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ABSTRACT:

Automated semantic interpretation of 3D point clouds is crucial for many tasks in the domain of geospatial data analysis. For this
purpose, labeled training data is required, which has often to be provided manually by experts. One approach to minimize effort in
terms of costs of human interaction is Active Learning (AL). The aim is to process only the subset of an unlabeled dataset that is
particularly helpful with respect to class separation. Here a machine identifies informative instances which are then labeled by humans,
thereby increasing the performance of the machine. In order to completely avoid involvement of an expert, this time-consuming
annotation can be resolved via crowdsourcing. Therefore, we propose an approach combining AL with paid crowdsourcing. Although
incorporating human interaction, our method can run fully automatically, so that only an unlabeled dataset and a fixed financial budget
for the payment of the crowdworkers need to be provided. We conduct multiple iteration steps of the AL process on the ISPRS Vaihingen
3D Semantic Labeling benchmark dataset (V3D) and especially evaluate the performance of the crowd when labeling 3D points. We
prove our concept by using labels derived from our crowd-based AL method for classifying the test dataset. The analysis outlines that
by labeling only 0.4% of the training dataset by the crowd and spending less than 145 $, both our trained Random Forest and sparse
3D CNN classifier differ in Overall Accuracy by less than 3 percentage points compared to the same classifiers trained on the complete
V3D training set.

1. INTRODUCTION

In recent years Machine Learning (ML) techniques, especially
Convolutional Neural Networks (CNNs), have gained more and
more importance in the field of geospatial analysis of 3D point
clouds. Whether for automated semantic segmentation (Wein-
mann et al., 2015; Niemeyer et al., 2014; Qi et al., 2017) or object
detection in 3D point clouds (Feng et al., 2019; Yang et al., 2018)
ML techniques can be applied. Reasonable applications can be
found in filtering ground points for Digital Terrain Model gener-
ation (Hu and Yuan, 2016), reconstruction of 3D city models and
surrounding awareness in context of autonomous driving. The
training of such networks, however, usually requires enormous
amounts of annotated data, to which semantic meaning has been
assigned in the form of a so-called label. However, in the case of
geodata, especially in three-dimensional space, only a few such
data sets are available. In order to be able to use corresponding
classification approaches efficiently also in the domain of the au-
tomatic interpretation of geodata, it is necessary to optimize the
labeling process for setting up the training data set for this special
data.

This can be achieved by Active Learning (AL) (Kovashka et al.,
2016; Mackowiak et al., 2018). In Wortman Vaughan (2018),
the AL process is referred to as a hybrid intelligence system
where a machine interactively works with a human to combine
the strengths of both parties. The aim is to process only the sub-
set of the previously unlabeled data that is particularly helpful in
terms of better class separation. Using a ML algorithm, the ma-
chine identifies informative instances, which are afterwards being
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annotated by a so-called oracle and added to the training pool. So,
in a hybrid sense, the machine relies on input of a human anno-
tator, thereby increasing its own performance. Therefore, such
”human-in-the-loop” systems (Branson et al., 2010) are an ef-
ficient means to significantly reduce the label effort as recently
shown in Kellenberger et al. (2019). Nevertheless, labels have
to be provided manually, which is often done by experts. Since
the labeling process is a very tedious and therefore costly task,
there is an increasing interest in solving such simple label tasks
by crowdsourcing.

