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ABSTRACT:

Undocumented buildings are buildings which were built years ago, but were never recorded in official digital cadastral maps.
Detection of undocumented buildings is of great importance for urban planning and monitoring. The state of Bavaria, Germany,
pursues this task based on high resolution optical data and digital surface models, using semi-automatic detection methods, which
suffer from a high false alarm rate. In order to study the influence of sampling strategies on the performance of building detection,
we have firstly designed a transferability analysis experiment, which has not been adequately addressed in the current literature.
In this experiment, we test whether the trained model from a district contains valuable information for building detection in a
different district. It was found that the large-scale building detection results can be considerably improved when training samples
are collected from different districts. Based on the building detection results, we propose a novel framework for the detection of
undocumented buildings using Convolutional Neural Network (CNN) and official geodata. More specifically, buildings are identified
as undocumented, when their pixels in the output of the CNN are predicted as ”building”, whereas they belong to the ”non-building”
in the Digital Cadastral Map (DFK). The detected undocumented building pixels are subsequently divided into the class of old or new
undocumented building with the aid of a Temporal Digital Surface Model (tDSM) in the stage of decision fusion. By doing so, a
seamless map of undocumented buildings is generated for 1/4th of the state of Bavaria, Germany at a spatial resolution of 0.4 m,
which has demonstrated the use of CNN for the robust detection of undocumented buildings at large-scale.

1. INTRODUCTION

Buildings are important geospatial targets, which indicates hu-
man settlement areas. The creation and maintenance of databases
of building models have numerous applications, which involve
urban planning and monitoring, Three Dimension (3D) city mod-
eling as well as estate management. However, there are some
buildings, which were built years ago, but were never recorded
via terrestrial surveying and are thus missing in the real estate
cadastral maps. These buildings are named as undocumented
buildings, and the collection of these buildings is necessary to
continue and complete these databases.

An accurate building model can be acquired through a field sur-
vey, and is documented in the Digital Cadastral Map (DFK),
which is a two-dimension ground plan of buildings. However,
this may require a great amount of time and manual work for
large-scale mapping. Compared with traditional land survey
methods, the technologies of airborne imaging and laser scan-
ning show great potential in the task of building detection. The
high-resolution airborne datasets are usually taken over large
areas on the ground, which makes it convenient for detailed
analysis.

The currently utilized strategy for the detection of undocumented
buildings in the state of Bavaria, Germany updates building
models by heuristic methods (Geßler et al., 2019) (Roschlaub
et al., n.d.). Firstly, from the DFK where the building ground
plans are included, the Red Green Blue (RGB) color values of all
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pixels of corresponding buildings in orthophoto with RGB bands
(TrueDOP) are collected as a reference. There is neither tilting of
elevated objects nor geometric distortion effects of the roof tops
in TrueDOP. Then, the frequencies and distributions in the RGB
color cube are counted to separate buildings from vegetation
by an empirically selected threshold value. Additionally, with
the aid of a Normalized Digital Surface Model (nDSM), the
misclassifications between building and other impervious objects
such as roads can be avoided with an empirically determined
height threshold. However, since the heuristic definition of
threshold values is not standardized, e.g. it has to be determined
individually for each photo flight project, which easily leads
to bias and poor generalization. Moreover, as the RGB color
cubes considered for determining buildings are wide, which also
involve vegetation, many trees are misclassified as buildings.

Recently, Deep Learning (DL) methods such as Convolutional
Neural Network (CNN) are favoured in the remote sensing com-
munity (Zhu et al., 2017), also for the task of building detection
from remote sensing data (Shi et al., 2020). This is due to their
superiority in generalization and accuracy without hand-crafted
features. For the CNN, the amount of training data could be
reduced if the trained models that use samples created for some
areas could be implemented to building detection in another
different area, a process that is referred to as transferability (Li
et al., 2020). However, due to the limited size and quality of
existing public dataset (Vargas-Muñoz et al., 2019), the trans-
ferability can not be well investigated. Therefore, in this paper,
three main contributions are made:
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(1) In order to offer useful sampling strategies for similar large-
scale building detection tasks, we have investigated the transfer-
ability issue further by using reference data of selected districts
across the state of Bavaria, Germany and employing the CNN
model and official geodata. It should be noted that the utilized
official geodata in this research are with really high quality and
cover the study area for 1/4th of the state of Bavaria, Germany.
Therefore, this work is in an advanced position to study the
transferability of trained models in large-scale building detec-
tion tasks.

