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ABSTRACT:

The semantic segmentation of the huge amount of acquired 3D data has become an important task in recent years. We propose
a novel association mechanism that enables information transfer between two 3D representations: point clouds and meshes. The
association mechanism can be used in a two-fold manner: (i) feature transfer to stabilize semantic segmentation of one representation
with features from the other representation and (ii) label transfer to achieve the semantic annotation of both representations. We
claim that point clouds are an intermediate product whereas meshes are a final user product that jointly provides geometrical and
textural information. For this reason, we opt for semantic mesh segmentation in the first place. We apply an off-the-shelf PointNet++
to a textured urban triangle mesh as generated from LiDAR and oblique imagery. For each face within a mesh, a feature vector
is computed and optionally extended by inherent LiDAR features as provided by the sensor (e.g. intensity). The feature vector
extension is accomplished with the proposed association mechanism. By these means, we leverage inherent features from both data
representations for the semantic mesh segmentation (multi-modality). We achieve an overall accuracy of 86.40 % on the face-level
on a dedicated test mesh. Neglecting LiDAR-inherent features in the per-face feature vectors decreases mean intersection over union
by ˜2 %. Leveraging our association mechanism, we transfer predicted mesh labels to the LiDAR point cloud at a stroke. To this
end, we semantically segment the point cloud by implicit usage of geometric and textural mesh features. The semantic point cloud
segmentation achieves an overall accuracy close to 84 % on the point-level for both feature vector compositions.

1. INTRODUCTION

The past decade has shown that 3D data acquisition and data
processing has increasingly become feasible and important in
the domain of photogrammetry and remote sensing. Common
representations for 3D data are point clouds, volumetric repres-
entations, projected views (i.e. RGB-D images or renderings),
and meshes. Amongst them, 3D point cloud processing may
currently be the most popular topic – in particular concern-
ing semantic segmentation (cf. section 2). However, textured
meshes as generated from LiDAR point clouds and imagery
have some favorable characteristics. Whereas point clouds are
an unordered set of points, meshes are graphs consisting of
vertices, edges, and faces that provide explicit adjacency in-
formation. Intrinsically, meshes facilitate data fusion by util-
izing LiDAR points and Multi-View Stereo (MVS) points for
the geometric reconstruction while leveraging high-resolution
imagery for texturing (hybrid data storage). Therefore, meshes
are realistic-looking 3D maps of our real world and are easily
understandable – even for non-experts.
Meshes are less memory-consuming than point clouds since
meshing algorithms try to minimize the number of entities. Be-
fore the meshing, point clouds will be filtered in such a way that
only geometrically relevant points are kept. This embraces noise
filtering and filtering of points that can be approximated by a
face (e.g. points on planar surfaces). Furthermore, there will
be geometric simplifications based on the desired level of detail
and, as the case may be, due to 2.5D geometry. Georeferen-
cing issues of LiDAR data and imagery will cause discrepancies
between point clouds and meshes, too. Besides, meshes are sur-
face descriptions that cannot handle multi-target capability like
∗ Corresponding author.

LiDAR point clouds. This inevitably leads to a drop in entities
to be stored. Moreover, the high-resolution texture information
is stored in texture atlases that avoid redundant image content.
Therefore, textured meshes provide geometric and textural in-
formation in a lightweight fashion.
We are aware of the fact that proper meshing of our complex
world is a hard task and still subject to research.

Figure 1. Predicted semantic mesh segmentation utilizing
mesh-inherent and LiDAR-inherent features (left) and its
transferred labels to the dense LiDAR point cloud (right;

subsampled by factor 20 for visualization).
The following class color code is used throughout the paper:
building mass/facade (yellow), roof (red), impervious surface
(magenta), green space (light green), mid and high vegetation
(dark green), vehicle (cyan), chimney/antenna (orange) and