Crowdsourcing comprises the idea of outsourcing tasks from a
small group of specialists to an unknown large group of work-
ers (Hetmank, 2013). However, incentives need to be offered to
the crowdworkers. While they may be motivated by fascination
or fun at work in case of voluntary contribution, the incentive
can as well be given by payment. One prominent example in the
context of Volunteered Geographic Information (VGI) is Open
Street Map (OSM), where the incentive is given by collabora-
tively building up a publicly available product (Budhathoki and
Haythornthwaite, 2012). In case of paid crowdsourcing, plat-
forms such as Amazon Mechanical Turk (Buhrmester et al., 2011)
can be used in order to offer a job to the crowd and manage pay-
ment, boni etc. However, the tasks need to be easy enough so that
non-experts are capable of resolving it. In the context of estab-
lishing the ImageNet dataset (Deng et al., 2009) it was already
shown that crowdsourcing can be very well applied for label-
ing RGB-imagery showing everyday life scenes. In detail, every
image preselected via search engines was presented to multiple
crowdworkers in order to check whether the image is labeled cor-
rectly by usage of majority vote.
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In case of geospatial data, we are dealing with scenes rather un-
known to common crowdworkers such as aerial images, where an
unfamiliar perspective is inherent. Walter and Soergel (2018) an-
alyzed the performance of the crowd when digitizing objects from
aerial images in specific classes such as streets, buildings and
forests. However, engaging crowdworkers for 3D data, places
even higher demands on the crowd, since the interpretation of 3D
data viewed on a 2-dimensional screen requires a distinct spatial
imagination. Herfort et al. (2018) investigated the applicability
of volunteered crowdsourcing for 3D point clouds by asking the
crowd whether a given subset of a point cloud around a possible
tree position contains noise in terms of points of other objects and
which kind of objects. Furthermore they asked the crowdworkers
to determine the height of the trunk of the trees by moving a plane
to the top of the trunk. To the best of our knowledge this work
is the only one investigating crowdsourcing for 3D point cloud
analysis so far.

In this paper, we propose a paid crowd-based AL approach for
efficient labeling of most informative points of a 3D point cloud
from Airborne Laserscanning (ALS) data, which are afterwards
used to train a classifier. This approach comprises a total of three
different kinds of crowd jobs using several custom web-based
tools as well each requiring a different level of skill. These jobs
are important for initializing and conducting the AL pipeline by
(1) requesting the crowd to pick sample points for each class, (2)
control these samples by other independent crowdworkers and
(3) asking the crowd for labels of specific complex-to-interpret
points inhering most information in context of the AL procedure.

2. METHODOLOGY

In this section, we present our approach for establishing a highly
informative training pool from a given ALS point cloud (section
2.2) in a fully automated process chain (section 2.1). This method
consists of three sequential types of tasks outsourced to the crowd
each requiring a suitable web-based tool, so that crowdworkers
can easily accomplish them (section 2.3). Furthermore, these
tasks need to be assigned to the crowd using a proper platform
for hiring and managing crowd jobs (section 2.4).

2.1 Crowd-based AL Pipeline

The basic idea of this work is based on the principle of AL (Set-
tles, 2009), which aims at reducing the training data annotation
effort. In contrast to passive learning, where an already labeled
data set is provided to the classifier, here the interaction of the
classifier with an operator during the labeling process is in focus.
Specifically, the classifier actively selects points to be added to
the training data set due to their high information content, start-
ing from a initial training data set of small size. Since these se-
lected points have to be processed manually, the machine is de-
pendent on the input of an operator. In order to not only reduce
the costly deployment of an expert, but to avoid it altogether, the
approach of a purely crowd-based acquisition process is pursued
in this work. The special feature is that, although human interac-
tion is necessary in this process, it can be fully automated, since
informative instances are automatically queried using a ML algo-
rithm. From perspective of an employer, labeling these instances
by a crowdworker can be compared with calling a function within
a program. Posting a task on a crowdsourcing platform, retriev-
ing results and paying crowdworkers can be accomplished using
a programming interface (API). This allows realizing fully au-
tomated processes where parts of the task are performed by hu-
mans. Thus an employer only has to provide a point cloud from

which the training data set is to be extracted, as well as the budget
for the remuneration of the crowdworkers. The basic workflow is
visualized in Figure 1.

Start

End

Crowd

informative
samples

derive

offered to

offered to

add
labeled

data
Random Forest

classify train

AL
loop

labeled data

unlabeled data

training
pool

control

Figure 1. Crowd-based Active Learning pipeline.

In order to provide the previously mentioned first training data
set, the first task of each crowdworker is to label a representative
point for each defined class (see Figure 2 (a)) from a given point
cloud. Yet the obtained labels, typically have a rather low infor-
mation content. This is due to the fact that informative points in
feature space as well as in object space are primarily located at the
decision boundaries (Ertekin et al., 2007). However, paid crowd-
workers generally are prone to maximize their income, maybe
even by means of dishonesty (Wortman Vaughan, 2018), while
minimizing the required time. Therefore, crowdworkers typically
tend to select points further away from class boundaries because
they can be easily and quickly assigned to a class.

