards a more
complete and intuitive scene understating concept. Indeed, they
offer the advantages of a slanted view geometry, that allows the
potential 3D reconstruction of building facades and other urban
vertical objects (Haala, Rothermel, 2015). However, this comes
at the cost of tackling new challenges, that mainly consist in
dealing with large variations in image scale and illumination,
multiple occlusions and an increased disparity search space.
With regards to image block orientation, the main issue here
is how to efficiently and rigorously cope with a larger number
of unknowns, while minimizing the risk of divergence for the
adjustment of the bundle of image rays.

Although the use of a constrained bundle block adjustment (BBA)
in oblique acquisition scenarios represents an hot research topic,
few of the software applications available to the public allows
to enforce relative orientation constraints. As a result, most of
the literature (Wiedemann, Moré, 2012, Rupnik et al., 2013,
Rupnik et al., 2014) suggests that relative constraints should be
enforced without being able to produce experimental evidence
of that. (Cavegn et al., 2018) implement relative constraints in
a terrestrial mobile mapping application, but do not assess this
feature in isolation. They also report that Pix4D is able to en-
force relative constraints, but no study in the literature evaluated
it so far.

Constrained relative orientations are usually recovered as part
of the calibration process of multi-camera rigs (Esquivel et al.,
2007, Dai et al., 2009, Schneider, Förstner, 2013). The exterior
orientation of the multi-camera system is then treated as a Non-
Perspective-n-Point problem, where the camera rig is modeled
∗ Corresponding author

as a generalized camera (i.e., a camera in which the bundle of
rays do not intersect in a single point), and solved exploiting the
relative orientations estimated by calibration.

The only work, to the best of our knowledge, that analyses
an implementation of BBA with relative orientation constraints
and compares the results achieved with the custom BBA is (Sun
et al., 2016), that however states that this approach has a lower
accuracy on the basis of experiments that report worse repro-
jection errors than in the case where the constraints are ignored.
It must be said, though, that looking at the reprojection error
without considering the degrees of freedom of the model being
fitted may lead to biased conclusions.

In this paper we will argue and provide evidence that exploiting
the rigidity of the system has two benefits: it reduces the num-
ber of unknowns and it improves the accuracy. As a matter of
fact, disregarding a physical constraint that actually holds, arti-
ficially increases the degrees of freedom of the system, leading
to over-fitting (i.e., fitting the noise).

A further contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
cameras, which was missing in the literature so far. We will
use the “matrix differential calculus” formalism (Magnus, Neu-
decker, 1999), which allows a compact and modular derivation.

2. PROBLEM STATEMENT

Let us consider an oblique multi-camera system composed by
k cameras, where one is taken as the reference and the remain-
ing k − 1 have a fixed but unknown relative orientation with
respect to the first one. For the sake of concreteness, one can
think of the customary “Maltese cross” arrangement (Fig. 1),
that comprises a single nadir-pointing camera and four oblique-
pointing cameras (k = 5). Two of the oblique cameras point
in opposite directions cross–track, while the remaining two ob-
lique cameras point in opposite directions along-track. The five
cameras are housed in a suitable frame that ensures rigidity and
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1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:
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1. INTRODUCTION

Multi-camera systems... [ISA pls add a few words on why these
systems are relevant and point out the attention they have attrac-
ted]

A wealth of literature () criticise enforcing relative orientation
constraints in Bundle Block Adjustment (BBA) involving multi-
camera systems, reporting worse reprojection errors than in the
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common wisdom, that says that disregarding a physical con-
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freedom of the system, leading to over-fitting (i.e., fitting the
noise). As a matter of fact, exploiting the rigidity of the system
has two benefits: first it reduces the number of unknowns and
second it improves the accuracy, when correctly measured. As
a matter of fact, looking at the reprojection error without con-
sidering the degrees of freedom, or evaluating the error on the
same set of ground control points leads to biased conclusions.
Experimental evidence of this will be reported in Sec. 4

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will use
the ”matrix differential calculus” formalism (?), which allows a
compact and modular derivation.

2. PROBLEM STATEMENT

Let us consider a multi-camera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
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• let I⌫ be one nadiral camera, whose exterior orientation is
G⌫ = [R⌫ |t⌫ ];
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If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:
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1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)
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Figure 1. Illustration of the Maltese cross example. In this case
⌫ = E and so Gµ = GEG⌫

• let Iµ be one of the (four) oblique images relative to I⌫ ,
whose exterior orientation is Gµ = [Rµ|tµ];

• let G⌧ = [R⌧ |t⌧ ] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Maltese
cross there are four such relative orientations: ⌧ = {N,S,E,W}
which are fixed but unknown;

• the exterior orientation of the oblique image Gµ can be
written as a function of those of the nadiral image and the
relative orientation:

Gµ = G⌧ · G⌫ = [R⌧ · R⌫ |R⌧ · t⌫ + t⌧ ]; (1)

• let us parametrize the nadiral orientation G⌫ with the 6
parameters g>

⌫ = [!,',, t⌫ ], where the first three are the
Euler angles that represent the rotation (see App. B);

• let us parametrize the relative orientation G⌧ with the 6
parameters g>

⌧ = [↵,�, �, t⌫ ] where the first three are the
Euler angles.