clutter (gray).
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Concerning the recent hybridization trend, from our point of
view, enhancing the core 3D point clouds to textured meshes
may replace unstructured point clouds as default representation
for urban scenes in the future. Nowadays, joint photogrammetric
and LiDAR acquisition (hybrid acquisition) is state of the art for
airborne systems and starts to emerge even for Unmanned Air-
borne Vehicle (UAV)-based systems (Mandlburger et al., 2017;
Cramer et al., 2018). Recently, Glira et al. (2019) proposed
the hybrid orientation of Airborne Laser Scanning (ALS) point
clouds and aerial imagery (hybrid adjustment). The increasing
availability of simultaneously acquired airborne data with differ-
ent acquisition methods calls for multi-modality. First software
solutions already enable data fusion on the mesh-level. For in-
stance, software SURE (version ≥ 3) by nFrames (Rothermel
et al., 2012) produces more complete meshes based on LiDAR
and MVS data. In our opinion, point clouds are not a final
user product. Notwithstanding, textured meshes are a mostly
overlooked topic in the domain of photogrammetry and remote
sensing despite their advantageous characteristics. Very few
works deal with semantic mesh segmentation in urban scenes
(Rouhani et al., 2017; Tutzauer et al., 2019). One of the main
differences between meshes and point clouds is the availab-
ility of high-resolution texture. Tutzauer et al. (2019) show
that available color information is beneficial for semantic mesh
segmentation. More precisely, Laupheimer et al. (2020) attest
that color information per-face (i.e. texture) outperforms color
information per-vertex (like e.g. a colored point cloud) by eval-
uation of several radiometric feature qualities. They achieved to
double the performance gain by utilizing color information of the
entire face instead of per-vertex only. However, they also show
the inherent limitations of texture due to occlusions, absence of
imagery, and the quality of the geometric reconstruction.
For these reasons, we focus our work on meshes and investigate
the semantic segmentation of textured meshes in urban areas as
generated fromLiDARdata and oblique imagery. The additional
usage of LiDAR features may overcome the issues of textural
features. This study utilizes data described in (Cramer et al.,
2018). We briefly present the data acquisition and the derived
labeled mesh in subsection 3.1. We establish a feature-based
pipeline for semantic mesh segmentation. As a result, we can
utilize any arbitrary feature-based approach that allows a simple
extension of the feature vector. Previous work compared differ-
ent classifiers and proved PointNet++ to work best (Laupheimer
et al., 2020). Hence, we utilize a PointNet++ classifier in this
study to accomplish the semantic segmentation.
However, our main contribution is the geometric linking of
(LiDAR) point clouds and meshes. In this work, we propose
a novel association mechanism that allows transferring inform-
ation between (LiDAR) point clouds and meshes. Naturally, the
point density of the LiDAR cloud is higher than the face dens-
ity. That is why the association assigns many LiDAR points
to each face (many-to-one relationship) and injects great flex-
ibility and versatility due to the simple transfer of labels and
features between the two representations. Thereby, we aim to
jointly leverage information from both data representations for
their semantic segmentation. To the best of our knowledge, no
other approach leverages both representations at the same time.
Similarly to squashing point clouds into grid-like representa-
tions, we abuse the mesh as a proxy to semantically segment
point clouds. In subsection 3.3 and subsection 3.4, we describe
in detail the association of LiDAR points and mesh faces along
with the respective particular challenges due to the mentioned
discrepancies between the mesh and the LiDAR point cloud.
The label transfer from one representation to the other may re-
duce the manual labeling effort. Since the dawn of the Deep

Learning (DL) era, ground truth generation has become a very
important task. However, manual ground truth generation is te-
dious and time-consumingwork, specifically for 3D point clouds
consisting of millions of points. We claim that manual mesh
labeling is easier and faster than point cloud labeling due to
fewer entities, visibility checks, and realistic-looking textured
faces. The proposed label transfer offers to boost the genera-
tion of labeled data sets with various representations in a semi-
automatic manner.
Utilizing our mechanism, we enhance per-face feature vectors
with available LiDAR features. Due to the many-to-one rela-
tionship, we calculate the per-face median for LiDAR features.
Subsection 3.2 lists the considered mesh and point cloud fea-
tures. After the semanticmesh segmentation, the predictedmesh
labels will be transferred to the LiDAR point cloud. Hence, we
end up with a labeled mesh and a labeled point cloud by using
available information from both data representations. Figure 1
shows the prediction result for the semantic mesh segmentation
supported by LiDAR features (left) and its transferred prediction
to the LiDAR point cloud (right).
In section 4, we report the best performing parameters for the
association mechanism with respect to the used data. Further-
more, we analyze the benefit of the additional LiDAR features
by comparing the classifier performance with/without LiDAR
support on the face-level and the point-level.
The presented pipeline could be reversed entirely. However,
we argue that semantic mesh segmentation is faster than the se-
mantic point cloud segmentation because the number of points
exceeds the number of faces. Moreover, the one-to-many re-
lationship between face and LiDAR points enables fast label
transfer to the point cloud.

2. RELATED WORK

The semantic segmentation of 3D data has become a standard
task in the domain of photogrammetry and remote sensing. A
large part of the community deals with semantic segmentation
of 3D LiDAR point clouds. In contrast, only a few works deal
with the semantic segmentation of meshes (cf. subsection 2.1).
Regardless of the data representation, DL methods rely on a
huge amount of ground truth data. We briefly review available
ground truth in subsection 2.2.