However, it has to be expected that points may be labeled falsely.
Either the crowdworker does not manage to find a point of the re-
spective class or simply wants to quit the task as soon as possible.
These misclassifications are quite harmful to the performance of
the upcoming classifier. Because the crowdworkers are free to
decide which point to provide for a class, it is likely that no point
will be used by more than one crowdworker. Therefore, in the
context of this task no reasonable controlling mechanism can be
applied. As a remedy each labeled point of the first stage of ini-
tializing will be presented to another crowdworker, so that he is
controlling the result of the first crowdworker. This task itself
is quite easy to accomplish since the outcome is only a binary
decision. Especially when proposing easy and maybe repeating
tasks to the crowd the danger of crowdworkers choosing answers
randomly in order to speed their operation time rises (Gadiraju
et al., 2015). Therefore controlling mechanisms in the form of
control samples need to be realized as well, so that malicious
crowdworkers can be identified and hence their control job does
not influence the pipeline. After the initialization, we assume to
have a pool of correctly classified samples for each class, so that
a first training pool containing all manually labeled points can be
established.

As next step, this training pool is used to train a classifier. For the
sake of clearness, for training, we provide the full point cloud to
the classifier so that we can derive meaningful features based on
point neighborhoods for our few labeled points. The task of the
classifier is twofold. First, it predicts labels for each remaining
unlabeled point, whereby a first complete classification is given,
however of still low quality. Second, and that is more important to
our purpose, based on this class prediction the classifier identifies
those points that can only be classified with low reliability so far,
whether because such a point was not part of the first training set
or it is a point near the decision boundary. These are precisely
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those points with a high information content that are to be added
to the training pool.

The design of the query function for detecting such points is key
in order to increase the performance of the model by building
up a diverse training set. According to Settles (2009) the most
common selection strategies are uncertainty sampling and query-
by-committee. While uncertainty sampling is based on the a pos-
teriori probability P (c|x) that point x belongs to class c mea-
sured most commonly in terms of entropy, in query-by-committee
a pool E of e distinct models in an ensemble classifier can be used
for measuring informativeness as disagreement among different
models. In this context Argamon-Engelson and Dagan (1999) in-
troduced Vote Entropy VE (equation 1).

VE = −
∑
c

∑
e D(Pe, c)

NE
· log

∑
e D(Pe, c)

NE

where D(Pe, c) =

{
1, if argmax(Pe) = c

0, otherwise

(1)

Each member e of the ensemble E predicts an a posteriori prob-
ability for each class c which is stored in Pe. Based on Pe every
committee member favors one specific class which is seen as the
vote of this model. All votes are afterwards summed per class
and then normalized by the number of the ensemble members
NE and inserted into Shannon’s entropy formula (if no ensemble
member votes for a specific class, i.e.

∑
e D(Pe, c) = 0, VE

is not increased). The main advantage of VE over averaged en-
tropy of committee members is, that points having low maximum
a posteriori probabilities, are not necessarily selected as long as
every member is still voting for the same class. In order to pro-
vide such an ensemble classifier we rely on the Random Forest
(RF) (Breiman, 2001). For this RF classifier we are using both
geometric and radiometric features as described in Kölle et al.
(2019) and Haala et al. (2020).

This combination of RF and query function establishes an effi-
cient automated process for sampling n valuable points for man-
ual labeling in contrast to randomly sample points. Based on the
selection strategy either one instance having the greatest VE in
each iteration step (stream-based AL) or a small pool containing
primitives having the n top VE -values (pool-based AL) can be
selected. Since stream-based AL is not efficient in the context
of our approach, the top n points with highest VE will be pro-
posed again to the crowd as third type of crowd task. Here, the
crowdworkers are asked to label exactly these shown points (see
Figure 1) which may be more complex for crowdworkers to la-
bel since often such points are lying on the border between two
classes both in feature space and 3D object space. Again, this
task can be controlled easily by including control jobs.

