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ABSTRACT:

Automated recognition of terrain structures is a major research problem in many application areas. These structures can be invest-
igated in raster products such as Digital Elevation Models (DEMs) generated from Airborne Laser Scanning (ALS) data. Following
the success of deep learning and computer vision techniques on color images, researchers have focused on the application of such
techniques in their respective fields. One example is detection of structures in DEM data. DEM data can be used to train deep
learning models, but recently, Du et al. (2019) proposed a multi-modal deep learning approach (hereafter referred to as MM) prov-
ing that combination of geomorphological information help improve the performance of deep learning models. They reported that
combining DEM, slope, and RGB-shaded relief gives the best result among other combinations consisting of curvature, flow ac-
cumulation, topographic wetness index, and grey-shaded relief. In this work, we approve and build on top of this approach. First,
we use MM and show that combinations of other information such as sky view factors, (simple) local relief models, openness, and
local dominance improve model performance even further. Secondly, based on the recently proposed HR-Net (Sun et al., 2019), we
build a tinier, Multi-Modal High Resolution network called MM-HR, that outperforms MM. MM-HR learns with fewer parameters
(4 millions), and gives an accuracy of 84.2 percent on ZISM50m data compared to 79.2 percent accuracy by MM which learns with
more parameters (11 millions). On the dataset of archaeological mining structures from Harz, the top accuracy by MM-HR is 91.7

percent compared to 90.2 by MM.

1. INTRODUCTION

Deep Learning (DL) techniques have gained a lot of popularity
in many research fields. They are used to learn abstract repres-
entations of their inputs. The representations are exploited for
solving a problem, or reaching a decision. The inputs, type of
representation, and the decision could vary depending on the
task. For example, deep learning models learn compressed,
low dimensional vector representations (features) of an input
image in order to produce a class label (decision) for it. DL
models have achieved outstanding results in image classifica-
tion (Voulodimos et al., 2018), object detection (Zhao et al.,
2019), speech recognition (Nassif et al., 2019), medical ima-
ging analysis (Kumar and Bindu, 2019) and neural machine
translation (Stahlberg, 2019), among others. Researchers in re-
mote sensing community use DL methods to extract useful in-
formation from hyperspectral images, LIDAR, and Radar data,
to name a few (Zhu et al., 2017). In this work, we focus on ap-
plications of DL techniques for pattern recognition in Airborne
LiDAR or ALS data. ALS refers to measuring the travel time
for a light pulse emitted from a flying laser beam and reflected
back from the ground (Shan and Toth, 2008; Farid et al., 2008).
The recorded measurements in ALS point cloud data are not
uniform. They are dense for certain locations, and sparse for
others, essentially making them unstructured. Many DL mod-
els are adapted well to structured data such as images or videos.
Therefore, it is advantageous to create regular raster grids such
as DEMs from the ALS point clouds which could be fed to DL
models for training (Guiotte et al., 2020). Values represented
by DEM cells however show either absolute distance from the
terrain to the acquisition device or relative elevations based on
a reference surface, and in cases where the shape of objects and
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structures are relevant regardless of how high or low of a terrain
they are located at, only elevations relative to neighboring cells
matter. Therefore, while training a DL model with DEM data,
it is necessary to apply some preprocessing techniques such as
local normalization or scaling (Torres et al., 2019). There ex-
ist multiple raster data visualizations created from DEMs that
help scientists visually inspect interesting patterns and struc-
tures. Each visualization is produced by calculating the values
of grid cells relative to the elevations in the neighboring cells
only. Examples include slope, RGB-shaded relief, Curvature,
Flow Accumulation (FA), Topographic Wetness Index (TWI),
and Grey-Shaded Relief (GSR). While these visualizations are
created to make features visually perceptible by humans, stud-
ies show their positive impact in recognition of patterns with
DL techniques as well. Du et al. (2019) used a multi-modal ap-
proach (MM) for landform recognition and reported the most
effective combination to be DEM, slope and RGB-shaded re-
lief. The goal of this research is to study the effects of other
such visualizations, either individually or combined with oth-
ers, on the performance of DL models for detecting patterns.