(2) In this regard, we have proposed a framework for the de-
tection of undocumented buildings, which has integrated the
state-of-the-art CNN model and fully harnessed official geodata.
The proposed framework can identify undocumented buildings,
and meanwhile can distinguish old undocumented buildings
from new undocumented buildings according to their year of
construction. Firstly, a CNN model is implemented for semantic
segmentation of combined nDSM and TrueDOP data into a
map of ”building” and ”non-building” pixels. This binary map
is then used to identify undocumented buildings by automatic
comparison with the DFK. In order to separate old and new un-
documented buildings, we select thresholds on Temporal Digital
Surface Model (tDSM), which is the difference between Digital
Surface Model (DSM) in two temporals.

(3) Using a single optimal CNN model derived from the training
data, which are collected from 14 surveying districts, a seamless
map of undocumented buildings is generated for 1/4th of the
state of Bavaria, Germany at a spatial resolution of 0.4 m. The
achieved results demonstrate the use of CNN for the robust
detection of undocumented buildings at large-scale.

The remainder of this paper is structured as follows: The study
area and official geodata considered in this research are intro-
duced in Section 2. The CNN architecture and proposed frame-
work for the detection of undocumented buildings in Section
3, and the experiment setup are described in Section 4. The
results and discussion are presented in Section 5 and Section 6,
respectively. Finally, this work is summarized and concluded in
Section 7.

2. STUDY AREA AND OFFICIAL GEODATA

In this research, the study sites cover 1/4th of the state of Bavaria,
Germany (see Figure 1), which include 15 districts: Ansbach,
Bad Toelz, Wolfratschausen, Kulmbach, Kronach, Landau, Deg-
gendorf, Landshut, Muenchen, Regensburg, Hemau, Rosenheim,
Wasserburg, Schweinfurt, and Weilheim.

There are four types of official geodata used in this study: DFK,
tDSM, nDSM, and TrueDOP. DFK is the cadastral 2D ground
plan of the state of Bavaria, Germany including the outline of
buildings. It is provided as a vector file and based on a terrestrial
surveying in the field with accuracy in the range of cm. The
nDSM is a difference model between a current DSM at time
point 2 (year 2017) and the Digital Terrain Model (DTM) of the
scene. The nDSM highlights elevated objects above the ground
such as buildings and trees. The DTM is obtained from airborne
laser scanning, which is derived as a regular point grid. The
DSM is obtained from an image-based surface model with a
dense matching method. The tDSM is the difference of two
DSMs captured at two time points, i.e., time point 1 (year 2014)
and 2 (year 2017). The TrueDOP is an orthophoto with RGB
bands where ortho projection and geo-localization has been

realized based on the DSM. TrueDOP is also acquired in time
point 2 (year 2017). The TrueDOP represents all buildings and
tall objects in the correct position without geometric distortion
effects. Each district is covered by many tiles of TrueDOP,
nDSM and tDSM, and each tile has a size of 2500× 2500 pixel
at a spatial resolution of 0.4 m.

3. METHODOLOGY

3.1 CNN Architecture

For the airborne data, a large urban area may be covered by
massive data with such high resolution, where the data pro-
cessing is computational demanding. In this regard, CNN, which
is the state-of-the-art method for many big data analysis applica-
tions, are exploited as the most important part of our proposed
framework. Additionally, CNN is much superior to other ap-
proaches in terms of accuracy and efficiency (Hua et al., 2020).

The building detection in our research is actually a semantic
segmentation task in the computer vision field. Semantic seg-
mentation is the task to assign each pixel in an image with a
class label (Garcia-Garcia et al., 2017). An enhanced feature
representation end-to-end can be learned by the CNN model for
solving semantic segmentation problems. Recently, the com-
monly used CNN architecture for urban semantic segmentation
tasks is FC-DenseNet (Jégou et al., 2017), which has shown su-
periority in accuracy (Shi et al., 2020) and has better capability
of feature extraction compared with other networks (Shi et al.,
2020). In this study, we exploit FC-DenseNet (see Figure 2)
for building detection in our proposed framework, which could
discriminate ”building” and ”non-building” for each pixel.