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call JA and
JB that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

• JC collects the derivative of the residual in the oblique
images wrt the nadiral orientation
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1. INTRODUCTION

Multi-camera systems... [ISA pls add a few words on why these
systems are relevant and point out the attention they have attrac-
ted]

A wealth of literature () criticise enforcing relative orientation
constraints in Bundle Block Adjustment (BBA) involving multi-
camera systems, reporting worse reprojection errors than in the
case where the constraints are ignored. This is in contrast with
common wisdom, that says that disregarding a physical con-
straint that actually holds, artificially increases the degrees of
freedom of the system, leading to over-fitting (i.e., fitting the
noise). As a matter of fact, exploiting the rigidity of the system
has two benefits: first it reduces the number of unknowns and
second it improves the accuracy, when correctly measured. As
a matter of fact, looking at the reprojection error without con-
sidering the degrees of freedom, or evaluating the error on the
same set of ground control points leads to biased conclusions.
Experimental evidence of this will be reported in Sec. 4

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will use
the ”matrix differential calculus” formalism (?), which allows a
compact and modular derivation.

2. PROBLEM STATEMENT

Let us consider a multi-camera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

• let I⌫ be one nadiral camera, whose exterior orientation is
G⌫ = [R⌫ |t⌫ ];

⇤ Corresponding author

BUNDLE BLOCK ADJUSTMENT WITH CONSTRAINED RELATIVE ORIENTATIONS

E. Maset⇤, L. Magri, I. Toschi, and A. Fusiello

DPIA – University of Udine, Via delle Scienze, 206 – 33100 Udine, Italy
maset.eleonora@spes.uniud.it, magri.luca.l@gmail.com, andrea.fusiello@uniud.it

Commission IV, WG IV/5

ABSTRACT:

Despite many authors suggest that relative orientation constraints should not be used when bundle adjusting blocks with oblique
cameras, we argue that indeed this is not the case, and provide experimental evidence for this. Moreover, we report, for the first
time in the literature, the complete derivation of the Jacobian for bundle adjustment with constrained cameras, where the orientation
of certain cameras is expressed relatively to others, and these relative orientations are part of the unknowns.

1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

BUNDLE BLOCK ADJUSTMENT WITH CONSTRAINED RELATIVE ORIENTATIONS

E. Maset⇤, L. Magri, I. Toschi, and A. Fusiello

DPIA – University of Udine, Via delle Scienze, 206 – 33100 Udine, Italy
maset.eleonora@spes.uniud.it, magri.luca.l@gmail.com, andrea.fusiello@uniud.it

Commission IV, WG IV/5

ABSTRACT:

Despite many authors suggest that relative orientation constraints should not be used when bundle adjusting blocks with oblique
cameras, we argue that indeed this is not the case, and provide experimental evidence for this. Moreover, we report, for the first
time in the literature, the complete derivation of the Jacobian for bundle adjustment with constrained cameras, where the orientation
of certain cameras is expressed relatively to others, and these relative orientations are part of the unknowns.

1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

BUNDLE BLOCK ADJUSTMENT WITH CONSTRAINED RELATIVE ORIENTATIONS

E. Maset⇤, L. Magri, I. Toschi, and A. Fusiello

DPIA – University of Udine, Via delle Scienze, 206 – 33100 Udine, Italy
maset.eleonora@spes.uniud.it, magri.luca.l@gmail.com, andrea.fusiello@uniud.it

Commission IV, WG IV/5

ABSTRACT:

Despite many authors suggest that relative orientation constraints should not be used when bundle adjusting blocks with oblique
cameras, we argue that indeed this is not the case, and provide experimental evidence for this. Moreover, we report, for the first
time in the literature, the complete derivation of the Jacobian for bundle adjustment with constrained cameras, where the orientation
of certain cameras is expressed relatively to others, and these relative orientations are part of the unknowns.

1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

BUNDLE BLOCK ADJUSTMENT WITH CONSTRAINED RELATIVE ORIENTATIONS

E. Maset⇤, L. Magri, I. Toschi, and A. Fusiello

DPIA – University of Udine, Via delle Scienze, 206 – 33100 Udine, Italy
maset.eleonora@spes.uniud.it, magri.luca.l@gmail.com, andrea.fusiello@uniud.it

Commission IV, WG IV/5

ABSTRACT:

Despite many authors suggest that relative orientation constraints should not be used when bundle adjusting blocks with oblique
cameras, we argue that indeed this is not the case, and provide experimental evidence for this. Moreover, we report, for the first
time in the literature, the complete derivation of the Jacobian for bundle adjustment with constrained cameras, where the orientation
of certain cameras is expressed relatively to others, and these relative orientations are part of the unknowns.

1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

BUNDLE BLOCK ADJUSTMENT WITH CONSTRAINED RELATIVE ORIENTATIONS

E. Maset⇤, L. Magri, I. Toschi, and A. Fusiello

DPIA – University of Udine, Via delle Scienze, 206 – 33100 Udine, Italy
maset.eleonora@spes.uniud.it, magri.luca.l@gmail.com, andrea.fusiello@uniud.it

Commission IV, WG IV/5

ABSTRACT:

Despite many authors suggest that relative orientation constraints should not be used when bundle adjusting blocks with oblique
cameras, we argue that indeed this is not the case, and provide experimental evidence for this. Moreover, we report, for the first
time in the literature, the complete derivation of the Jacobian for bundle adjustment with constrained cameras, where the orientation
of certain cameras is expressed relatively to others, and these relative orientations are part of the unknowns.

1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

BUNDLE BLOCK ADJUSTMENT WITH CONSTRAINED RELATIVE ORIENTATIONS

E. Maset⇤, L. Magri, I. Toschi, and A. Fusiello

DPIA – University of Udine, Via delle Scienze, 206 – 33100 Udine, Italy
maset.eleonora@spes.uniud.it, magri.luca.l@gmail.com, andrea.fusiello@uniud.it

Commission IV, WG IV/5

ABSTRACT:

Despite many authors suggest that relative orientation constraints should not be used when bundle adjusting blocks with oblique
cameras, we argue that indeed this is not the case, and provide experimental evidence for this. Moreover, we report, for the first
time in the literature, the complete derivation of the Jacobian for bundle adjustment with constrained cameras, where the orientation
of certain cameras is expressed relatively to others, and these relative orientations are part of the unknowns.

