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2 Université Paris-Saclay, CentraleSupélec, MICS Laboratory, Gif-sur-Yvette, France
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ABSTRACT:

Change detection is a very important problem for the remote sensing community. Among the several approaches proposed during
recent years, deep learning provides methods and tools that achieve state of the art performances. In this paper, we tackle the
problem of urban change detection by constructing a fully convolutional multi-task deep architecture. We present a framework
based on the UNet model, with fully convolutional LSTM blocks integrated on top of every encoding level capturing in this way the
temporal dynamics of spatial feature representations at different resolution levels. The proposed network is modular due to shared
weights which allow the exploitation of multiple (more than two) dates simultaneously. Moreover, our framework provides building
segmentation maps by employing a multi-task scheme which extracts additional feature attributes that can reduce the number of
false positive pixels. We performed extensive experiments comparing our method with other state of the art approaches using very
high resolution images of urban areas. Quantitative and qualitative results reveal the great potential of the proposed scheme, with
F1 score outperforming the other compared methods by almost 2.2%.

1. INTRODUCTION

Urban change detection is one of the most studied topics in re-
mote sensing since it provides useful insights concerning the
cities’ growing patterns and future tendencies. Low air qual-
ity, water contamination and limited greenery spaces are only
some of the environmental issues that arise from the continuous
urban growth. Moreover, many other social problems can be
raised from extending urban areas, like poverty and increased
crime rates. It is therefore reasonable to understand and study
thoroughly such expansion trends in different spatial scales so
as to create better city infrastructures and prevent situations that
can be extremely dangerous both for the environment and hu-
manity.

During the last decades, the high availability of earth obser-
vation data has enabled the remote sensing community to col-
lect multimodal, multitemporal satellite images laying in this
way the foundation for constructive research studies. To this
day, manual change detection approaches have been replaced
with automatic supervised and unsupervised algorithms such
as graphical models and Markov Random Fields (Singh et al.,
2014, Benedek et al., 2015, Vakalopoulou et al., 2016, Vakalo-
poulou et al., 2015, Karantzalos, 2015), kernels (Volpi et al.,
2012), as well as Principal Component Analysis (Li, Yeh, 1998,
Deng et al., 2008). With the advent of neural networks, recent
works are more and more oriented to deep learning approaches,
producing state of the art results and setting promising pro-
spects for the urban change detection task. In (Caye Daudt
et al., 2018b), a patch-based framework is suggested where
two different architectures (Siamese and Early Fusion) are ex-
amined using the Onera Satellite Change Detection bi-temporal
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dataset. (Caye Daudt et al., 2018a) then transforms these ap-
proaches to fully convolutional versions based on a UNet-like
scheme. Multi-task learning methods involving supplementary
tasks mainly including semantic segmentation (Liu et al., 2019,
Daudt et al., 2018) have also been employed, since they can
benefit greatly the training procedure by providing additional
fruitful feature representations.

Furthermore, since the problem of change detection involves se-
quential data, the need to calculate temporal dynamics emerges,
leading to the employment of Recurrent Neural Networks (Hop-
field, 1982, Rumelhart et al., 1986). Such models have been
largely employed by the computer vision community on a wide
variety of applications like tracking (Milan et al., 2016), action
recognition (Singh et al., 2016), etc. Long Short Term Memory
Networks (LSTMs) (Hochreiter, Schmidhuber, 1997) are also
widely adopted for such tasks (Byeon et al., 2015, Ehsani et al.,
2018) since they moderate the vanishing gradient problem (Ho-
chreiter, 1998) when dealing with long-term dependencies. As
far as remote sensing is concerned, (Mou et al., 2019) incorpor-
ates a recurrent network on top of a convolutional architecture
combining in this way spectral, spatial and temporal informa-
tion in an end-to-end framework. Moreover, fully convolutional
LSTMs have been utilized in (Papadomanolaki et al., 2019)
where recurrent blocks are integrated into every encoding level
of a UNet-like architecture (Ronneberger et al., 2015), thus cap-
turing temporal relationships at different resolutions in a fully
convolutional manner. That way pixel level maps of changed
areas can be provided and analysed.

In this paper, we tackle the problem of building change detec-
tion for very high resolution satellite images by further evolving
the already existing framework in (Papadomanolaki et al., 2019).
More specifically, the proposed architecture is enriched with
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an additional decoding branch that performs building semantic
segmentation, providing the network with ancillary feature at-
tributes during the training process. The attained quantitative
and qualitative results indicate the great potential of the sugges-
ted scheme which is also compared with state of the art fully
convolutional approaches, namely fully convolutional Early Fu-
sion (FC-EF), Siamese Concatenation (FC-Siam-Conc) and Sia-
mese Difference (FC-Siam-Diff) (Caye Daudt et al., 2018a).