FC-DenseNet extends the DenseNet (Huang et al., 2017) archi-
tecture to fully convolutional networks for semantic segment-
ation. In the DenseNet block, all preceding features are taken
as the input, and then its output features are transferred to all
subsequent layers. Through the feature reuse, the potential of the
network can be yielded that is easier for training and parameter
efficiency. Therefore, there are shorter connections within layers
close to the input or the output, which enforce the intermediate
layers to learn distinguished feature maps. ResNet (He et al.,
2016) combines features by summation, which may affect the
information flow in the network. Instead, DenseNet combines
features by iteratively concatenating them. This contributes to
the efficient flow of information in the network for easier train-
ing. Moreover, DenseNet layers have small numbers of filters
per layer, which means that only a small set of feature maps
are added to the network. These attributes of DenseNet allow
better parameter efficiency. FC-DenseNet only upsamples the
features from the preceding dense block, which have reduced
both the amount of computation and the number of parameters.
This also makes dense blocks at each resolution of the decoder
independent to the number of pooling layers that are used in the
encoder. Additionally, the standard skip connection between
the encoder and the decoder is used to pass higher resolution
information. By reusing features maps, skip connections can
facilitate the recovery of spatial details in the decoder from the
encoder.

3.2 The Proposed Framework for the Detection of Undoc-
umented Buildings

The undocumented buildings indicate the objects which exist in
airborne survey data (nDSM and TrueDOP), but are not recorded
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Figure 1. (a)The location of the state of Bavaria, Germany, (b) The study sites in this research which cover 15 districts in the state of
Bavaria, Germany.

Figure 2. The implemented CNN architectures: FC-DenseNet.
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Figure 3. Flowchart of the proposed approach for the detection of undocumented buildings.

in the cadastral two-dimension ground plan (DFK). Utilizing
the building detection results, we propose a framework for the
detection of undocumented buildings, which is to produce a
product of undocumented buildings for 1/4th of the state of
Bavaria, Germany using CNN and decision fusion.

An overview of the proposed framework for the detection of
undocumented buildings is shown in Figure 3, which can be
utilized as a routine strategy for large-scale processing. The
proposed framework consists of two main tasks of this study:
(1) detection of undocumented buildings, (2) discrimination
between old and new undocumented buildings.

The building detection results might be unsatisfactory from indi-
vidual data source. For instance, automatic building detection
from aerial imagery is still limited due to the variation of the
appearance of buildings, which results from the atmospheric
and seasonal effects, shadow as well as motion blur (Sirmacek,
Unsalan, 2008). Buildings and the other impervious objects such
as roads share similar spectral and spatial characteristics from
aerial imagery. Besides, buildings and other elevated objects
above the ground such as trees result in some misclassifications
by only using nDSM. Therefore, in our research, we exploit
TrueDOP and nDSM together as the input of the CNN model to
make a distinction between ”building” and ”non-building” for
each pixel, which can combine the benefits of both radiometric
and geometric data. After the predicted results from the CNN
model are overlaid with the DFK, the undocumented building
pixels can be identified, which relate to pixels those are assigned
to the ”non-building” in the DFK but are predicted as ”building”
from the CNN model.

The tDSM is the difference of two DSMs captured at two time
points, and with an empiric value (1.8 m), we are able to identify
constructional changes if there is a height deviation of this pixel
from year 2014 to year 2017. The undocumented building pixels
are considered as new undocumented building if there is a height
deviation, which indicates that there is a building constructed
after time point 1 (year 2014). Otherwise it is regarded as old
undocumented building, which means that this building was
constructed before year 2014.

4. EXPERIMENTS

4.1 Data Preprocessing

The datasets utilized in this study consist of TrueDOP, nDSM,
tDSM, and DFK. Firstly, the tiles of TrueDOP and nDSM which
are completely within the district boundary are selected for
all 15 districts. For the DFK, they are firstly re-projected to
the same projection of the TrueDOP and clipped within the
same geo-range. Then, the DFK vectors are rasterized to the
raster format. In order to collect enough training patches for
large-scale building detection tasks, the TrueDOP and nDSM
from 14 districts (exclude Bad Toelz), and the corresponding
ground reference DFK are cut into small patches with the size
256× 256 pixel, where each patch has an overlap of 124 pixels
with its neighboring patches. However, since not all buildings
are documented in the DFK, there may be inconsistencies among
TrueDOP, nDSM, and DFK when the DFK is utilized as ground
reference for the training of CNN. For example, a building is
missing in the DFK, while shows in the corresponding TrueDOP
and nDSM. This issue is insignificant in our properly selected
datasets.

4.2 Experimental Setup

In this study, the CNN model, FC-DenseNet is implemented
within a Pytorch framework on an NVIDIA Tesla P100 GPU
with 16 GB of memory. The network is trained from scratch
using a stochastic gradient descent (SGD) optimizer with a learn-
ing rate of 0.000001. The loss function is cross entropy loss and
the batch size is 5. For the FC-DenseNet, there are 12 dense
blocks with each having 5 convolutional layers.