1. INTRODUCTION

A wealth of literature () criticise enforcing relative orientation
constraints in multicamera systems, reporting worse re-projection
errors than in the case where the constraints are ignored in Bun-
dle Block Adjustment (BBA). This is in contrast with common
wisdom, that says that a physical constraint that actually hold
should not be disregarded in an estimation problem, for this
increase artificially the degrees of freedom of the system and
leads to over-fitting (i.e., fitting the noise). We will show that
this is actually the case, if error is measured correctly. As a mat-
ter of fact, using the re-projection error without considering the
degrees of freedom, or evaluating the error on the same set of
ground control points lead to biased conclusions. In short, we
argue that relative orientation constraints must always be used
in multicamera systems.

Another contribution of this paper is to work out in full details
the formula for the Jacobian matrix of BBA with constrained
camera, which was missing in the literature so far. We will
use the ”matrix differential calculus” formalism (Magnus and
Neudecker, 1999), which allows a compact derivation and leads
to a readable and expressive formulation. Compare also the
derivative of the rotation matrix to those reported in (Lucas,
1963).

The reprojection error is a geometric error corresponding to the
image distance between a projected point and a measured one.

2. PROBLEM STATEMENT

Let us consider a multicamera system composed by n cameras,
where one is taken as the reference and the remaining n�1 have
a fixed but unknown relative orientation with respect to the first
one. For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement, that comprises a single nadir-
pointing camera and four oblique-pointing cameras. Two of the
oblique cameras point in opposite directions cross–track, while
the remaining pair of oblique cameras point in opposite direc-
tions along-track. The five cameras are housed in a suitable
frame that ensure rigidity and their shutters are synchronized to
operate simultaneously.

⇤Corresponding author

• let Iu be one nadiral camera, whose exterior orientation is
Gu = [Ru|tu];

• let Iv be one of the (four) oblique images relative to Iu,
whose exterior orientation is Gv = [Rv|tv];

• let Gk = [Rk|tk] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Mal-
tese cross there are four such relative orientations: k =
{N, S, E, W} which are fixed but unknown;

• the exterior orientation of the oblique image Gv can be
written as a function of those of the nadiral image and the
relative orientation:

Gv = Gu · Gk = [Ru · Rk|Ru · tk + tu]. (1)

• let us parametrize the nadiral orientation Gu with the 6
parameters g>

u = [!,�,, tu], where the first three are the
Euler angles;

• let us parametrize the relative orientation Gk with the 6
parameters g>

k = [↵,�, �, tk] where the first three are the
Euler angles;

Exploiting the rigidity of the system has two benefits:

• first it reduces the number of unknowns; let m be the num-
ber of nadiral images (the total number of images is 5m).
If the oblique images are adjusted as if their orientations
were independent the system has 30m + 3n unknowns,
whereas, by enforcing the rigidity, the unknowns reduces
to 6(m+4)+3n (4 is the number of relative orientations);

• second, it improves the accuracy, as it enforces a physical
constraint that is actually in place. We will show experi-
mental evidence of this in Sec. 4

3. JACOBIAN MATRIX

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call A and
B that contain respectively the derivatives of f wrt image ori-
entation and wrt 3D point. In the case that we are examining
in this paper, only the nadiral images give rise to this type of
blocks, whereas oblique images (whose orientation is linked to
the nadiral image) lead to three new blocks:

Figure 1. Illustration of the Maltese cross example. In this case
⌫ = E and so Gµ = GEG⌫

• let Iµ be one of the (four) oblique images relative to I⌫ ,
whose exterior orientation is Gµ = [Rµ|tµ];

• let G⌧ = [R⌧ |t⌧ ] be the orientation of the oblique im-
age relative to the nadiral image; in the case of the Maltese
cross there are four such relative orientations: ⌧ = {N,S,E,W}
which are fixed but unknown;

• the exterior orientation of the oblique image Gµ can be
written as a function of those of the nadiral image and the
relative orientation:

Gµ = G⌧ · G⌫ = [R⌧ · R⌫ |R⌧ · t⌫ + t⌧ ]; (1)
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• JC collects the derivative of the residual in the oblique
images wrt the nadiral orientation

Figure 1. Illustration of the Maltese cross example. In this case
τ = E and so Gµ = GEGν .

their shutters are synchronized to operate simultaneously1.

• Let Iν be one nadir image, whose exterior orientation is
Gν = [Rν |tν ] (Gν transforms 3D point coordinates from
an external (object) reference frame to the camera refer-
ence, whose origin is at the centre of projection);

• let Iµ be one of the (four) oblique images relative to Iν ,
whose exterior orientation is Gµ = [Rµ|tµ];

• let Gτ = [Rτ |tτ ] be the orientation of the oblique im-
age relative to the nadir image (Gτ transform points from
the nadir camera coordinate system to the oblique one); in
the case of the Maltese cross, there are four of such re-
lative orientations: τ = {N,S,E,W} which are fixed but
unknown;

• the exterior orientation of the oblique image Gµ can be
written as a function of those of the nadir image and the
relative orientation:

Gµ = Gτ ·Gν = [Rτ ·Rν |Rτ · tν + tτ ]; (1)

• let us parametrize the nadiral orientation Gν with the 6
parameters g>

ν = [ω, ϕ, κ, tν ], where the first three are the
Euler angles that represent the rotation (see App. B);

• let us parametrize the relative orientation Gτ with the 6
parameters g>

τ = [α, β, γ, tτ ] where the first three are the
Euler angles;

• let us write the collinearity equations in compact form as:

x = f(X, g) = fP (R(ω, ϕ, κ)X+ t) (2)

where X are the coordinates of an object point, x are the
two coordinates of the corresponding image point, g =
[ω, ϕ, κ, t]> represent the exterior orientation of the im-
age, and the central projection is accomplished by:

fP ([x, y, z]
>) =

[x
z
,
y

z

]>
. (3)

• Interior orientation is assumed known and fixed (however,
the estimate of the interior parameters, possibly including
distortion parameters, could be added in the process).