The remaining of the paper is organized as follows. In Sec-
tion 2, we describe the proposed fully convolutional, multi-task
framework as well as the employed dataset. In Section 3 we
present and discuss the experimental results while in Section 4
we make a conclusion and examine potential future directions.

2. METHODOLOGY

2.1 Multi-task L-UNet

The proposed scheme is based on the widely known UNet ar-
chitecture (Ronneberger et al., 2015) consisting of one encod-
ing branch with n levels and two decoding branches. Firstly,
D input image volumes in the form of (Batchsize x Channels
x Height x Width) are passed to the model, where D stands
for the employed number of dates. Each of the D images is
processed separately by the encoding layers using shared con-
volutional weights. More specifically, every encoding level Ei

with i ∈ {1, 2, .., n} produces spatial feature vectors Xt
i for t ∈

{1, 2, .., D}. These feature vectors are then fed to a Long Short
Term Memory (LSTM) block which is added as a skip connec-
tion on top of every encoding level, determining the temporal
attributes using a gating mechanism (Hochreiter, Schmidhuber,
1997). Here, instead of multiplying the spatial feature vectors
Xt

i with high dimensional weight matrices, we perform convo-
lution operations in order to calculate the hidden and cell states.
In this way, any gating process is configured as

Gt
i = Φ(WGt

i
∗ (Xt

i , H
t−1
i )), (1)

where Gt
i is the general form for each of the forget (f t

i ), input
(int

i), output (oti) or cell (cti) gates at time step t of encoding
level i, Φ is the activation function and WGt

i
is a single strided

convolutional layer with 3 × 3 kernels and padding equal to 1.
Next, cell state Ct

i is obtained as

Ct
i = f t

i · Ct−1
i + int

i · cti, (2)

where f t
i is the forget gate, int

i is the input gate and cti is the
cell gate at time step t of encoding level i. Finally, hidden state
Ht

i is calculated as

Ht
i = oti · tanh(Ct

i ), (3)

where oti is the output gate.

After the last encoding level En, hidden state HD
n is upsampled

by the corresponding decoding level and concatenated with the
information stored in HD

n−1. This upsampling procedure con-
tinues in the same way until the last decoding level where the
feature vectors are back to their original dimensions.

For a better comprehension, the left part of Figure 1 illustrates
the previously described approach for the case of D = 5. In

every encoding level there are two sets of convolutional, batch
normalization and rectified linear unit layer (Conv-BN-ReLU)
successions with a convolutional LSTM block on top of them.
At the first encoding level the input image planes are increased
to 16, while in the following ones the depth planes rise to twice
their size reaching in this way the number of 256 at the end
of the last encoding level. After that, the decoding levels de-
crease the planes from 256 to 128, 64, 32, 16 and finally the
probabilities are produced after a log softmax layer. All the
convolutional layers adopt 3 × 3 filter kernels with stride and
padding equal to 1, while the pooling layers reduce the spatial
resolution of the images by 2.

The proposed scheme is further enriched with an additional de-
coding branch, depicted on the right part of Figure 1, which
performs building detection for the input dates. This time skip
connections involve concatenations not with temporal, but with
spatial feature vectors that have resulted from the different en-
coding levels. The building segmentation maps can be pro-
duced for all the input dates or for some of them depending
on the application and the computational complexity allowed.
For this implementation, we decided to train the network using
only the first and last, out of the multiple date inputs.

During the training process of the previously described multi-
task learning framework we define different loss quantities us-
ing cross entropy for the optimization of each one of them

LossCE = −
1∑

l=0

ys,llog(ps,l), (4)

where ys,l is a binary indicator that shows if class l is the correct
answer for observation s, while ps,l holds the probability that
observation s belongs to class l.