2.1 Semantic Segmentation of 3D Data

DL methods, particularly Convolutional Neural Networks
(CNNs), are state of the art for semantic segmentation in image
space. Therefore, it seems reasonable to apply well-established
DL methods of the image space to point clouds. However,
the unstructured nature of 3D point clouds prevents to apply
CNNs directly to point clouds. To overcome the non-Euclidean
structure, point clouds are commonly structured into grid-like
3D or 2D representations by voxelization or multi-view render-
ing respectively. Several works voxelize the point cloud and
train a supervised classifier. The predicted labels for the voxels
will be transferred to all contained points (Hackel et al., 2016;
Huang and You, 2016). Detouring via image space, multi-view
approaches leverage well-performing semantic image segment-
ation methods. The per-pixel predictions are back-projected to
3D space (Boulch et al., 2017; Lawin et al., 2017). The grid-like
proxy enables the use of CNNs but comes along with informa-
tion loss due to discretization, occlusions, and projection (which
comes along with loss of geometric information).
The rise of PointNet and its hierarchical successor PointNet++
(Qi et al., 2017a,b) constitutes a milestone in semantic point
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cloud segmentation since they operate directly on unstructured
3D point clouds. The gist of PointNet is to use a symmetric
function that is independent of set permutation. Its extension
PointNet++ hierarchically applies PointNets to the iteratively
subsampled point cloud and, hence, operates on several scales.
This procedure mimics hierarchical feature learning with in-
creased contextual information similar to CNNs in image space.
Likewise, Boulch (2019) introduces continuous convolutional
kernels that can be applied directly to point clouds. Griffiths
and Boehm (2019) review the current state-of-the-art DL archi-
tectures for processing unstructured point clouds.
The emerging field of geometricDL extends basicDLoperations
to non-Euclidean domains such as graphs and manifolds in or-
der to use topological information (Bronstein et al., 2016). Point
clouds do not provide topological information per se. There-
fore, Landrieu and Simonovsky (2017) organize point clouds
in Superpoint Graphs (SPGs). Chang et al. (2018) propose
the Structure-Aware Convolutional Neural Network (SACNN),
a neural network that uses generalized filters, which aggregate
local inputs of different learnable topological structures. To
summarize, the adaption of (geometric) DL methods contrib-
uted to substantial progress in the field of semantic point cloud
segmentation in the last decade.
On the contrary, mesh interpretation has hardly been explored
by the community. In comparison, meshes are a default data
representation in the domain of computer vision. However,
that community typically deals with small-scale (indoor) data
sets (George et al., 2017). By analogy to semantic point cloud
segmentation, common approaches for semantic mesh segment-
ation make a circuit to 2D image space to take advantage of
image-based DL methods. Those approaches render 2D views
of the 3D scene, learn the segmentation for different views and
finally, back-project the segmented 2D images onto the 3D sur-
face (Su et al., 2015). Wu et al. (2015) voxelize the mesh and
apply a convolutional deep belief network. Qiao et al. (2019)
propose a geometric DL approach that encodes the mesh con-
nectivity using Laplacian spectral analysis and aggregates global
information via mesh pooling blocks.
Semantic segmentation of real-world large-scale meshes is a
mostly overlooked topic. Rouhani et al. (2017) gather faces of a
3D texturedmesh as generated fromMVS imagery into so-called
superfacets and train a Random Forest (RF) using geometric
and photometric features. Tutzauer et al. (2019) utilize a DL
approach by training a multi-branch 1D CNN with contextual
features and compare the achieved results to a RF.

2.2 Ground Truth Availability

The computer vision community provides annotated mesh data
for indoor scenes and single objects (Armeni et al., 2017; Shil-
ane et al., 2004). However, to the best of our knowledge, there
are no labeled data sets that cover urban scenes. In contrast,
there are many available labeled urban data sets for 3D point
clouds provided by the community of photogrammetry and re-
mote sensing (Zolanvari et al., 2019; Wichmann et al., 2018;
Niemeyer et al., 2014). Generally, there is a lack of ground truth
data sets that provide point clouds and oriented imagery (and in
this way textured meshes). Therefore, available annotations are
limited to a single representation.
Ramirez et al. (2019) present a virtual reality tool that gamifies
the manual labeling of meshes and point clouds. Our proposed
transfer tool could derive labeled meshes from publicly avail-
able annotated point cloud data and vice versa (provided that
the necessary data is available). Hence, it has the potential to
accelerate ground truth generation for several representations.

3. METHODOLOGY

The core of our work(flow) is the linking of point clouds and
meshes as described in subsection 3.3. For the semantic mesh
segmentation of the used data (cf. subsection 3.1), we represent
each face by a feature vector (cf. subsection 3.2). We trans-
fer LiDAR features to the mesh and extend the mesh-inherent
feature vectors with LiDAR features by utilizing our proposed
association mechanism. We adopt an off-the-shelf PointNet++
to achieve the semantic mesh segmentation with mesh-inherent
and LiDAR-inherent features. Finally, we transfer predicted
mesh labels to the LiDAR point cloud to semantically segment
the given LiDAR point cloud, too. Non-associated points will be
labeled by majority voting of associated adjacent LiDAR points.
The challenges and limitations of the association mechanism are
discussed in subsection 3.4.