3. JACOBIAN MATRIX OF CRO-BBA

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f .
1 Small lags can be absorbed into the relative orientation as translations

along the direction of motion
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Blocks JA and JB correspond to nadiral images, and they are
easily derived:

JA=
@f(X,g⌫)

@g>
⌫

=
@fp(W)

@W>

����
W=R⌫X+t⌫

@(R⌫X + t⌫)

@g>
⌫

=Dfp(R⌫X+t⌫)
⇥
(X>⌦ I3)DR⌫ |I3

⇤
(23)

JB=
@f(X,g⌫)

@X> =
@fp(W)

@W>

����
W=R⌫X+t⌫

@(R⌫X+t⌫)

@X>

=Dfp(R⌫X+t⌫)R⌫

(24)

As for the blocks related to oblique images:

JD =
@f(X,gµ)

@g>
⌧

=


@f(X,gµ)

@[↵,�, �]

@f(X,gµ)

@t>
⌧

�
(25)

Let X0 = R⌧R⌫X + R⌧t⌫ + t⌧ , then

@f(X,gµ)

@[↵,�, �]
= Dfp(X0)

@(R⌧R⌫X+R⌧t⌫+t⌧ )

@[↵,�, �]

= Dfp(X0)
@(R⌧ (R⌫X+t⌫))

@[↵,�, �]

= Dfp(X0)
�
(R⌫X+t⌫)>⌦ I3

�
DR⌧

(26)

and also

@f(X,gµ)

@t>
⌧

= Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@t>
⌧

= Dfp(X0)
@t⌧
@t>

⌧

= Dfp(X0)I3

(27)

Now:

JC =
@f(X,gµ)

@g>
⌫

=


@f(X,gµ)

@[!,',]

@f(X,gµ)

@t>
⌫

�
(28)

where

@f(X,gµ)

@[!,',]
= Dfp(X0)

@(R⌧R⌫X+R⌧t⌫+t⌧ )

@[!,',]

= Dfp(X0)
@R⌧R⌫X

@[!,',]

= Dfp(X0)(X> ⌦ I3)(I3 ⌦ R⌧ )DR⌫

= Dfp(X0)(X> ⌦ R⌧ )DR⌫

(29)

and

@f(X,gµ)

@t>
⌫

= Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@t>
⌫

= Dfp(X0)
@R⌧t⌫
@t>

⌫

= Dfp(X0)R⌧

(30)

Finally

JE =
@f(X,gµ)

@X> = Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@X>

= Dfp(X0)R⌧R⌫

(31)

It is worth noting that these formulae are modular with respect
to the parametrization chosen for R: changing it will cause only
DR to change. Interior orientation can be easily catered for as
well.

X1 X2 X3

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

@g1 @g1 @gN @gS @gE @gW

Blocks JA and JB correspond to nadiral images, and they are
easily derived:

JA=
@f(X,g⌫)

@g>
⌫

=
@fp(W)

@W>

����
W=R⌫X+t⌫

@(R⌫X + t⌫)

@g>
⌫

=Dfp(R⌫X+t⌫)
⇥
(X>⌦ I3)DR⌫ |I3

⇤
(23)

JB=
@f(X,g⌫)

@X> =
@fp(W)

@W>

����
W=R⌫X+t⌫

@(R⌫X+t⌫)

@X>

=Dfp(R⌫X+t⌫)R⌫

(24)

As for the blocks related to oblique images:

JD =
@f(X,gµ)

@g>
⌧

=


@f(X,gµ)

@[↵,�, �]

@f(X,gµ)

@t>
⌧

�
(25)

Let X0 = R⌧R⌫X + R⌧t⌫ + t⌧ , then

@f(X,gµ)

@[↵,�, �]
= Dfp(X0)

@(R⌧R⌫X+R⌧t⌫+t⌧ )

@[↵,�, �]

= Dfp(X0)
@(R⌧ (R⌫X+t⌫))

@[↵,�, �]

= Dfp(X0)
�
(R⌫X+t⌫)>⌦ I3

�
DR⌧

(26)

and also

@f(X,gµ)

@t>
⌧

= Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@t>
⌧

= Dfp(X0)
@t⌧
@t>

⌧

= Dfp(X0)I3

(27)

Now:

JC =
@f(X,gµ)

@g>
⌫

=


@f(X,gµ)

@[!,',]

@f(X,gµ)

@t>
⌫

�
(28)

where

@f(X,gµ)

@[!,',]
= Dfp(X0)

@(R⌧R⌫X+R⌧t⌫+t⌧ )

@[!,',]

= Dfp(X0)
@R⌧R⌫X

@[!,',]

= Dfp(X0)(X> ⌦ I3)(I3 ⌦ R⌧ )DR⌫

= Dfp(X0)(X> ⌦ R⌧ )DR⌫

(29)

and

@f(X,gµ)