Five different loss values are involved in our training scheme,
which are also combined together in a circular way so as to
achieve better performances. In particular, we use cross en-
tropy loss Lossch for the building change detection map, as
well as Loss1seg and LossDseg for the building semantic maps.
For this study, we provide the building segmentation maps for
the first and last date only. Additionally, cross entropy is used
to provide one more loss, Lossch2, that focuses on the building
change detection by mixing together the final feature outputs
resulting from the building segmentation branches. If s denotes
the final network output, then Lossch2 is defined by calculating
the cross entropy for feature vector sch = sDseg − s1seg , where
sDseg and s1seg are the output feature vectors resulting from the
building segmentation branch for the first and last date respect-
ively. Moreover, we also establish LossDseg2 for the building
segmentation map of the last date, which is computed using the
feature vector sDseg = s1seg +sch, namely the addition of feature
outputs resulting from the building map of the first date and the
building change map. These two additional loss functions are
integrated to reduce the number of false positive values in the
building change detection map, combining the predicted prob-
abilities of the network’s both decoding branches in a circular
way.

For the final optimization of the network we use the weighted
sum of all the previous losses choosing a weight equal to 0.6 for
the building change detection branch due to the limited number
of changed pixels in the dataset. In all the rest employed losses
we assign a weight equal to 0.1.
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Figure 1. Graphical illustration of the proposed multi-task deep architecture. The fully convolutional LSTM network depicted on
the left is further enriched with the additional building segmentation decoding branch depicted on the right. Every encoding level i
results in five spatial feature vectors which are fed to the LSTM cell so that the hidden state can be calculated and concatenated with
the corresponding decoding level. Spatial feature vectors of certain dates d, in our case d ∈ {1, D}, are also concatenated with the
corresponding feature vectors of the building segmentation decoding branch.

2.2 Dataset and Implementation Details

All the experiments were based on the Attica VHR dataset,
which involves 5 multispectral very high resolution images il-
lustrating a 9 km2 region in the East Prefecture of Attica, Greece,
for five different years. In particular, there are images acquired
in 2006, 2007 and 2009 which were captured by Quickbird
satellite, while there are also images for the years of 2010 and
2011, which were captured by WorldView-2. Every sample is
pansharpened and atmospherically corrected, with the available
groundtruth of both buildings and change of buildings having
been manually annotated by remote sensing experts after an at-
tentive and time demanding photo-interpretation. Also, Quick-
bird images were resized to the WorldView-2 resolution which
is approximately 8000 by 7000 pixels. It should be mentioned
here that all experiments were conducted using the four sim-
ilar spectral bands of both sensors; Red, Green, Blue and Near
Infra-Red.

The whole region was divided into 36 equal subregions of ap-
proximate size 1100 by 1300 pixels; 28 of them were used for
training, 4 for validation and 4 for testing. We tried to split the
dataset parts as wisely as possible so that there is sufficient in-
formation during the training process as well as adequate testing
features in order to draw reliable conclusions. For the training
process, patches of size 64x64 were produced with a stride of
either 32 in case building change pixels were included, or 64
in case the patch did not include any building change pixels at
all. This strategy was applied as a data augmentation approach
to enrich the building change semantic category since it is ex-
tremely scarce compared to the no change one. In addition,
patches whose number of building change pixels exceeded the
threshold of 3% were randomly flipped in all possible angles
proportional to 90 degrees while their brightness, contrast and
saturation levels were also randomly altered. Lastly, each class
was associated with a weight inversely proportional to the total
pixel number included in it.

As far as hyperparameters are concerned, Adam optimizer was
picked with a learning rate equal to 10−4 and a batchsize of
10. The dataset split seemed to work properly since the train-
ing was conducted successfully without overfitting signs. Early
stopping criteria were employed for every adopted approach in
order to cease the training process and pick the optimal net-
work weights. The applied methods needed less than 50 epochs
to converge, while all experiments were implemented using the
PyTorch deep learning library (Paszke et al., 2017) on a single
NVIDIA GeForce GTX TITAN with 12 GB of GPU memory.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we present the experimental results along with a
comparative study.

3.1 Quantitative Evaluation

For the quantitative evaluation, precision, recall, F1 score and
balanced accuracy metrics have been employed.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2 · Precision ·Recall

Precision + Recall
(7)

BA =
TP

TP+FN
+ TN

TN+FP

2
(8)

They are all expressed through the calculated TP (True Posit-
ives), FP (False Positives), TN (True Negatives) and FN (False
Negatives). If we have a class l, then TP is the number of pixels
that have been correctly classified as l. FP is the number of
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Methods Dates Building Change Detection Building Semantic Segmentation Time (mins)Precision Recall F1 BA Precision Recall F1 BA