3.1 Data Preparation

The simultaneous acquisition and georeferencing of the high-
resolution LiDAR and image data is described in (Cramer et
al., 2018). The data is captured in Hessigheim, Germany, and
covers an area of 800 m × 300 m. The ALS data consists of up
to 800 points/m2 for the entire area. The Ground Sampling Dis-
tance (GSD) of the oblique aerial images is ˜2.5 cm. Tutzauer et
al. (2019) derived a textured 2.5D mesh by fusing the simultan-
eously acquired ALS data and oblique imagery with software
SURE 2 from nFrames. A GSD of 5 cm is used for meshing.
Due to the high density of the LiDAR point cloud and the relat-
ively low resolution and overlap of oblique imagery, Tutzauer et
al. (2019) refrained from an integrated geometric reconstruction
from LiDAR and MVS. To this end, the mesh geometry purely
relies on the LiDAR point cloud. The oblique images have been
used for texturing.
For the time being, we choose the 2.5Dmesh for this work due to
its relatively simple and fast generation which comes along with
fewer faces compared to a 3D mesh. This fact is beneficial for
fast semantic segmentation of the mesh. Moreover, compared
to 3D meshing, 2.5D meshing is rather simple, unambiguous,
and independent from the used meshing algorithm. Currently, a
lot of research is done for proper 3D meshing. The 2.5D nature
calls for a robust association of LiDAR point clouds and meshes
like discussed in subsection 3.4 and serves as adequate test data.
Another aspect that must not be neglected is the availability of
ground truth annotations for the textured 2.5D mesh. Manual
labeling is described in (Tutzauer et al., 2019). The considered
classes are (relative class frequencies for the considered data
are given in parentheses): building mass/facade (9.28 %), roof
(6.34 %), impervious surface (5.67 %), green space (5.97 %),
mid and high vegetation (63.38 %), vehicle (0.83 %), chim-
ney/antenna (0.31 %) and clutter (8.22 %). The rejection class
clutter gathers all faces that do not match the other classes. After
the manual labeling, the data set is split into mutually exclusive
sets dedicated to training, validation, and testing. Through-
out this paper, we report results only for testing tile A which
consists of 270k labeled faces (Tutzauer et al., 2019). The tile
refers to 40M LiDAR points. In order to process data with
the PointNet++ architecture, we partition the data into spatially
overlapping tiles. The tiles cover an area of 50 m × 50 m and use
an 80 % overlap. A detailed description of the network-specific
data preparation is given in (Laupheimer et al., 2020).

3.2 Per-Face Feature Vector Composition

We represent each face by its Center of Gravity (COG) attached
with a 1D feature vector. We refer to this as "COG cloud" that
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can be treated like a common point cloud. Hence, we can apply
classifiers that have been designed for point clouds originally.
However, the COG cloud is not a common point cloud since
it still benefits from inherent mesh properties like the availab-
ility of high-resolution texture and adjacency knowledge. One
strength of the feature-based representation is its flexibility. The
per-face feature vector can be composed arbitrarily and exten-
ded with LiDAR features. By these means, multi-modality is
achieved easily. To do so, we first have to establish the one-to-
many relationship between faces and LiDAR points (cf. subsec-
tion 3.3).
In this work, we limit ourselves to representation-inherent fea-
tures in order to reduce computation overhead. Additionally, we
rely on per-face features only. We do not use contextual features
or other sophisticated handcrafted features since deeper feature
analysis is not the focus of this work. Notwithstanding, our ap-
proach can be extended easily by other handcrafted features. In
our investigations we consider the mesh-inherent per-face fea-
tures normal vector and median HSV. The normal vector is the
cross product of face edges. The median HSV is derived from
associated pixels in the texture atlas. We choose HSV space
to be independent of illumination conditions. Furthermore, we
incorporate LiDAR features by leveraging our proposed asso-
ciation mechanism. We use LiDAR-inherent features that are
directly provided by the sensor: intensity and return number
(not to be confused with number of returns, which is the total
number of returns for a given pulse). The latter may attract
your attention since the mesh is a surface description where the
return number should be constant for all faces. However, reality
shows that vegetational areas may not only be associated with
first pulses (cf. Figure 2, top), since our association mechanism
may assign non-canopy points to the faces due to thresholding.
However, such points could be filtered easily by their return
number. Without filtering, return number may improve the pre-
diction of vegetational classes.

Figure 2. Per-face features (top: median return number,
center: median intensity, bottom: median RGB).

Blue indicates low values; red high values.

Due to the many-to-one relationship between LiDAR points and
mesh face, we have to aggregate the associated LiDAR points
per face. For each face, we calculate the median values for
the features of the associated LiDAR points since it retains real
measurements and is robust against outliers.
To summarize, for each face, we construct a multi-modal 1D
feature vector consisting of mesh-inherent features (geometry
and radiometry) and additional LiDAR-inherent features. All
features are normalized according to statistics of the training
set. Figure 2 depicts the test mesh with its faces colored by
associated LiDAR features and median RGB.