After labeling these highly informative samples by the crowd, the
points are added to the training pool in order to re-train the RF
for classifying the remaining data. This process is repeated iter-
atively so that the training data set is built up step by step from
points with a high information content, with the aim of gradually
increasing the performance of the classifier. The iteration is con-
tinued until the result corresponds to the desired quality or the
label budget is exhausted. An interpretation of this concept is a
teacher showing his student how to perform tasks, whereas the
student asks for help whenever difficult, new tasks appear. The
student in AL is the machine and the ML algorithm respectively.
The teacher, the oracle, is a human annotator, who in our case is
represented by the crowd.

2.2 Dataset

For all our experiments we are using the ISPRS Vaihingen 3D
Semantic Labeling (V3D) dataset (Niemeyer et al., 2014) con-
taining suburban area typical for western world countries. The
point density is about 4 − 8 pts/m2. In order to increase famil-
iarity of the point cloud data to the crowdworkers we are coloriz-
ing the points by orthogonal projection of an orthophoto received
from the author of Cramer (2010). One problem of this proce-
dure is, that shadows are mapped onto the points and of course
all points occluded by others are colored suboptimally by the oc-
cluding color. Regarding dynamic objects such as cars an addi-
tional issue occurs due to deviant acquisition times of the LiDAR
data (Aug 21st, 2008) and the imagery (Aug 6th, 2008).

2.3 Task Design

This section briefly discusses the implementation of our three
types of crowd-based acquisition tools and what the crowdwork-
ers are asked for. Since we aim to reach a vast pool of motivated
crowdworkers, such tools need to be made accessible via the in-
ternet. These web-based tools are implemented in HTML and
Javascript based on the three.js library (Cabello, 2019) for basic
website layout and interactive functionality respectively. These
websites are hosted on our server relying on PHP for server com-
munication such as distributing the correct dataset to the crowd-
worker and managing the submitted results.

2.3.1 Type A: Point Picking and Labeling. As mentioned in
section 2.1, for initializing the AL process, every crowdworker is
asked to mark one point for each class (see Figure 2 (a)). In order
to ease navigation in the point clouds and minimize loading time,
the complete point cloud is split in multiple subsets, each offered
to the crowd. The main window on the left side is dedicated to the
visualization of the given point cloud subset, while on the right
side controls are situated. For better navigation, whenever the
cursor hovers over the point cloud, it is rotating slowly around
z-axis but at any time the crowdworker is able to navigate on his
own by rotating, panning or zooming. Except for zooming, nav-
igation is only allowed while in viewing mode. As soon as the
crowdworker enters picking mode the point cloud is fixed so that
a point corresponding to the checked button can be selected with-
out accidental movement. All selected points are indicated by an
arrow colored same as the respective button. If the crowdworker
has nevertheless selected a point by accident or wants to change
his selection this point can as well be removed. As soon as one
representative of each class has been selected, the crowdworker
is allowed to submit the task.

2.3.2 Type B: Control Labeling. The second web tool is de-
signed for controlling the points proposed by the first group of
crowdworkers. Therefore as shown on the left of Figure 2 (b), a
selected and labeled point is displayed including its surrounding
points within a radius of 50 m in order to preserve context which
is essential for interpretation. The selected point itself is indi-
cated in yellow and further highlighted by a yellow arrow. The
crowdworker is asked whether the highlighted point belongs to
the class stated by a worker of the first stage. In order to assist
the crowdworker, a typical representative of the respective class
is given including a brief description. Since every worker con-
trols the labeling job of another one of the first stage, this job
consists of a total of nine points (one for each class). For evalu-
ating the performance of every crowdworker, we further include
control jobs. For this we provide three points, one labeled cor-
rectly, two falsely which are evenly distributed in every crowd
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(a) Point Picking and Labeling.

(b) Control Labeling.

(c) Label Most Informative Samples.

Figure 2. Web-based tools used by crowdworkers. Every website
further contains brief instructions and an example.

job. Furthermore the first point to be checked is a control point
which is repeated as last point in order to check consistency of
the answers. Therefore, every job requires 13 answers.