(Caye Daudt et al., 2018a)
FC-Siam-Conc

2 42.47 56.52 48.49 78.00 - - - - ≈ 1
2 44.70 59.07 50.89 79.28 74.41 65.92 69.91 82.36 ≈ 1.5
5 46.62 59.03 52.09 79.28 - - - - ≈ 2
5 50.23 57.68 53.70 78.65 78.78 57.12 66.22 78.15 ≈ 2.5

(Caye Daudt et al., 2018a)
FC-EF

2 41.10 55.53 47.24 77.49 - - - - ≈ 1
5 43.85 52.95 47.97 76.24 - - - - ≈ 2

(Caye Daudt et al., 2018a)
FC-Siam-Diff

2 45.67 56.80 50.63 78.17 - - - - ≈ 1
2 44.09 62.11 51.57 80.79 75.90 63.50 69.15 81.21 ≈ 1.5
5 41.45 40.59 41.02 70.10 - - - - ≈ 2
5 41.87 48.92 45.12 74.23 73.79 66.81 70.13 82.78 ≈ 2.5

Proposed
L-UNet

2 47.25 55.21 50.92 77.39 - - - - ≈ 2
2 44.53 61.39 51.62 80.44 67.38 75.54 71.23 86.80 ≈ 3
5 47.96 60.19 53.38 79.87 - - - - ≈ 4
5 52.42 59.68 55.82 79.65 76.08 61.52 68.03 80.24 ≈ 5

Table 1. Quantitative evaluation of the proposed framework for the testing part of Attica VHR dataset. Precision, recall and F1 rates
are associated to the building change class as well as the building class for the image of 2006, while Balanced Accuracy (BA) is also
provided. All the rows demonstrate results using the RGB-NIR bands with the last column indicating the computational time needed
for each method to complete one training epoch. With bold we indicate the best performance and with bold and italic the second best
performance per evalaution metric.

pixels that have been wrongly classified as l. TN is the number
of pixels that have been rightly recognized as not belonging to l.
Finally, FN represents the pixels that belong to l but the model
has associated them to some other class.

In Table 1 we provide the quantitative outcomes of the pro-
posed method with and without semantic segmentation of build-
ings. We also compare them with all the methods described
in (Caye Daudt et al., 2018a). The estimation of the accuracy
metrics was carried out on the testing part of the Attica VHR
dataset after a post processing phase where objects with areas
smaller than 150 pixels were discarded.

As one can observe, the integration of the building semantic
segmentation decoding branch boosts the F1 score in all ap-
proaches. Starting with the FC-Siam-Conc method, F1 rate has
increased by 1.6% in the case of 5 dates, while precision has
also raised by 3.6% which indicates that the multi-task learn-
ing process contributes much to the lessening of false positive
pixels. On the contrary, for the FC-Siam-Diff method, the pre-
cision rates remain very low not only in the 2 dates case but
also in the 5 dates case, with or without multi-task learning.
Regarding FC-EF, the numerical results are slightly better in
the 5 dates case, although F1 score does not exceed the level of
48% in neither of the two experiments. It should be mentioned
here that for the FC-EF method we could not perform the task
of building semantic segmentation simultaneously since the dif-
ferent dates are fused along the channel dimension before be-
ing passed through the model, preventing in this way the con-
struction of separate spatial feature vectors for each individual
date. As far as the proposed framework is concerned, it appears
that it yields the most successful results regarding false positive
pixels since the precision rate is 52.42% in the case of 5 dates,
exceeding the next best precision score of multi-task FC-Siam-
Conc by approximately 2.2%. In addition, the F1 score reaches
the value of 55.82% which is also 2.2% higher than the corres-
ponding F1 rate in the multi-task FC-Siam-Conc case. For the
L-UNet approach, we notice that the F1 rate is always above
50% which means that when temporal dynamics are calculated,
the attained total number of false positive and false negative
pixels seems to be more balanced. Finally, the highest balanced
accuracy score was established by the multi-task FC-Siam-Diff
method of 2 dates, where the highest recall rate has also been
achieved. Nevertheless, the precision rate is particularly low
which means that even though false negative pixels are more
limited, false positive pixels continue to exist. As a whole,

FC-Siam-Conc as well as L-UNet approaches achieve almost
the same balanced accuracy rates with precision and F1 scores
outperforming the FC-Siam-Diff cases. Regarding building se-
mantic segmentation, the provided accuracy metrics are related
to the year of 2006, with multi-task L-UNet with 2 dates report-
ing the best performances. Lastly, in the last column of Table 1
we provide the approximate computational time needed by the
different employed methods to complete one training epoch. L-
UNet requires twice the time needed in all the methods presen-
ted in (Caye Daudt et al., 2018a), while time demands increase
further when building semantic segmentation is integrated.