3.3 Associating LiDAR Point Cloud and Mesh

Each face (represented by its COG) is assigned with LiDAR
points that represent the same surface. The association mechan-
ism operates in three steps per COG: (i) clipping of the LiDAR
point cloud to a spherical vicinity, (ii) filtering of out-of-face
LiDAR points, and (iii) filtering of off-the-face LiDAR points
(Figure 3). Out-of-face points are points that are not enclosed
by the face borders when projected orthogonally onto the face
plane. Off-the-face points do not coincide with the face plane,
i.e. they are below or above the face surface. Such points exist
due to the simplification during the meshing, the 2.5D mesh
geometry, and the representation type differences as discussed
in section 1. These two groups are not mutually exclusive. We
filter these two groups with the help of barycentric coordinates,
which enable a fast execution based on vector algebra. For
each face, we parameterize the respective vertices vi and the po-
tentially associated LiDAR points with barycentric coordinates.
Each face is defined by its vertices v1 = (1,0,0), v2 = (0,1,0)
and v3 = (0,0,1). Any point p on the face plane is parameter-
ized with barycentric coordinates bi by p = b1v1 + b2v2 + b3v3.

(i)

(ii) (iii)

Figure 3. Steps (i) - (iii) of the association mechanism.
(i): Clipping of the LiDAR point cloud (black dots) to the
vicinity (blue sphere) of the considered face. Its COG
is marked with a black cross. The mesh surface and

its vertices are depicted in green.
(ii): Filtering of out-of-face points based on the clipping result

(orthogonal view concerning the face surface).
(iii): Filtering of off-the-face points (side view with respect to

the face). The face is depicted as black line.
The threshold band is marked in gray.

At first, we roughly reduce the search space for each COG in
order to accelerate the association. To this end, we build a kD
tree for the LiDAR points and query the built tree with COGs.
For each COG, we find all LiDAR points within distance r of
the respective COG (ball query). The query parameter r is set
to the minimum value that guarantees to enclose the entire face
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and the manually set threshold(s) to be effective. The ball query
delivers a subset of the LiDAR point cloud, which may contain
off-the-face points and out-of-face points.
Second, we filter out-of-face points. A point p is inside the
face (or on the edges of the face) if 0 ≤ bi ≤ 1 ∀i. We refer
the interested reader to (Ericson, 2005) for a detailed discussion
of barycentric coordinates. By replacing operator ≤ with < we
can easily neglect points on the edges (i.e. vertices as well).
Figure 4 shows a face parameterized in barycentric coordinates.
The green marked area shows the inside of the face that fulfills
the above condition (with < operator). We exclude points on
the edges since such points may inject ambiguous feature in-
formation into per-face feature vectors. Technically, edge points
belong to two adjacent facesA andB. It is hard to decidewhether
to assign them to faceAor its adjacent faceB.Having inmind the
high density of the considered data set, neglecting those points
is of minor importance for the aggregation of LiDAR points for
the feature vector composition. Since the filter conditions work
only on points in the plane, we orthogonally project all LiDAR
points of the subset onto the plane before filtering. The ortho-
gonal projection is only relevant to the association mechanism.
The original LiDAR point cloud remains unchanged.

v1 v2

v3

b
1
=

0

b
1
=

1

b 2
=

0
b 2
=

1

b3 = 0

b3 = 1

Figure 4. Barycentric coordinates bi of the face 4v1v2v3.

Visually, the result of this filtering is the intersection of a trian-
gular prism and the sphere of the ball query. Finally, we filter
the remaining off-the-face points. Eventually, a manually set
threshold decides whether a LiDAR point is associated with a
face or not. We calculate the distance for each remaining point
and its orthogonal projection on the face. If the distance exceeds
the chosen threshold the LiDAR point is not associated with the
face. Since we deal with a challenging 2.5D mesh, we use a
more sophisticated adaptive thresholding that associates faces
with LiDAR points where 2.5D and 3D geometry differ signific-
antly (cf. Figure 5 and subsection 3.4 for a detailed discussion).
The association information is stored as a per-point attribute.
For each associated LiDAR point, the respective face index is
attached to its attributes. Non-associated LiDAR points are
marked with −1. We utilize the stored association information
to transfer LiDAR features to the mesh and, reversely, to trans-
fer (predicted) labels from the mesh to the LiDAR cloud. By
these means, the transferred point cloud labeling implicitly uses
mesh-inherent features. This approach is similar to voxel-based
semantic segmentation approaches. However, the meshing pro-
cess is not data-agnostic like voxelization. Hence, the mesh
may be a more reasonable proxy. Nevertheless, the voxelization
process is significantly faster than the meshing process.

3.4 Association Challenges and Limitations

The association of LiDAR point clouds and (2.5D) meshes
comes along with particular challenges due to discrepancies
between both representations (cf. section 1). As a general rule,
the better the mesh represents the real 3D structure of the world,
the better works the proposed association mechanism and the
subsequent information transfer.

2.5D meshing facilitates the mesh generation in the first place.
However, the 2.5D geometry makes the association of faces and
3D points harder. The most obvious challenge is the association
of LiDAR points that differ from the reconstructed 2.5D mesh
geometry (e.g. facades or tree stems, cf. Figure 5). Such points
appear to be subsurface points but in reality, they are canopy
points. We refer to them as apparent non-canopy points.