2.3.3 Type C: Label Most Informative Samples. The third
web tool we employed, is dedicated for labeling most informative
samples selected by our classifier in each iteration step of the AL
procedure. As seen in Figure 2 (c), the basic layout of this tool
is according to Type B, whereas crowdworkers are asked to se-
lect the class of nine shown points by clicking the corresponding
button. Again, control points are included, distributed the same
as for Type B. Each crowdworker is controlled by the same three
rather easy to label points which need to be provided by the em-
ployer.

2.4 Employing the Crowd

In order to hire crowdworkers we are using the Microworkers
platform which has been analyzed in detail in Hirth et al. (2011).
According to Weblabcenter Inc. (2019) the platform provides ac-
cess to an international workforce of about 1.4 million workers
who are categorized in different groups such as Top Performers,
All EU Workers, Top EU Workers etc. As soon as a task is posted
and the resulting fees are transmitted to Microworkers, the task
is active and all crowdworkers of the specified group are allowed
to work on this task. Within the instructions on Microworkers we
provide the URL to our web tool hosted on our server. After com-
pletion of the task, crowdworkers receive a proof code generated
on our website which is required for receiving payment. By us-
ing Microworkers we are able to conduct our experiments based
on real crowdworkers we did not train or instruct. Therefore the
results of all experiments, although of course depending on the
participating crowdworkers, can be considered as generalized.

3. RESULTS

Within this section our results of applying the AL pipeline on the
V3D dataset are presented. Although, within our AL pipeline
data collection and learning from this data are incorporated, we
first evaluate the labels provided by the crowd in section 3.1,
whereas in section 3.3 the results of the AL pipeline are discussed
which are however depending on the performance of the crowd.

3.1 Performance of the Crowd

We conducted a total of ten crowd campaigns (2 for initializa-
tion and 8 AL iteration steps) comprising 1016 (100 for picking,
100 for controlling and 102 per iteration step) tasks of labeling
respectively controlling of 3348 (100 · 9 classes + batch size of
306 · 8 iteration steps) 3D points. Every task was assigned to the
Top Performers group of Microworkers consisting of more than
2000 active workers.

In the context of picking points for each class freely (section
2.3.1), the crowd achieved a quite low Overall Accuracy (OA) of
56.44%, what is to be expected since in this first step labels are
directly given by single crowdworkers without any Ground Truth
(GT) inference or controlling mechanisms. However, this crowd
job serves as a first indicator for the capabilities of the crowd to
distinguish different classes in 3D point clouds. The normalized
confusion matrix is visualized in Figure 3 (a). In total 900 points
have been labeled (100 tasks each asking for one point for each
class). The matrix shows that points of other classes have often
been erroneously labeled as Powerline. Since this class is natu-
rally quite rarely represented in ALS point clouds, crowdworkers
may not have managed to find a true point or at least not in a short
time and therefore just selected randomly in order to finish the
task. It can also be observed that crowdworkers have difficulties
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Figure 3. Normalized confusion matrices for all three types of conducted crowd jobs.

distinguishing between vegetation classes such as Fence/Hedge,
Shrub and Tree. While differentiation between a small tree and a
shrub is already demanding for experts, it is even more compli-
cated for crowdworkers because most of them are biased by typ-
ical vegetation in their home countries which can be quite differ-
ent to western vegetation types. For example a fence surrounding
an estate may be unknown to them and therefore confused with
Shrub. Confusion between Car and Impervious Surface is due
to the fact that the timestamps of acquiring the point cloud and
the imagery used for colorization are not identical. Therefore, an
unheedful crowdworker might label impervious surface as Car
since plane street is colored as a car.

As a successive step, we carried out a controlling crowd job in
order to improve the overall labeling accuracy. As already men-
tioned in section 2.3.2 control points were included in order to
check how well the individual crowdworker performs. In this
context we define four quality categories for the workers. Cate-
gory 4 means the control label occurring twice as consistency test
is answered same and correct. In Category 3 and 2, Category 4 is
fulfilled and one more control point is passed whereby the con-
trol sample for Category 2 is more complex. In Category 1 all
control jobs are passed. The allocation of the crowdworkers to
the categories is delineated in Table 1, where number of workers
is defined as all workers fulfilling at least minimum requirements
of this category.