@t>
⌫

= Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@t>
⌫

= Dfp(X0)
@R⌧t⌫
@t>

⌫

= Dfp(X0)R⌧

(30)

Finally

JE =
@f(X,gµ)

@X> = Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@X>

= Dfp(X0)R⌧R⌫

(31)
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It is worth noting that these formulae are modular with respect
to the parametrization chosen for R: changing it will cause only
DR to change. Interior orientation can be easily catered for as
well.
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
hx

z
,
x

z

i>
. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:

JA=
@f(X,g⌫)

@g>
⌫

= Dfp(R⌫X + t⌫)
⇥
(X>⌦ I3)DR⌫ |I3

⇤
(4)

JB=
@f(X,g⌫)

@X> =Dfp(R⌫X + t⌫)R⌫ (5)

JD=
@f(X,gµ)

@g>
⌧

= Dfp(X0)
⇥�

(R⌫X+t⌫)>⌦ I3

�
DR⌧ |I3

⇤
(6)

JC=
@f(X,gµ)

@g>
⌫

=Dfp(X0)
⇥
(X>⌦ R⌧ )DR⌫ |R⌧

⇤
(7)

JE=
@f(X,gµ)

@X> =Dfp(X0)R⌧R⌫ (8)

where X0 = R⌧R⌫X+R⌧t⌫+t⌧ . The blocks JA JC and JD

have dimension 2⇥6, whereas JB and JE has dimension 2⇥3.

4. EXPERIMENTS

Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =

r
v>v

10nm � k

where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
hx

z
,
x

z

i>
. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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have dimension 2⇥6, whereas JB and JE has dimension 2⇥3.

4. EXPERIMENTS

Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =
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v>v
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
hx

z
,
x

z

i>
. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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have dimension 2⇥6, whereas JB and JE has dimension 2⇥3.

4. EXPERIMENTS

Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =
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v>v
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
hx
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. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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where X0 = R⌧R⌫X+R⌧t⌫+t⌧ . The blocks JA JC and JD

have dimension 2⇥6, whereas JB and JE has dimension 2⇥3.

4. EXPERIMENTS

Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =
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v>v
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
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Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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where X0 = R⌧R⌫X+R⌧t⌫+t⌧ . The blocks JA JC and JD

have dimension 2⇥6, whereas JB and JE has dimension 2⇥3.

4. EXPERIMENTS

Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =
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v>v
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for

Figure 2. Primary structure of the CRO-BBA Jacobian for a
block of 2 nadir cameras, 8 oblique and 3 tie-points.

The primary structure of the Jacobian of the classical BBA is
composed of blocks of two types, which we will call JA and
JB , that contain respectively the derivatives of the collinearity
equations with respect to (wrt) image orientation and wrt 3D
point. In the case that we are examining in this paper, which
will be referred in the following as “Constrained Relative Ori-
entations BBA” or CRO-BBA for short, only the nadir images
give rise to this type of blocks, whereas oblique images (whose
orientation is linked to the nadir image) lead to three new blocks
(Fig. 2):

• JC collects the derivative of the residual in the oblique
images wrt the nadir orientation;

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation;

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates.

We assume that the oblique images relative to the same nadir
image are consecutive and ordered consistently.

Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (Magnus, Neudecker, 1999),
which we will briefly review in App. A. After some rewriting
(reported in App. C) one ends up with the following formulae
for the non-zero blocks of the CRO-BBA Jacobian:

JA=
∂f(X,gν)

∂g>
ν

= Dfp(RνX+ tν)
[
(X>⊗ I3)DRν |I3

]
(4)

JB=
∂f(X,gν)

∂X> =Dfp(RνX+ tν)Rν (5)

JC=
∂f(X,gµ)

∂g>
ν

=Dfp(X′)
[
(X>⊗Rτ )DRν |Rτ

]
(6)

JD=
∂f(X,gµ)

∂g>
τ

= Dfp(X′)
[(
(RνX+tν)

>⊗ I3
)
DRτ |I3

]
(7)
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JE=
∂f(X,gµ)

∂X> =Dfp(X′)RτRν (8)

where X′ = RτRνX+Rτtν+tτ . The blocks JA, JC and JD
have dimension 2×6, whereas JB and JE have dimension 2×3.

Using these formulae, we implemented CRO-BBA in MAT-
LAB adopting camera reduction (Brown, 1958) and the Levem-
berg-Marquardt optimization strategy for free-network adjust-
ment. Levemberg-Marquardt is a variation of Gauss-Newton,
where a diagonal term is added to the Hessian matrix. By
changing the weight of this term the algorithm can dynamically
move between pure Gauss-Newton and gradient descent, im-
proving convergence basin and speed (Börlin, Grussenmeyer,
2013). Moreover, this diagonal matrix (a.k.a. damping term)
has a regularization effect that restores the full rank of the Jac-
obian matrix, thereby implicitly removing the datum defect (Triggs
et al., 2000). Classical BBA is obtained by switching off relat-
ive orientation constraints in our MATLAB implementation.

4. EXPERIMENTS

Let k be the number of cameras that compose the multi-head
system, let m be the number of nadir images (the total number
of images is km), and n be the number of tie-points. The BBA
residual is the 2kmn × 1 vector v whose entries are given by
xij − f(Xi, gj) for i = 1 . . . n, j = 1 . . . km. While the
RMS (root mean square error) is appropriate when comparing
the results of regression to models with the same degrees of
freedom, in our case one should instead look at the root of the
reference variance - RRV (Kraus, 2007), computed as:

RRV =

√
v>v

`− p (9)

where ` is the number of equations (and the length of v) and p
is the number of unknowns.