Our contributions are two-fold. First, we use the MM approach
and show that combination of other raster products such as Simple
Local Relief Model (SLRM), Sky View Factor (SVF), Local
Dominance (LD), Positive Openness (POS), and Negative Open-
ness (NEG) helps deep learning models to perform even better,
and detect objects with higher accuracy. Secondly, we build a
multi-modal high resolution network (referred to as MM-HR)
based on High Resolution Net (Sun et al., 2019) that has fewer
parameters compared to MM, and gives a higher prediction ac-
curacy.

To validate the performance of MM, and MM-HR, both models
are trained and tested under the same settings on the ZISM50m
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dataset provided by Du et al. (2019). We calculate SVF, SLRM,
NEG, POS, and LD from the original dataset' and make them
available online?. We also run experiments on our own dataset
collected from Harz, Lower Saxony with the same raster data
variations and similar settings.

The rest of the paper is designed as follows. Section 2 lists
related work. Section 3 describes the contributions of this re-
search, followed by the experiments in Section 4. Results of
the experiments and discussions are included in Section 5, and
finally Section 6 concludes this study and points out future re-
search in this direction.

2. RELATED WORK

Deep learning techniques, especially Convolutional Neural Net-
works (CNNs), became popular after AlexNet (Krizhevsky et

al., 2012) won the ImageNet classification challenge (Russakovsky

et al., 2015). AlexNet consists of a series of convolutional and
max pooling layers, followed by two dense layers, and a fi-
nal classification layer. The final layer uses a softmax func-
tion producing class probabilities for a given image. There
have been many improvements in image classification using
CNNs after AlexNet. Simonyan and Zisserman (2014) intro-
duced VGGNet which uses smaller convolutional kernels and
strides, and more layers leading to faster training time and bet-
ter generalization. He et al. (2016) introduced residual learn-
ing in the ResNet model which facilitates adding more layers
and non-linearities for learning complex mappings between the
input and output while not harming simpler mappings, if any.
Szegedy et al. (2014) proposed inception modules which rather
than using one fixed-size kernel, use multiple kernels with dif-
ferent sizes to account for the variability in the size of import-
ant features in an image. DenseNet is proposed by Huang et
al. (2017) which uses the output of each layer as input to every
subsequent layer, contrary to previous approaches that only feed
the output of one layer only to the following layer. This leads to
higher prediction accuracy with reduced number of parameters.
Other examples include Xception (Chollet, 2016), MobileNets
(Howard et al., 2017; Sandler et al., 2018), and EfficientNet
(Tan, Le, 2019). Most of the previous methods perform down-
sampling, i.e., max pooling or striding, to reduce the resolu-
tion of the features and increase efficiency. As a result a lot of
information is lost during the process. Recently High Resol-
ution Network (HRNet) (Wang et al., 2019; Sun et al., 2019)
was proposed that maintains high resolution, and produces rich
semantic representations of the input through multiple parallel
high and low resolution convolution and consistent exchange
of information among them. This high resolution representa-
tion has proved to be superior for many tasks in computer vis-
ion such as semantic and instance segmentation, and object de-
tection. If classification is intended, only the final outputs of
multiple parallel convolutional branches are downsampled to
be given to a classifier.

In addition to their success in natural images, deep learning
techniques have been widely used in pattern recognition from
ALS raster data. Many researchers use DEM as input data. For
example Marmanis et al. (2015) use DEM to train a deep clas-
sification model for above-ground objects in urban area, Torres
et al. (2018) apply deep learning to identify mountain sum-
mits in DEM data, and Politz et al. (2018) and Kazimi et al.