Category # of workers Control OA [%] Label OA [%]

4 87 71.39 68.23
3 73 72.60 70.02
2 25 74.67 71.79
1 22 75.25 71.97

Table 1. Allocation of crowdworkers to quality categories and
corresponding Control OA (binary) and Label OA (multi-class).

Table 1 shows, that the number of high quality workers for this
task is quite low since only about a quarter of all workers is as-
signed to Category 1 and 2. However, for the initialization of the
AL pipeline it is essential to provide correct samples. Therefore,
we only rely on workers of at least Category 2. The controlling
assignments of these workers achieve an OA of 74.67%.

All points detected as labeled falsely by this second campaign
are eliminated as well as all labels controlled by workers of Cat-
egory 3 or worse. Of course, this procedure causes a loss of po-
tentially correct labels given in the first campaign. However, for
initialization only a small pool of correct samples for each class
is required. By this control job the OA of the crowd labeling is in-
creased from 56.44% to 71.79%. The corresponding confusion
matrix in Figure 3 (b) demonstrates that the amount of confused
labels between already mentioned classes is only decreased par-
tially. Therefore, we decided to merge classes the crowd seems
not to be able to distinguish reliable. Classes of middle and high
vegetation, namely Fence/Hedge, Shrub and Tree are merged to
Mid- and High Vegetation. Due to the sparse distribution of class
Powerline in the V3D dataset we also omit class Powerline and
unite it with class Roof. So, we are focusing on classes which
have proven to be suitable for acquisition by crowd. By this, we
increase the OA for the crowd labeling to 88.59% and therefore
provide a reasonable training dataset for initialization of the AL
pipeline.

The last type of crowd job is labeling of most informative sam-
ples queried in the AL procedure (section 2.3.3). In each itera-
tion step we use an experimentally determined batch size of 306
points having highest VE , which are offered to the crowd, so that
a total of 34 jobs are available (9 points per job). For controlling
the crowd two mechanisms are applied. First, we are again in-
cluding 4 control samples (see section 2.3.3). In order to get a
high quality labeling result we only consider submitted jobs from
workers of Category 1. Therefore, we are rejecting and automat-
ically reposting those of lesser quality. Second, every point is
labeled three times by different crowdworkers. From this multi-
ple acquisition the true label is afterwards inferred via majority
vote, which has proven as a simple but robust measure (Zhang
et al., 2016). So, only if two or more workers labeled a point
identically, we add it to the training pool. Following this strategy,
the resulting labels are not only given by a single person as of-
ten done by one expert. Although in crowdsourcing the problem
of label bias is as well present for individual workers, it can be
mitigated (Wauthier and Jordan, 2011).

All labeled points gained in the course of the AL process are after-
wards compared to the reference, resulting in an OA of 88.87%.
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The corresponding confusion matrix in Figure 3 (c) outlines con-
fusion between classes Impervious Surface and Low Vegetation.
This is due to the fact that the exact border between these classes
is difficult to spot in the point cloud and exact labeling is even
demanding for an expert. A second problem an expert can over-
come due to his knowledge and interpretation ability of the data,
are shadowed surfaces. The crowd on the other hand tends to se-
lect Low Vegetation for shadowed street points. Moreover crowd-
workers often mistake points lying exactly on the border between
Roof and Façade. This mismatch is rather an issue of definition.
Furthermore points belonging to Mid- and High Vegetation are
often allocated to other classes. It seems that crowdworkers as-
sign all points they can not clearly match to a specific class to
Mid- and High Vegetation. This behavior is however understand-
able since in such cases the local distribution of the neighboring
points is typically extremely sparse and additionally often char-
acterized by an irregular point distribution typical for vegetation.
Labeling such points is as well highly demanding for an expert
who may only determine the correct class by referring to corre-
sponding imagery.

At this point, we want to state that the afore-mentioned accuracy
can be reached after manual inspection of the reference data of
V3D and correction of in our opinion falsely labeled points espe-
cially occurring at class borders (labels of 308 points were cor-
rected). According to the authors of Rottensteiner et al. (2014)
V3D has been labeled by one student assistant. So as a side ef-
fect, our approach can also be used in order to verify labels of a
given point cloud. For the sake of completeness, using the origi-
nal GT an OA of 79.66% is reached.