If all tie-points were seen in all images ` = 2kmn, but in prac-
tice it is much smaller than that, as it depends on the visib-
ility. As for p, if the oblique images are adjusted as if their
orientations were independent, the system has p = 6km + 3n
unknowns, whereas by enforcing the rigidity, the unknowns re-
duce to p = 6(m + k − 1) + 3n. This means that CRO-BBA
solves a significantly smaller system of equations, with benefits
in computing time and memory footprint.

We performed tests on simulated and real data. Simulation used
3D points and trajectory from a real LiDAR (Light Detection
And Ranging) survey of the city of Udine, Italy (data courtesy
by Helica s.r.l.). We assumed a multi-camera system composed
of five Phase One iXA 180 (10,328× 7,760 pixels, 50 mm focal
length) in a “Maltese cross” arrangement. Angles between the
optical axis of the nadir camera and those of the oblique images
were set to 30◦, whereas the distances between the center of the
nadir and the oblique cameras were 0.20 m. Altitude and shoot-
ing frequency were adapted so as to obtain a lateral overlap
(cross-track between nadir images) of 30%, while the forward
overlap (along track between nadir images) was set to 60%. As
a result, this block consists of 400 images (80 nadir and 320 ob-
lique) and 700 tie-points, with an average of 30 points visible
in each image.

Real data were collected by the Leica CityMapper hybrid sensor
over the city of Heilbronn, Germany (data courtesy by Leica

Figure 3. Real data used for the experiment. Cameras are
represented by blue pyramids, control points are displayed as red

dots (best viewed in color).

Geosystems). Leica CityMapper combines a Hyperion LiDAR
unit (1064 nm wavelength, theoretical ranging accuracy<2 cm)
and a multi-camera system, featuring one nadir-looking camera
head (RGB CCD size 10,320 x 7,752 pixels, NIR CCD size
3,336 x 4,500 pixels, 83 mm focal length) and four 45◦-tilted
camera heads (RGB CCD size 10,320 x 7,752 pixels, 156 mm
focal length). The flight plan was designed using an average
nadir GSD (ground sample distance) of 12 cm, and along-across
overlaps of 80% and 60%, respectively. The selected subset
includes 460 images (92 nadir images and 368 oblique images)
and covers an area of ca. 3.5 km x 3.5 km over the city centre
(Fig. 3). As ground truth data we employed 49 control points,
surveyed with RTK GNSS with a mean 3D accuracy of 5 cm.

Besides image-space errors, the evaluation considered the RMS
of the residual distances between corresponding 3D points after
least-squares (Procrustean) alignment of i) object points to con-
trol points; ii) COPs (Centre Of Projection) to their known po-
sitions. Please note that all tie-points in the simulated experi-
ments are also control points and that COPs are not known in
real experiments2.

Since our BBA/CRO-BBA produce free-network solutions and
the alignment transformation is a similitude, any non-Euclidean
deformation of the model generated by BBA/CRO-BBA is re-
vealed (in object-space) by the alignment residuals.

4.1 Simulated data

To carry out the simulation, we defined the ground truth ex-
terior orientations on the basis of the flight plan described in
the previous section. Then we projected the object points on
the image planes adding different values of random Gaussian
noise to the image coordinates, choosing as standard deviations
10 logarithmically spaced values from 0.5 to 5.0 pixels. The
initial values of the exterior orientation of nadir images were
obtained by perturbing the ground truth with random Gaiussian
noise with σ = 0.20 m for the position and σ = 0.2◦ for the Euler
angles. Moreover, we added a random noise with σ = 0.05 m
and σ = 0.05◦ to the relative positions and angles of the oblique
cameras, respectively. For each setting the trial was run 100
times.

2 Actually they are known from the onboard GNSS/INS, but their accur-
acy is not sufficient to qualify them as reference values

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-49-2020 | © Authors 2020. CC BY 4.0 License.

 
51



0 1 2 3 4 5

noise std dev [pix]

0

1

2

3

4

5

R
M

S
 r

e
s
id

u
a
ls

 [
p
ix

]

BBA

CRO-BBA

(a)

0 1 2 3 4 5

noise std dev [pix]

0

1

2

3

4

5

R
R

V
 [
p
ix

]

BBA

CRO-BBA

(b)

Figure 4. Image-space errors: RMS of the residuals and Root of
Reference Variance (RRV) for BBA and CRO-BBA vs image

noise. RRV is equal to the standard deviation of the image noise.

Figure 4(a) shows that the RMS of the reprojection errors (av-
eraged on the 100 trials) is slightly larger for CRO-BBA, while
the RRV is practically the same and it is also equal to the stand-
ard deviation of the noise added to the image points, as one
should expect. Concluding that CRO-BBA is worse than un-
constrained BBA on the basis of the reprojection errors (Sun
et al., 2016), however, is wrong, because the latter has more
degrees of freedom (d.o.f.) than the former, being thus more
capable of reducing the residuals by over-fitting (i.e., fitting the
noise). Indeed, when the d.o.f. of the model are taken into ac-
count with RRV (Fig. 4(b)), the two are perfectly equivalent in
terms of image-space errors.
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Figure 5. Object-space errors: RMS of the alignment residuals
computed on control points (a) and COPs (b) vs image noise.

The advantages of the CRO-BBA can be appreciated from the
object-space errors, i.e. the alignment residuals wrt control
points (Fig.s 5 and 6). These plots clearly show (with a con-
fidence close to 100% according with the t-test) that the uncon-
strained BBA produces a less accurate estimate of object points
and COPs. The error can be shifted from COPs to object points
by dealing differently with the datum defect, but the essence of
this result does not change.