! http://www.adv-ci.com/download/geomorphology/
2 https://seafile.cloud.uni-hannover.de/d/17ce9a0f343e415aaff1/

(2019a,b) explore detection of archaeological objects with deep
learning. Patterns in DEM, especially smaller changes, are not
easily visually comprehensible by the human eye. Other raster
derivatives such as SLRM, SVF, POS, NEG, and LD help make
the DEM patterns understandable. Kokalj and Hesse (2017)
give detailed explanations and examples of previously men-
tioned raster derivatives created from DEM, but we give a short
description of the ones we use in this research in Section 2.1
below:

2.1 ALS raster data derivatives

e Simple Local Relief Model (SLRM): SLRM is calculated
by smoothing the original DEM, extracting points that are
similar in both, the original and the smoothed DEM, and
finally subtracting it from the original DEM. It is used to
remove the major features in a DEM and highlight small
structures such as those in archaeological mining (Gallwey
etal., 2019).

e Local Dominance (LD): LD is the steepness angle of a
point relative to its surrounding surface, calculated for a
specified radius around the point. LD is suitable for pro-
truded features such as barrows, and also deep features
such as hollow ways.

e Sky View Factor (SVF): SVF for a point is calculated re-
lative to its surrounding points within a specified radius
to show what portion of the sky is visible. SVF is well
suited for archaeological structures such as mining sink-
holes (Kokalj, Hesse, 2017).

e Openness: Openness is calculated using the mean zenith
or mean nadir angles for a certain point relative to its sur-
rounding points within a defined radius. Mean zenith angle
defines Positive Openness (POS), and mean nadir angle
defines Negative Openness (NEG) (Doneus, 2013). While
POS highlights protruded features such as rims in bomb
craters, and ridges between hollow ways, NEG highlights
deep features such as the actual hollow ways.

Since the aforementioned raster derivatives can help identify
structures, they should be helpful in automatic learning tasks
as well. Gallwey et al. (2019) used raster products such as
SLRM, POS and NEG separately to train deep learning mod-
els for detection of mining pits. Other researchers used SLRM
for their deep learning tasks (Trier et al., 2019; Verschoof-van
et al., 2019). Recently, Du et al. (2019) conducted experiments
and proved that the addition of other rasters in a multi-modal
fashion improve deep learning models’ performances. They re-
port combining DEM with RGB-shaded relief, and slope lead to
a higher accuracy in classification using a multi-modal learning
approach explained in detail in Section 2.2.

2.2 Multi-Modal network

The MM network by Du et al. (2019) takes n input types and
extract features for each of them in parallel. It then fuses the
extracted features together and uses them to classify the given
inputs. The parallel feature extractors for each input type works
better than using a single feature extractor where all input types
are fed together. This is because rather than extracting general
features for the input types as a whole, extracting distinct fea-
tures individually for all input types help the following layers
discriminate objects and structures better. The overall architec-
ture of the MM model is shown in Figures 1, 2, and 3.
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The current paper builds on top of the MM approach, exploring
better raster alternatives, and a better multi-modal network for
this purpose, details of which are given in Section 3.1.
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Figure 1. Architecture of the MM model. M and n denote the
number of classes and input raster types, respectively. The
feature extractor module is illustrated in Figure 2. Conv Block
Type 2 is shown in Figure 3
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Figure 2. Feature extractor for the MM model shown in Figure
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Figure 3. Convolutional Block Type 2 for the MM model shown
in Figure 1.

3. METHOD

The main contribution of this research is proposing a multi-
modal high resolution network referred to as MM-HR. It fol-
lows the idea of MM, but extends it to a simpler version of the
recently proposed HRNet model proposed by Sun et al. (2019).
Additionally, we propose and confirm the use and efficiency
of other raster derivatives such as SLRM, SVF, LD, POS, and
NEG for multi-modal learning tasks. Details of the proposed
MM-HR model are given in Section 3.1.