3.2 Statistics of all Campaigns

Besides the quality of the results, another critical factor is time
required for a task and total running time of a complete campaign
which is as well depending on payment as shown in Walter and
Soergel (2018). The statistics of all campaigns are presented in
Table 2.

Campaign
mean time/ campaign paym./
task [min] time [h] task [$]

Point Picking 6.42 23.60 0.10
Control Labeling 4.70 17.20 0.12
Iteration ∅ 2.53 14.80 0.10 + 0.05

Table 2. Statistics of all conducted crowd campaigns.

According to the mean time a worker spent on a task, the picking
job is as expected the most time-consuming since here crowd-
workers have to navigate within the point cloud to search for
points of each class. A striking fact is that workers spent more
time on the controlling job than on labeling complex points. This
indicates that labeling a point cloud from scratch may be easier
or more intuitive than checking a given label. Since operating
time per worker for all AL iteration steps shows a standard devi-
ation of only 0.2 min, in terms of time spent on labeling complex
points, points of all classes have the same level of complexity.
The mean time of 14.8 h for such a campaign may be decreased
by posting jobs not only to Top Performers but to a bigger group.
Due to a quite harsh quality control mechanism we decided to
provide a bonus of 0.05 $ to all workers passing all tests (see sec-
tion 2.3.3) as monetary incentive. In total we have spent 144.40 $
(100 · 0.10 $ + 100 · 0.12 $ + 102 · 8 · 0.15 $) for establishing
the training dataset. Furthermore we evaluate the countries of ori-
gin of all crowdworkers who have participated in our campaigns.

Figure 4 validates the findings of Hirth et al. (2011), stating that
the crowdworkers using Microworkers are mainly situated in low
wage countries.

Bangladesh 27%

Serbia 17%

India 11% Indonesia 3%
Turkey 3%

Morocco 3%
Sri Lanka 3%

Kenya 3%

Mauritius 3%

Poland 3%

Venezuela 3%
Belarus 2%

Czech Republic 2%
Italy 2%

Other 15%

Figure 4. Countries of origin of all crowdworkers participating in
our campaigns.

3.3 Results of AL Pipeline

Figure 5 presents the actual class affiliations of queried points
within the AL process. As previously mentioned, most informa-
tive samples are located along class borders. This is also implic-
itly shown in Figure 5. For instance, in the first iteration step,
points representing Low Vegetation and Impervious Surface are
queried. These two classes are adjacent both in feature and ob-
ject space. This means the classifier wants to learn how to dis-
tinguish between these two classes and where to put the decision
boundary between them in feature space. This behavior of select-
ing points lying on borders between classes holds for all iteration
steps. The classifier seems to especially focus on distinguish-
ing between two classes per step, which are up to now difficult
to separate, for example Roof vs. Façade in the second itera-
tion step and Car vs. Impervious Surface in the third step. This
is observable until the fourth iteration step. Afterwards the un-
derlying classes of queried points are more equally distributed.
This means, that the machine knows how to distinguish between
different classes in general and now has to focus on especially
complex samples which are spread among classes.

In basic AL, all points queried by the classifier are labeled by
an omniscient oracle giving a perfect labeling. Since in our case
this oracle is given by the crowd, as an inherent challenge of our
approach, our labels at each step are not perfect. This can be due
to poor crowdworkers, various interpretation of data by the crowd
mainly based on the crowdworkers’ cultural origin, suboptimal
GT inference or simply complex-to-label points even an expert
cannot label with high confidence. From section 3.1 we already
know that the OA of the crowd is 88.87%. In Settles (2009) the
question was risen to what degree AL works with noisy labels. In
the context of this study, we try to provide an answer for AL in
geospatial 3D point interpretation.