Figure 5. The black arrows show the discrepancy between the
2.5D mesh (black line) and the colored 3D point cloud for a tree

(left) and a building (right).

Our semantic mesh segmentation relies on 1D feature vectors.
Therefore, we have to provide a feature vector of the same length
consisting of the same features for each face. For this reason,
we want to establish as many point-face-connections as pos-
sible. The additional association of apparent non-canopy points
is reasonable since they are likely to belong to the same class as
the respective face.
For these reasons, we use adaptive thresholding with 3 filter
levels for the filtering of off-the-face points (step (iii) in sub-
section 3.3). The threshold values increase with increasing
level. Each level l consists of two independent thresholds θ+

l
and θ−

l
. Thresholds θ+

l
and θ−

l
limit the orthogonal distance

to the face plane in the normal direction or the opposite direc-
tion respectively. The two-fold thresholding per level enables
non-symmetric filtering improving flexibility and adaptiveness.
The adaptive thresholding enables a proper association of high-
quality 3D meshes. Level 2 and 3 can be seen as a fall-back for
the association of 2.5D meshes. Therefore, our association ap-
proach is agnostic to the geometric structure of mesh geometry:
2.5D or 3D meshes can be processed. Moreover, the adaptive
thresholding dampens georeferencing issues. However, the used
2.5D mesh does not suffer from georeferencing discrepancies as
it is generated from the LiDAR point cloud.
It may happen that even the last level does not associate any
LiDAR points (cf. Figure 6). As a consequence, non-associated
faces lack of LiDAR features. We propose three options to
bridge the missing LiDAR features in feature vectors. The most
obvious approach is to use vertices, too. This option is applic-
able only if all vertices coincide with LiDAR points. However,
the face vertices do not necessarily coincide with LiDAR points,
when the mesh is generated from LiDAR and MVS points. Fur-
thermore, in our association mechanism, we neglect points on
the edges/vertices since their association is ambiguous. Another
option is to lever out the association mechanism and incorpor-
ate LiDAR features from close-by LiDAR points that have been
filtered previously, i.e. out-of-face points or off-the-face points.
Such LiDAR points may belong to another class and their fea-
tures may not be representative. Precisely for the same reason,
we neglected points on the edges/vertices in the first place. Con-
sequently, our method of choice is to set all LiDAR features to
a constant value (e.g. zero). The zeroed LiDAR features in-
troduce constant feature noise regardless of the corresponding
class. We implemented the latter option to be independent on
the meshing algorithm and with a view to the future usage of
3D meshes as generated from LiDAR and MVS points.
Non-association is not merely unfavorable for feature vector
composition but also for label transfer. A high connection rate
is beneficial for a comprising point cloud labeling because non-
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Figure 6. Color-coded threshold levels per face (level 1: green,
level 2: yellow, level 3: red). Non-associated faces are marked in

gray. Best viewed digitally.

associated LiDAR points cannot be labeled directly by the label
transfer. To end up with the entire LiDAR point cloud labeled,
we aggregate labels of the k nearest associated neighbors via
majority voting for each unassociated LiDAR point.
Besides the non-association problem, information transfer suf-
fers from a general issue. The one-to-many relationship between
face and LiDAR points is beneficial provided that the mesh is a
good reconstruction of the 3D world. At a stroke, we can attach
mesh labels to many LiDAR points (cf. Figure 7).

Figure 7. Ground truth and prediction as transferred from the
mesh to the point cloud (left and center). The correct/false

predictions are marked in green/red (right).
Please note, transferred ground truth errors cannot be detected

(e.g. light poles labeled as impervious surface).

However, if the mesh geometry and the LiDAR geometry do
not coincide, the transfer may cause mislabeling. Furthermore,
meshing algorithms do not incorporate semantic borders yet,
wherefore transferred mislabeling may happen. Consider the
transition of a planar impervious surface to green space in the
real world. The mesh representation may simplify this scenario
to one large face. In such a scenario, the label transfer causes
mislabeling in the LiDAR point cloud. The reverted process (la-
bel transfer from LiDAR point cloud to mesh) will suffer from
the same issue since you have to opt for one label per face.
Ideally, the transferred labels could be compared to a manually
generated LiDAR ground truth. Yet, such ground truth does not
exist. For this reason, ground truth and predicted annotations are
generated in the same way by transferring the mesh labels to the
point cloud. We are aware of the fact that such generated ground
truth data cannot reveal mislabeling within faces like depicted in
Figure 7 (left). These discrepancies can only be detected with a
manually labeled point cloud. The missing manual ground truth
for the LiDAR point cloud is a limiting factor. Nevertheless,
the comparison facilitates the proof of concept – even operating
with the challenging 2.5D mesh geometry.