3.1 Multi-Modal High Resolution network

The MM-HR model we propose follows the approach used in
MM for feature extraction. The layers following feature fusion
have the same structure as that of HRNet (Sun et al., 2019), but
with fewer number of blocks and layers, and fewer parameters.
MM-HR, similar to HRNet, does not downsample features in
the layers after concatenation of the parallel feature extractor
outputs. It rather maintains the high resolution throughout the

network till the end, before feeding it to a classification layer.
Not downsampling leads to reduced loss of information, and
better prediction. The MM-HR architecture is illustrated in Fig-
ures 4,5, 6, and 7.
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Figure 4. Architecture of the MM-HR model. M and n denote
the number of classes and input raster types, respectively. The
feature extractor module is illustrated in Figure 5. Convolutional
Block and Residual Block are shown in Figures 6 and 7
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Figure 6. Convolutional Block for the MM-HR model shown in
Figure 4. f depends on the number of input filters to the block.
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Figure 8. Examples of different raster derivatives for a fluvial landform.
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Figure 9. Examples of different raster derivatives for bomb craters from Harz.

Experiments are conducted training and evaluating both models
under the same settings on both, ZISM50m and Harz dataset,
details and results of which are given in Sections 4 and 5.

4. EXPERIMENTS

4.1 Data

For this research, we use two datasets. The first one is ZISM50m
dataset provided by Du et al. (2019). It contains examples of six
typical landform categories including aeolian, arid, loess, karst,
fluvial, and periglacial from central China. There are 8400 ex-
amples (1400 for each category) in this dataset which are di-
vided into 80, 10, and 10 percent splits for training, validation,
and test set, respectively. The data has a resolution of 50 meters

per pixel. Each example is around 600x600 pixels, which rep-
resents a region of 900 km>. For memory restrictions and to
speed up the experiments, we resize each example to 224x224
pixels each during training.

The second dataset is DEM acquired from the Harz Region in
Lower Saxony which includes examples of archaeological min-
ing structures such as bomb craters, charcoal kilns, barrows,
and mining sinkholes. The DEM has a resolution of 0.5 meters
per pixel. There are 1107 bomb craters, 1042 charcoal kilns,
1293 barrows and 2666 mining sinkholes. Each example has a
size of 256x256 pixels. This dataset is divided into 80, 10, and
10 percent for training, validation, and testing, respectively.

With the available DEMs from both datasets, we calculate other
raster products such as SVF, SLRM, LD, POS, Slope, RGB-
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Figure 10. Top 10 accuracies among different combinations for both models.

shaded relief, and NEG using the Relief Visualization Tool-
box (Kokalj, Somrak, 2019). An example of fluvial landform
from ZISM50m dataset is shown in Figure 8, and an example
of bomb craters from Harz is illustrated in Figure 9 .

4.2 Multi-Modal learning

To observe the effects of different raster products on detection
of structures using deep learning, we use different combina-
tions of 6 raster products: SVF, SLRM, LD, POS, NEG, and
the origital DEM. The 6 raster products can form 63 different
combinations without repetition. They include single products
and combinations of two, three, four, five, and finally six raster
derivatives. Additionally, we use the best combination: RGB-
shaded relief, slope and DEM , reported by Du et al. (2019).
Thus, we run both models 64 times each.

For the Harz data, we use SVF, SLRM, LD, POS, NEG, DEM,
RGB-shaded relief, and slope. Due to time constraints, we only
try combinations of 1, 2, and 3 raster derivatives. Consequently,
we run both models 92 times each on the Harz data. The results
are detailed in Section 5.

4.3 Model training

Both models discussed in Section 3 are trained, and evaluated
using the exact same settings, and on both datasets . The imple-
mentations are in Python using the Keras (Chollet et al., 2015)
library. Models are trained to minimize sparse categorical cross
entropy, aiming for the maximum categorical accuracy. Optim-
ization function is stochastic gradient descent with the learning
rate of 0.00001 and momentum of 0.9. Training is done using
two GPUs for 100 epochs and batch size of 50 on ZISM50m
data. The number of training epochs and batch size for Harz
dataset are 50 and 32, respectively. Parameters leading to max-
imum accuracy on validation data during training are saved to
disk, and used for evaluation on the test data.

5. RESULTS AND DISCUSSION

In this section, we first evaluate and compare the performances
of both methods: MM and MM-HR on the two datasets. Ad-
ditionally, we compare both methods in terms of computation
and memory efficiency.