For CRO-BBA, errors affecting control points and COPs are
comparable (please note the different scales of y-axes for Fig.
5a and 5b). BBA on the other hand does not impose constraints
among the COPs of the same multi-camera, that are free to
move: this results in an increased error of the COPs.

In a practical scenario, these residual non-Euclidean deforma-
tions would have been compensated for by ground control points,
and this is why this effect is seldom detected: using a model
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Figure 6. Object-space errors for control points (a) and COPs (b)
for 0.5 pixels noise standard deviation. In (a) points are sorted by
decreasing ray-multiplicity. This figure is best viewed in colour.

with a number of d.o.f. in excess is balanced by additional con-
straints.

In Figure 6(b) one might notice that with BBA the first 80 COPs
have larger errors. As a matter of fact, the first 80 indices cor-
respond to nadir images, and the average error over them is
0.123 m, while the average error on oblique images is 0.084
m. The two distributions are different with a confidence very
close to 100% according to the t-test. So, ignoring relative ori-
entation constraints affects the localization of the nadir images
more than the one of oblique images.

Please note that in Fig. 6(a) the points are sorted by decreasing
ray-multiplicity, and the errors follow consistently: the lowest
error is achieved by the points with highest ray-multiplicity.

4.2 Real data

In the experiments with real data we used 3DF Zephyr to extract
and match SIFT-like features and fed these image correspond-
ences to our BBA/CRO-BBA. For the interior parameters, we
adopted the values reported in the calibration certificate of the
system. Then we computed the errors as in the previous cases,
with the difference that the COPs are unknown and that the (49)
control points are only a subset of the (8049) tie-points. The
RRV is 1.02 pixel for BBA and 1.04 pixel CRO-BBA, while
the object-space errors wrt control points are shown in Fig. 7(a),
where it can be appreciated that the CRO-BBA produces more
accurate results than BBA. The RMS of the object-space errors
is 0.20 m for BBA and 0.14 m for CRO-BBA, and the t-test con-
firm that the two distributions are indeed different with 99.85%

0 10 20 30 40 50

control points

0

0.1

0.2

0.3

0.4

0.5

0.6

o
b

je
c
t-

s
p

a
c
e

 e
rr

o
r 

[m
]

CRO-BBA

BBA

(a)

1 2 3 4

camera

0.5

1

1.5

2

2.5

3

o
b
liq

u
e
 C

O
P

 o
ff
se

t 
[m

]

CRO-BBA
BBA

(b)

Figure 7. Results of the experiment with real data. (a)
Object-space errors for control points; (b) Box plot of the
oblique COP offsets. This figure is best viewed in colour.
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confidence. This experiment is in agreement with the previous
simulations: enforcing relative constraints is beneficial in terms
of errors in object-space, notwithstanding the image-space error
(RRV) is approximately the same.

Figure 7(b) is a box-plot of the statistics of the offsets from the
COP of one oblique image to the COP of the corresponding
nadir image, after BBA and after CRO-BBA (in the latter case
the values are constant). As we do not know the calibrated ref-
erence values, this can be taken as an indicator of the precision
of the COP localization achieved by BBA. Please note that the
scale of y-axis is in meters.

5. CONCLUSIONS

We investigated bundle adjustment with constrained cameras,
i.e., where the orientation of certain cameras is expressed rel-
atively to others, and these relative orientations are part of the
unknowns.

Despite some authors suggest that enforcing relative orienta-
tion constraints degrades the accuracy of the results, we argued
that indeed this is not the case. On the contrary, exploiting the
rigidity of the system reduces the number of unknowns and im-
proves the accuracy, when correctly measured. Experiments
with simulated and real data confirm that image-space errors is
not significant to discriminate between the two solutions (with
and without relative orientation constraints), while the object-
space errors demonstrate that the unconstrained solution is af-
fected by severe deformations that impact on the accuracy of
the result.

The bottom line is that there is no reason to drop relative orient-
ation constraints in the BBA of image blocks with (synchron-
ized) oblique multi-camera system.
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A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn → Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for
matrix functions Rn×q → Rm×p the question naturally arises
how to order the mnpq partial derivatives, for this can be done
in many ways. (Magnus, Neudecker, 1999) argue that the fol-
lowing notation should be used, for a number of good reasons,
the most important being that it allows to use the chain rule.

Definition 1 Let F be a differentiable m× p real matrix func-
tion of a n× q matrix of real variables X . The Jacobian matrix
of F at X is the mp× nq matrix

DF (X) =
∂ vecF (X)

∂(vecX)>
. (10)
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where vec(A) is the column vector obtained by stacking the
columns of A. Note that (10) also defines the Jacobian matrix
for vector functions of vector variables.

Definition 4 reduces the study of matrix functions of matrices to
the study of vector functions of vectors, since it allows F (X)
and X only in their vectorized forms. However, the idea of
arranging the partial derivatives into a matrix (rather than a
vector) is sometimes useful, so we will retain the expression
∂F (x)
∂x

for a function F : R → Rm×p. It is worthwhile no-
ticing that DF (x) and ∂F (x)

∂x
contain the same partial derivat-

ives, but in ∂F (x)
∂x

they are arranged in a m× p matrix, whereas
DF (x) = vec ∂F (x)

∂x
.

The following theorem transforms the problem of finding the
Jacobian matrix of a matrix function into the problem of finding
its differential (denoted by d), which is generally easier.