In general, one can notice that in all applied methods accuracy
results demonstrate that the networks are prone to many errors,
especially if we consider that precision rates for the building
change category never go above 53%. This is probably caused
by two main problems that exist in change detection datasets.
The first one is related to registration and parallax errors that
disorientate the network’s learning process. Secondly, the ap-
pearance of certain building roofs may be differentiated through
time, resulting in a variation of provided spectral values for cer-
tain areas that do not really undergo any semantic change on
the buildings. One critical issue also lies in the fact that the
building change semantic category is greatly scarce compared
to the no change one. In the case of Attica VHR dataset, the
total number of no change pixels for the training dataset is al-
most 84 times larger than the number of change ones. Neverthe-
less, despite these obstacles the extraction of temporal features
seems to handle the available information in a better and more
constructive way, especially when it is coupled simultaneously
with building semantic segmentation.

3.2 Qualitative Evaluation

In Figure 2, we provide predictions that resulted from some of
the investigated methods on the Attica VHR testing regions for
the building change detection task. Green colour stands for true
positive pixels, black for true negatives, red for false positives
and yellow for false negatives. In the first row, the additional
building of 2011 is detected successfully only by the multi-task
L-UNet with 5 dates. Multi-task FC-Siam-Conc with 5 dates
has only partly detected the building change, whereas multi-
task FC-Siam-Diff with 2 dates and FC-EF with 5 dates have
failed completely to recognize it. In the second row, all meth-
ods seem to have identified the building changes, with multi-
task L-Unet with 5 dates having attained the lowest number of
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Figure 2. Qualitative evaluation on zoomed regions of the Attica VHR testing areas for the building change detection task. 1st column:
RGB images of 2006, 2nd column: RGB images of 2011, 3rd column: multi-task FC-Siam-Conc with 5 dates, 4th column: multi-task
FC-Siam-Diff with 2 dates, 5th column: FC-EF with 5 dates, 6th column: multi-task L-UNet with 5 dates [Green: True Positives,
Black: True Negatives, Red: False Positives, Yellow: False Negatives]

false positive pixels. Regarding the third row, multi-task FC-
Siam-Diff with 2 dates and FC-EF with 5 dates have failed to
identify certain building changes while finally, in the last row
all methods have detected the building changes adequately ex-

Figure 3. Building predictions on testing areas of Attica VHR
dataset for the year of 2006. 1st row: RGB images, 2nd row:
multi-task FC-Siam-Conc with 5 dates, 3rd row: multi-task FC-
Siam-Diff with 2 dates, 4th row: multi-task L-UNet with 5 dates.
[Green: True Positives, Black: True Negatives, Red: False Posit-
ives, Yellow: False Negatives]

cept FC-EF with 5 dates which also includes the largest number
of false positive pixels.

In Figure 3 there are also several illustrations on building pre-
dictions from Attica VHR testing regions of 2006. With a closer
look, one can observe that all multi-task methods appear to
handle the building semantic segmentation problem in a similar
manner. In every approach however it is visible that the build-
ing boundaries are not very precise most of the times. This
problem can also be observed in Figure 4 where all network
outcomes resulting from the proposed multi-task scheme are
demonstrated, for a region of Attica VHR testing part.

4. CONCLUSION

Throughout this work, we have evaluated and compared a fully
convolutional multi-task deep architecture which takes advant-
age of temporal dynamics as well as building footprint features
among the different dates in order to deal with the building
change detection problem. Results show that the exploitation
of temporal dynamics alone can boost the model’s performance
compared to other state of the art architectures which are based
exclusively on spatial feature representations. Accuracy metrics
are even further ameliorated when the task of building semantic
segmentation is performed simultaneously for the first and last
date of the dataset. Still, urban change detection remains a
remarkably challenging problem since the building change se-
mantic category is extremely scarce compared to the no change
one. Apart from that, spectral rooftop alterations and registra-
tion errors tend to disorientate greatly the networks during the
training process, resulting in a large number of false positive
pixels. In the future, we aim to investigate further the possible
combinations of multi-task deep frameworks as well as tackle
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Figure 4. Qualitative results of multi-task L-UNet with 5 dates, for a region of Attica VHR testing part. From left to right: RGB image
of 2006, RGB image of 2011, building predictions of 2006, building predictions of 2011, building change predictions. [Green: True
Positives, Black: True Negatives, Red: False Positives, Yellow: False Negatives]

the issue of imprecise boundaries in an attempt to produce even
more accurate segmentation maps. In addition, we plan to ex-
plore if the trained models can generalize well when tested on
other very high resolution datasets depicting cities with differ-
ent city infrastructures.
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ubia, J., 2015. Multilayer Markov Random Field Models for
Change Detection in Optical Remote Sensing Images. ISPRS
Journal of Photogrammetry and Remote Sensing, 107, 22-37.
https://hal.inria.fr/hal-01116609.