5.1 Detection performance

To compare the results of combinations of different raster de-
rivatives, and the performance of both models, we first run the
MM model on each (of the 64) combinations and calculate its
accuracy on the test data. We sort the accuracies in descending
order and show the corresponding accuracy achieved for each
combination using the MM model on both datasets in Figures
10a and 10c. We only show the results for top 10 for visibility.

It is observed in Figure 10a that the highest accuracy by MM is
79.2% achieved with the combination of 5 raster types, namely
DEM, NEG, POS, SLRM, and SVF. It is followed by combin-
ation of fewer features with a slightly lower accuracy, 78.3%.
Combination of RGB-shaded relief, DEM, and SLOPE which
was reported to have the highest accuracy in the study by Du et
al. (2019) gives the 5th best accuracy, 77.5%.

It is also observed that almost for all the combinations, the ac-
curacy produced by MM-HR is higher than that of MM. The top
accuracy by MM-HR (91.7%) on Harz dataset is achieved using
POS and SVF which is also higher than that of MM (90.2%)
using DEM, RGB and slope. In Figures 10b and 10d, we il-
lustrate the top 10 accuracies by MM-HR in a sorted manner.
As illustrated in Figures 10e and 10f, MM-HR can output pre-
dictions with a higher accuracy using solely the DEM on both
datasets. For further comparison, the confusion matrices by the
best performing combination with both models on both data-
sets are shown in Figure 11. Numbers 0 to 5 indicate classes:
aeolian, arid, loess, karst, fluvial, and periglacial, respectively
for ZISM50m. For Harz, numbers 0 to 3 represent bomb craters,
charcoal kilns, mining sinkholes and barrows, respectively, In
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Figure 11. Confusion matrices.

the cells excluding the final row and column, the number at the
top shows the either the number of correctly classified example
(indicated by white) or that of incorrectly classified examples
(indicated by red). The number at the bottom shows the per-
centage of its contribution to the total accuracy shown in the
bottom right cell. The last row shows precision (P) and the last
column shows recall (R) for each category.

5.2 Efficiency

In addition to giving a higher prediction accuracy as detailed in
Section 5.1, MM-HR model has fewer parameters compared to
that of MM model, making it almost 3 times smaller in size. On
the other hand, since the feature extractor in MM downsamples
features rapidly, and into very small resolutions compared to
the gradual downsampling and high resolution features in MM-
HR, MM model requires less memory than that of MM-HR and
runs faster. Details of model parameters for both models are
given in Table 1.

Model Trainable | Non-trainable | Total
MM 10,814,598 | 768 10,815,366
MM-HR | 4,021,446 7,968 4,029,414

Table 1. Parameters for both models. The parameters are for 3
parallel feature extractor modules for both models with input
channels of 3, 1, and 1.

6. CONCLUSION AND OUTLOOK

In this research, we conducted experiments to see the effect
of including other raster derivatives LRM, SVF, LD, POS, and
NEG in addition to the commonly used DEM, in detection of
structures using deep learning. We based our experiments on
the recently proposed MM approach by (Du et al., 2019), and
showed that the best accuracy (79.2%) is achieved by using
combinations of DEM, NEG, POS, SLRM and SVF on ZISM50m
data. The best accuracy by MM on Harz data is 90.2%. Addi-
tionally, we build a multimodal high resolution network, MM-
HR, that is based on the High Resolution Network (Sun et al.,
2019) and learns with fewer parameters (4 millions) than MM
(11 millions). It produces a higher accuracy (84.2%) than that
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of MM (79.2%) on ZISM50m data. The MM-HR accuracy
(91.7%) is also higher than that of MM (90.2%) on Harz data.
Classification methods are good when the desired task is to de-
termine the existence of an object in a given location. However,
if accurate location and boundaries of objects are expected, then
we need to create models that perform pixel level predictions
and give bounding box coordinates. Therefore, future research
in this direction includes extension of the MM-HR approach for
semantic and instance segmentation.
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