Figure 6 represents the progress of F1-scores (Goutte and
Gaussier, 2005) of all classes for initialization and every itera-
tion step evaluated on the test site of V3D, which is completely
unknown to the classifier. It can be seen that the gradual addition
of informative points labeled by the crowd to the training pool
initially leads to a rapid increase in OA, which flattens out more
and more until iteration step 8. This behavior together with the
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Figure 5. Relative amount of selected points per class and iteration step queried within the AL pipeline.
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Figure 6. Achieved F1-scores per class (dotted) and OA (solid) of
the RF for the test set of V3D in the process of 8 iteration steps.

fact that the classifier only selects remaining classification uncer-
tainties spread among classes, as already observed in Figure 5,
causes us to terminate the iteration. Altogether, the OA has been
optimized starting from a quite low value of 52.19% only us-
ing samples of the initialization to an OA of 85.82% including
most informative samples. It can be clearly seen that in every it-
eration step especially classes for which labeled points are added
to the training pool profit, but appending labels always leads to
an impact on all classes. A remarkable behavior is observable
in iteration step 3 where OA decreases marginally. Here, mainly
labels for class Car are queried so that the F1-score of this class
increases significantly. Since class Car is underrepresented in the
point cloud, the performance of other classes is reduced because
now in the training dataset this class is overrepresented.

In order to demonstrate the efficiency of our approach, we op-
pose the result of the automated classification via RF using our

acquired sparse training pool to the outcome of using the com-
plete training dataset of V3D. Table 3 shows that relying on our
highly informative instances instead of the complete V3D train-
ing set leads to a difference in OA of less than 3 percentage points
after only 8 iteration steps. This roughly holds for the F1-scores
of all classes equally. Since the RF was already involved in set-
ting up the training pool, we demonstrate general applicability
of our derived training dataset by using it to train a deep neural
network. For this, we apply a 3D submanifold sparse convolu-
tional network (SSCN) as used in Schmohl and Soergel (2019).
Although such networks usually rely on huge training datasets,
Table 3 outlines, that this classifier performs quite similar to the
employed RF for the sparse training set. In terms of efficiency,
these results support our approach of relying on less labels but
carrying valuable information due to their nature on lying close
to the decision border in contrast to using a vast label pool of
redundant typical samples.

We want to stress that the accuracies based on our crowd-based
training pool are achieved without using any labels from the V3D
benchmark and by only labeling 0.4% of available 3D points of
the V3D training site by the crowd. This classification result has
been achieved by only giving the unlabeled training dataset and a
budget of about 145 $ as input.

4. CONCLUSION AND OUTLOOK

In this paper we have shown that extracting a sparse training pool
providing most informative training samples can be acquired in
a fully automated process by means of the crowd in combination
with ML techniques. This is accomplished by a hybrid approach
both incorporating automatic selection of these samples and man-
ual labeling of them by the crowd. By using this dataset for train-
ing we have demonstrated that we can significantly reduce label-
ing effort without major loss in classification performance after
only 8 iteration steps. However, for labeling points we have ob-
served that the crowd can not meet arbitrary requirements of the

F1-score [%]

Classifier
Training Low Impervious

Car Roof Façade
Mid-and High

OA[%]
set Vegetation Surface Vegetation

RF
V3D 82.55 91.84 69.85 95.01 62.67 86.15 88.42

CB-AL 79.91 86.69 68.23 93.86 61.57 85.77 85.82

SSCN
V3D 82.48 91.16 75.15 94.89 61.53 87.29 88.39

CB-AL 80.00 88.14 75.20 91.08 57.34 84.72 85.43

Table 3. Comparison of classification results on the test site of V3D when using the given V3D training dataset vs. using labels derived
by our crowd-based AL approach.
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employer. Especially classes representing vegetation are quite
difficult for the crowd to differentiate. In our future work, we
will further analyze the impact of such noisy labels on the clas-
sification process. Most issues in this study rise due to different
time of acquisition of the point cloud and the image data. But
since modern LiDAR sensors are commonly equipped with imag-
ing systems as well, this problem is likely to be avoided in recent
datasets. While the point density of the V3D dataset is often re-
alized in national mapping, in UAV-based acquisition campaigns
a far higher point density can be achieved (Haala et al., 2020).
We assume that labeling such dense datasets is less demanding
for crowdworkers and opens up the possibility of acquiring more
detailed structures such as façade and roof information.
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