Our task is aimed at large-scale processing, thus, the selection
of training data is investigated firstly. In this regard, two sep-
arate models from different sets of training data are trained to
examine the transferability issues. The number of training and
validation patches are shown in Table 1. Then, we evaluated
these two trained models in two different evaluation districts,
which are Ansbach and Bad Toelz, respectively. For Ansbach,
the evaluation data is the same as the validation data obtained
in Ansbach (18077 patches). However, for the district of Bad
Toelz, the evaluation data cover the whole area (without training
areas).
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Table 1. The numbers of training and validation patches of the dataset for two different trained models.

Trained model District Number of training patches Number of validation patches
1 Ansbach 67965 18077

Ansbach 67965 18077
Wolfratshausen 14982 3671
Kulmbach 24998 5679
Kronach 19987 5112
Landau 34964 8733
Deggendorf 38454 9763

2 Landshut 60957 15090
Muenchen 88364 22213
Regensburg 47947 11941
Hemau 9481 2243
Rosenheim 59141 14789
Wasserburg 14150 3567
Schweinfurt 54951 13759
Weilheim 76959 19202

5. RESULTS

The building detection results from FC-DenseNet are evaluated
using three metrics, which includes overall accuracy, F1 score
and intersection over union (IoU). The definitions of these ac-
curacy metrics are described below:

Overall accuracy =
TP + TN

TP + FP + FN + TN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 score =
2 ∗ precision ∗ recall

precision + recall
(4)

IoU =
TP

TP + FP + FN
(5)

where TP (true positives) is the number of correctly identified
building pixels, FN (false negatives) denotes the number of
missed building pixels. FP (false positives) is the number of
non-building pixels in the ground reference but is mislabeled as
buildings and TN (true negatives) denotes the correctly detected
non-building pixels. F1 score is a measure which represents a
balance between precision and recall.

5.1 Evaluation Results in Ansbach

Table 2 lists the statistical accuracy of building detection using
two different trained models evaluated in Ansbach, and two
examples which highlight the performance of the trained model
1 (training data is collected only from Ansbach) are shown in
Figure 4. Compared to Figure 4 (b), Figure 4 (a) could also
delineate some small buildings.

Several examples of old and new undocumented buildings de-
tected by our propose framework in Ansbach are illustrated in
Figure 5 and Figure 6, respectively. Many buildings which are
undocumented in the DFK, have been successfully detected by
our proposed framework. This has proved the potential of our
proposed framework for the detection of undocumented build-
ings.

5.2 Evaluation Results in Bad Toelz

After reviewing the results evaluated in Ansbach from two
trained models with different datasets, we then investigate the

performances of these two trained models in Bad Toelz. It should
be noted that Bad Toelz is excluded in neither training data nor
validation data for both trained models. This is a more realistic
test for the task of large-scale building detection, which could
be implemented to upscale the existing training for the build-
ing detection results in the whole state of Bavaria, Germany
scale. Evaluation in Bad Toelz (see Table 3 ) shows a great
improvement of 12.6% and 17.5% for F1 score and IoU when
the training data are collected from 14 districts in the state of
Bavaria, Germany rather than only in the district of Ansbach.
Figure 7 shows some visual examples for comparison.

Figure 8 and Figure 9 illustrate the results of old and new un-
documented buildings in Bad Toelz, respectively. The trained
model 2 can differentiate ”building” and ”non-building” better
than the trained model 1. For instance, from the first example
in Figure 8, the ground is mislabeled as an old undocumented
building (see Figure 8 (a)). However, this false alarm could be
avoided by the trained model 2 (see Figure 8 (b)). In addition,
the trained model 2 can detect more buildings than the trained
model 1, as shown in the first case in Figure 9. In this example,
the building which is occluded by the trees could be essentially
identified as a new undocumented building by the trained model
2 (see Figure 9 (b)), where the training data covers 14 districts
in the state of Bavaria, Germany.

6. DISCUSSION

For Ansbach, the accuracy of building detection is a little higher
by just collecting its local training dataset and training a local
model. This is due to the fact that in the trained model 1 which
is evaluated in Ansbach, the evaluation data share the similar
data distribution with training data. Therefore, the trained model
1, which has already a best fit for the training data in Ansbach,
achieves better accuracy when the evaluation data is also collec-
ted from Ansbach. However, local training is time consuming
and expensive if we want to generate the building detection res-
ults for the all districts in 1/4th of the state of Bavaria, Germany.
Both trained models 1 and 2 achieve comparable results for the
detection of undocumented buildings in Ansbach, which implies
that if the evaluation data is seen from the trained model, there
is nearly no difference when the training data is collected from
the local training dataset or a larger dataset.