4. RESULTS

The pipeline is tested on a machine with an NVIDIA Ge-
Force GTX 1080 Ti GPU, 64 GB RAM, and a 12-core CPU.
PointNet++ is implemented with the DL framework Tensor-
Flow 1.9. Figure 1 shows the prediction result for the semantic
mesh segmentation (left) and its transferred prediction to the
LiDAR point cloud (after majority voting of labels for unasso-
ciated points, right). 88.95 % of the surface area is predicted
correctly when incorporating LiDAR features.

4.1 Analysis of the Association Mechanism

For the used data set, we found in an empirical process the associ-
ation to perform best with thresholds θ+ = {5 cm,10 cm,15 cm}
and θ− = {20 cm,40 cm,80 cm} for the respective levels 1, 2
and 3. Threshold θ+1 is defined with respect to the precision
of the LiDAR point cloud: θ+1 = 5 cm ≈ 2 · σLiDAR. In par-
ticular, thresholds θ−

l
are fine-tuned for associating as many

apparent non-canopy points with the 2.5D mesh (cf. subsec-
tion 3.4). Therefore, these hyperparameters highly depend on
the underlying data set. Compared to a static threshold, adaptive
thresholding increases the association rate by 36k faces (+13 %)
and 720k points (+2 %). 18.4 % of faces and 31.1 % of points
remain without association. Still, 88.3 % of the surface area is
associated with LiDAR points due to varying face areas. The
analysis of non-associated faces shows that their majority cov-
ers an area smaller than 0.5 m2 (for classes roof, green space,
impervious surface and vehicle) and/or has a vertical extension
(like classes building mass/facade, mid and high vegetation,
chimney/antenna and clutter). Generally, classes with vertical
elements register worse association rates. For instance, roughly
16 % and 28 % of faces of building mass/facade and mid and
high vegetation respectively are not associated with any LiDAR
points. This is illustrated in Figure 5 and Figure 6. On the
contrary, predominantly planar classes such as roof, impervious
surface, and green space have good association rates (≥ 93 %).
To conclude, the association mechanism works but its perform-
ance is constrained by the coincidence of mesh and LiDAR
geometry (including proper georeference). However, the adapt-
ive thresholding loosens this dependency to some extent. The
association mechanism lasts 8 min (of these, 5.5 min for the tree
generation with LiDAR points) processing 270k faces and 40M
LiDAR points. Therefore, the tree generation is the bottleneck
of our association mechanism. The final label transfer to the as-
sociated LiDAR points is very fast since we store the face index
per associated LiDAR point. We transfer mesh labels to 27M
associated LiDAR points in less than 0.2 s.

4.2 Semantic Mesh Segmentation

In this section, we compare the performance of two different fea-
ture vector compositions: with and without additional LiDAR-
inherent features. We evaluate the per-face predictions with the
manually attached ground truth. The semantic mesh segmenta-
tion is done by a PointNet++ classifier with multi-scale group-
ing trained on the provided training set. PointNet++ achieves
an Overall Accuracy (OA) of 86.40 % and an Mean Intersection
over Union (mIoU) of 51.29 % while utilizing additionally at-
tached LiDAR features. The prediction lasts 2.3 minutes. The
use of additional LiDAR features improves OA by 0.72 % com-
pared to a feature vector that does not consider additional LiDAR
features. Due to the one-to-many-relationship between face and
points, the improvementmight be beneficial for the label transfer
to point clouds since it comes along with an increased correctly
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predicted area of 225 m2. The adaption of point cloud metrics
to meshes and the high class imbalance of the used data cause
the discrepancy in OA and mIoU. The point-based metric mIoU
achieves low values since each face has the same impact on the
evaluation metric regardless of its area. In particular, mIoU is
dampened by bad performance of class clutter (f1 = 18.23 %
with LiDAR features). On the contrary, OA suffers from the
accuracy paradox concerning the highly imbalanced data set.
Regardless of the feature vector composition, the best perform-
ing class is the most prominent class mid and high vegetation
which achieves a constant recall close to 99 % for both scenarios.
Therefore, the improvement of OA indicates improved per-class
recall values for other classes. In fact, mIoU increases by 2.11 %
when LiDAR features are additionally used. The per-class recall
values for buildingmass/facade and impervious surface improve
by roughly 5 %. Class vehicle registers a significant recall gain
of 19 %. On the contrary, recall of chimney/antenna decreases
by 6 % and is often mispredicted as roof. Clutter has high
intra-class variance per definition and performs poorly in both
scenarios. It is often predicted as building mass/facade or mid
and high vegetation.
The analysis of non-associated faces with zeroed LiDAR fea-
tures shows significantly worse performance than for the asso-
ciated faces. mIoU differs by approximately 6 %. However,
the majority of non-associated faces belongs to classes build-
ing mass/facade and mid and high vegetation which still show
good performance. In comparison, f1 score for green space is
rather low (26.80 %) but there are only 755 non-associated faces
covering 46.01 m2 (0.8 ‰ of entire surface area). It is mainly
confused with mid and high vegetation.
The best performance is achieved with both radiometric and
LiDAR features. Performance drops by 2.27 % (OA) and
10.45 % (mIoU) when LiDAR features and radiometric features
are ignored. We refer the interested reader to (Laupheimer et al.,
2020) for a detailed discussion of radiometric feature quality.