Theorem 1 (Identification theorem) The following two equa-
tions are equivalent:

d vecF (X) = A(X) d vecX (11)

DF (X) = A(X). (12)

The vec operator has some interesting properties in connection
with the Kronecker product ⊗, in particular:

vecAXB = (B> ⊗A) vecX. (13)

This formula and the identification theorem imply that:

D(AXB) = (B> ⊗A) (14)

Theorem 2 (Chain rule) Let F : Rn×q → Rm×p and
G : Rm×p → Rr×s be differentiable functions. If the com-
posite function H(X) = G(F (X)) is differentiable at X0, its
Jacobian matrix is

DH(X0) = (DG(Y0))(DF (X0)) (15)

where Y0 = F (X0).

B. DERIVATIVES OF THE EULER ROTATION
MATRIX

Let u = [u1, u2, u3]
> be a unit vector, and ϑ be an angle. The

matrix representing the rotation by ϑ around the axis u is given
by the Rodriguez formula:

R(ϑ,u) = (I + sinϑ[u]× + (1− cosϑ)[u]2×) (16)

where

[u]× =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 . (17)

Let us now consider the customary representation of rotations
with the three Euler angles ω, ϕ, κ:

R(ω, ϕ, κ) = R(κ, e3)R(ϕ, e2)R(ω, e1) (18)

where ei is the i-th element of the canonical base.

We will now determine the derivative of a rotation matrix wrt
the Euler angles:

DR = DR(ω, ϕ, κ) =
[
vec

∂R

∂ω
, vec

∂R

∂ϕ
, vec

∂R

∂κ

]
. (19)

Let us first establish the derivative of a rotation around a given
axis. From the Rodriguez formula one gets:

∂R(ϑ, û)

∂ϑ
=

d sinϑ

dϑ
[u]× − d cosϑ

dϑ
[u]2×

= cosϑ[u]× + sinϑ[u]2×

(20)

Let us focus, e.g., on the first the angle ω that represents a rota-
tion around e1 = [1, 0, 0]>:

∂R(ω, ϕ, κ)

∂ω
= R(κ, e3)R(ϕ, e2)

∂R(ω, e1)

∂ω

= R(κ, e3)R(ϕ, e2)(cosω[e1]× + sinω[e1]
2
×)

(21)

The derivation for
∂R(ω, ϕ, κ)

∂ϕ
and

∂R(ω, ϕ, κ)

∂κ
is similar. The

reader might want to compare these derivative to those reported
by (Lucas, 1963), which were based on the observation that
(e.g.) ∂R(ω,e1)

∂ω
= R(ω, e1)[e1]×.

C. DERIVATIVES OF THE COLLINEARITY
EQUATIONS

Before working out the derivative of the function f defined in
(2), let us establish the Jacobian of the projection function fp
by differentiating it element-by-element:

Dfp(W) =

[
1
z

0 − x
z2

0 1
z
− y
z2

]
, W> = [x, y, z]; (22)

We now proceed to derive the expression for the non-zero blocks
of the BBA Jacobian, using the formalism outlined in App. A.
Blocks JA and JB correspond to nadir images, and they are
easily derived:

JA=
∂f(X,gν)

∂g>
ν

=
∂fp(W)

∂W>

∣∣∣∣
W=RνX+tν

∂(RνX+ tν)

∂g>
ν

=Dfp(RνX+tν)
[
(X>⊗ I3)DRν |I3

]
(23)

JB=
∂f(X,gν)

∂X> =
∂fp(W)

∂W>

∣∣∣∣
W=RνX+tν

∂(RνX+tν)

∂X>

=Dfp(RνX+tν)Rν

(24)

As for the blocks related to oblique images, let us derive first
with respect to the relative orientation

JD =
∂f(X,gµ)

∂g>
τ

=

[
∂f(X,gµ)

∂[α, β, γ]

∂f(X,gµ)

∂t>τ

]
(25)
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Let X′ = RτRνX+Rτtν + tτ , then

∂f(X,gµ)

∂[α, β, γ]
= Dfp(X′)∂(RτRνX+Rτtν+tτ )

∂[α, β, γ]

= Dfp(X′)∂(Rτ (RνX+tν))

∂[α, β, γ]

= Dfp(X′)
(
(RνX+tν)

>⊗ I3
)
DRτ

(26)

and also

∂f(X,gµ)

∂t>τ
= Dfp(X′)∂(RτRνX+Rτtν+tτ )

∂t>τ

= Dfp(X′) ∂tτ
∂t>τ

= Dfp(X′)I3

(27)

Now we derive with respect to the nadiral orientation:

JC =
∂f(X,gµ)

∂g>
ν

=

[
∂f(X,gµ)

∂[ω, ϕ, κ]

∂f(X,gµ)

∂t>ν

]
(28)

where

∂f(X,gµ)

∂[ω, ϕ, κ]
= Dfp(X′)∂(RτRνX+Rτtν+tτ )

∂[ω, ϕ, κ]

= Dfp(X′)∂RτRνX
∂[ω, ϕ, κ]

= Dfp(X′)(X> ⊗Rτ )DRν

(29)

and

∂f(X,gµ)

∂t>ν
= Dfp(X′)∂(RτRνX+Rτtν+tτ )

∂t>ν

= Dfp(X′)∂Rτtν
∂t>ν

= Dfp(X′)Rτ

(30)

Finally, for the 3D point:

JE =
∂f(X,gµ)

∂X> = Dfp(X′)∂(RτRνX+Rτtν+tτ )

∂X>

= Dfp(X′)RτRν
(31)

It is worth noting that these formulae are modular with respect
to the parametrization chosen forR: changing it will cause only
DR to change. Interior orientation can be easily catered for as
well.
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