The results in Bad Toelz have demonstrated the superiority of
larger datasets for large-scale building detection tasks when the
evaluation district is different from training districts. There are
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Table 2. Accuracy of two different trained models evaluated in Ansbach

Trained model Overall accuracy F1 score IOU
1 (training data collected only from Ansbach) 98.9 % 90.5 % 82.7 %

2 (training data collected from 14 districts exclude Bad Toelz) 98.8 % 90.3 % 82.3 %

Figure 4. The buildings in Ansbach obtained from (a), (e) Trained model 1, (b), (f) Trained model 2, and their corresponding (c), (g)
DFK as ground reference as well as (d), (h) TrueDOP.

Figure 5. The new undocumented buildings in Ansbach obtained from (a), (e) Trained model 1, (b), (f) Trained model 2, and their
corresponding (c), (g) DFK as well as (d), (h) TrueDOP.

Table 3. Accuracy of two different trained models evaluated in Bad Toelz

Trained model Overall accuracy F1 score IOU
1 (training data collected only from Ansbach) 99.6 % 73.9 % 58.7 %
2 (training data collected from 14 districts exclude Bad Toelz) 99.8 % 86.5 % 76.2 %

several reasons for this. One is that the trained model 1, where
the training dataset are collected only from Ansbach, might be
overfitted also in Ansbach, so it performs not well in Bad Toelz.
The other is that the training samples are more representative
in the trained model 2, where different types of buildings are
included, which is more beneficial to the learning of CNN. In

this regard, using larger dataset could effectively compensate
the insufficient information from the limited number of training
data.
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Figure 6. The new undocumented buildings in Ansbach obtained from (a), (e) Trained model 1, (b), (f) Trained model 2, and their
corresponding (c), (g) DFK as well as (d), (h) TrueDOP.

Figure 7. The buildings in Bad Toelz obtained from (a), (e) Trained model 1, (b), (f) Trained model 2, and their corresponding (c), (g)
DFK as ground reference as well as (d), (h) TrueDOP.

Figure 8. The new undocumented buildings in Bad Toelz obtained from (a), (e) Trained model 1, (b), (f) Trained model 2, and their
corresponding (c), (g) DFK as well as (d), (h) TrueDOP.

7. CONCLUSION

Considering that the object “building” is one of the most im-
portant types of terrestrial objects for real-estate management,
we have firstly investigated the tranferability issue for the task

of large scale building detection. The model which collects di-
verse training samples from different districts, has achieved a
better accuracy in producing the high resolution (0.4 m) building
maps of the state of Bavaria, Germany than that which collects
training data only from one district. This impressive result is
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Figure 9. The new undocumented buildings in Bad Toelz obtained from (a), (e) Trained model 1, (b), (f) Trained model 2, and their
corresponding (c), (g) DFK as well as (d), (h) TrueDOP.

also beneficial to other large-scale object detection works from
remote sensing data. Based on the building detection results, we
have proposed a framework for the detection of undocumented
buildings from normalized Digital Surface Model (nDSM), or-
thophoto with Red, Green, Blue bands (TrueDOP), and the
corresponding existing Digital Cadastral Map (DFK), which in-
dicates the Convolutional Neural Network (CNN) has the great
potential for updating building models in geographic informa-
tion systems. Moreover, the undocumented buildings can be
classified into two types: old or new undocumented building
with the aid of a Temporal Digital Surface Model (tDSM). In
the future, more possibilities of extension of this work could be
investigated, e.g., investigating the performance of introducing
the near infrared (NIR) band for building detection.

ACKNOWLEDGEMENTS

This work is supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement no. ERC-2016-StG-714087,
acronym: So2Sat, www.so2sat.eu), the Helmholtz Association
under the framework of the Young Investigators Group “SiPEO”
(VH-NG-1018, www.sipeo.bgu.tum.de) and Helmholtz Excel-
lent Professorship “Data Science in Earth Observation - Big
Data Fusion for Urban Research”. This work is also part of
the project ”Investigation of building cases using AI” funded
by Bavarian State Ministry of Finance and Regional Identity
(StMFH) and the Bavarian Agency for Digitization, High-Speed
Internet and Surveying.

REFERENCES

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-
Martinez, V., Garcia-Rodriguez, J., 2017. A review on deep
learning techniques applied to semantic segmentation. arXiv
preprint arXiv:1704.06857.
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