4.3 Semantic Point Cloud Segmentation

We argue that point clouds are not a final consumer product.
However, semantic point cloud segmentation is a standard task
and we can easily transfer the (predicted) mesh labels to the
point cloud leveraging our association mechanism. By this, we
achieve to label the LiDAR point cloud via the mesh as a proxy.
Therefore, the semantic point cloud segmentation implicitly uses
mesh-inherent features. Figure 8 depicts the face indices for a
subset of the LiDAR point cloud showing a facade and a street.
Non-associated LiDAR points are marked with black-framed
grayish polygons. Typically, they represent measurements that
penetrate the surface (e.g. through windows) or measurements
of constructional elements that are shifted with respect to the
reconstructed (2.5D) mesh surface (e.g. a door).
After the label transfer, we perform a majority voting for each
non-associated LiDAR point in order to expand the transferred
labels to them. The majority vote considers labels of the
80 nearest associated LiDAR points. This hyperparameter
has been chosen heuristically concerning the LiDAR density
(800 points/m2) of the given data. The label expansion is time-
consuming due to the needed neighborhood query. The pro-
cessing time depends on the considered nearest neighbors k
and the number of non-associated points. In our case, it takes
12.2 min (including 2.5 min for kD tree generation).
On the LiDAR point cloud, we evaluate the transferred pre-
dictions with the transferred ground truth from the mesh on
the point-level. The label transfer achieves an OA of 86 %
for both feature vector compositions. However, the mIoU is

slightly better for the LiDAR-supported feature vector (53.09 %
and 52.66 % respectively). Compared to the semantic mesh seg-
mentation, recall values increase for almost all classes or are on
par. The achieved f1 scores are consistently bigger than 70 %
except for chimney/antenna and clutter (38.38 % and 10.73 %
respectively). As we have seen in subsection 4.2, clutter and
chimney/antenna have many mispredictions which are trans-
ferred to the point cloud. On the contrary, for class green space,
we notice the impact of face areas. Whereas its recall value on
the mesh is only 44.07 %, the recall value on the point cloud is
76.35 %. Hence, the correctly labeled faces cover a large area
consisting of many points.
After the label expansion, the achievedOA is 84 % for all LiDAR
points (both with and without LiDAR features). The mIoU is
55.74 % when LiDAR features are used and 54.70 % without
LiDAR features.
We are aware of the circular performance analysis since ground
truth and prediction on the point cloud are generated in the
same way. However, since manually attached ground truth is
not available, there is no other possibility to crosscheck the per-
formance quantitatively on the point cloud. Nevertheless, the
functionality is demonstrated and visually, the achieved results
seem to be reasonable. All in all, the semantic segmentation of
40M points takes 22.7 min. Of these, approximately 90 % is for
tree generation and subsequent neighborhood queries that mark
the bottleneck of our pipeline.

Figure 8. LiDAR points randomly colored by the associated face
index. Non-associated points are marked by the black-framed

grayish polygons.

5. CONCLUSIONS AND OUTLOOK

In this paper, we presented an association mechanism that fa-
cilitates information exchange between (LiDAR) point clouds
and meshes. We embedded the association mechanism in our
semantic segmentation pipeline (i) to attach LiDAR features
to per-face feature vectors and (ii) to transfer mesh labels to
the LiDAR point cloud. Hence, the semantic mesh segment-
ation uses inherent features from both representations (multi-
modality). 88.95 % of the surface area is predicted correctly
when incorporating LiDAR features. Additionally, as a side
product, we achieved semantic point cloud segmentation with
an OA of 84 %. Incorporating LiDAR features stabilized the se-
manticmesh segmentation and improved performance by 2.11 %
(mIoU). Particularly, class vehicle improved significantly by a
recall gain of 19 %.
Taken together, we proved the efficacy and limitations of the
association method utilizing a 2.5D mesh. We showed that
the association rate suffers from the discrepancy between the
3D point cloud and the 2.5D mesh. After the fast label trans-
fer, non-associated LiDAR points call for a time-consuming
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label expansion. Therefore, we would like to leverage a 3D
mesh as generated from jointly oriented MVS and LiDAR data
in the future. We expect the 3D mesh geometry to improve
the association rate and therefore, decrease the expansion time.
Furthermore, we want to extend the association mechanism to
the image space. The linking of mesh and imagery will link
LiDAR point cloud and imagery by transduction, too. Thereby,
we do not have to squash the 2D texture information into a 1D
feature vector and can use texture information to a full extent.
We are aware of the fact that the investigations at hand are lim-
ited to one data set of a rather simple urban scene. Wewould like
to extend investigations to more complex urban data captured
with different sensors and flight configurations under different
conditions (e.g. different seasons). However, such annotated
reference data do not exist so far. For this reason, we plan to
leverage the proposed association mechanism in combination
with crowdsourcing to accelerate ground truth generation.
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