Byeon, W., Breuel, T. M., Raue, F., Liwicki, M., 2015. Scene
labeling with lstm recurrent neural networks. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
3547–3555.

Caye Daudt, R., Le Saux, B., Boulch, A., 2018a. Fully convo-
lutional siamese networks for change detection. IEEE Interna-
tional Conference on Image Processing (ICIP).

Caye Daudt, R., Le Saux, B., Boulch, A., Gousseau, Y.,
2018b. Urban change detection for multispectral earth observa-
tion using convolutional neural networks. IEEE International
Geoscience and Remote Sensing Symposium (IGARSS).

Daudt, R. C., Saux, B. L., Boulch, A., Gousseau, Y., 2018. Mul-
titask learning for large-scale semantic change detection. Com-
puter Vision and Image Understanding, 187.

Deng, J., Wang, K., H. Deng, Y., J. Qi, G., 2008. PCA-based
land-use change detection and analysis using multitemporal
and multisensor satellite data. International Journal of Remote
Sensing - INT J REMOTE SENS, 29, 4823-4838.

Ehsani, K., Bagherinezhad, H., Redmon, J., Mottaghi, R., Far-
hadi, A., 2018. Who Let the Dogs Out? Modeling Dog Beha-
vior from Visual Data. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 4051-4060.

Hochreiter, S., 1998. The Vanishing Gradient Problem During
Learning Recurrent Neural Nets and Problem Solutions. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6, 107-116.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term
memory. Neural computation, 9(8).

Hopfield, J. J., 1982. Neural networks and physical systems
with emergent collective computational abilities. Proceedings
of the National Academy of Sciences of the United States of
America, 79 8, 2554-8.

Karantzalos, K., 2015. Recent advances on 2d and 3d change
detection in urban environments from remote sensing data.

Li, X., Yeh, A. G.-O., 1998. Principal component analysis
of stacked multi-temporal images for the monitoring of rapid
urban expansion in the pearl river delta.

Liu, Y., Pang, C., Zhan, Z., Zhang, X., Yang, X., 2019. Build-
ing Change Detection for Remote Sensing Images Using a
Dual Task Constrained Deep Siamese Convolutional Network
Model. ArXiv, abs/1909.07726.

Milan, A., Rezatofighi, S. H., Dick, A. R., Reid, I. D., Schind-
ler, K., 2016. Online multi-target tracking using recurrent
neural networks. AAAI.

Mou, L., Bruzzone, L., xiang Zhu, X., 2019. Learning
Spectral-Spatial-Temporal Features via a Recurrent Convolu-
tional Neural Network for Change Detection in Multispectral
Imagery. IEEE Transactions on Geoscience and Remote Sens-
ing, 57, 924-935.

Papadomanolaki, M. G., Verma, S., Vakalopoulou, M., Gupta,
S., Karantzalos, K., 2019. Detecting Urban Changes with Re-
current Neural Networks from Multitemporal Sentinel-2 Data.
IGARSS 2019 - 2019 IEEE International Geoscience and Re-
mote Sensing Symposium, 214-217.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-
Vito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017.
Automatic differentiation in PyTorch.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolu-
tional networks for biomedical image segmentation. N. Navab,
J. Hornegger, W. M. Wells, A. F. Frangi (eds), Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI
2015, Springer International Publishing, Cham, 234–241.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning
representations by back-propagating errors. Nature, 323, 533-
536.

Singh, B., Marks, T. K., Jones, M. J., Tuzel, O., Shao, M.,
2016. A Multi-stream Bi-directional Recurrent Neural Network
for Fine-Grained Action Detection. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 1961-1970.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-541-2020 | © Authors 2020. CC BY 4.0 License.

 
546



Singh, P., Kato, Z., Zerubia, J., 2014. A multilayer Markovian
model for change detection in aerial image pairs with large time
differences. IAPR, IEEE, Stockholm, Sweden. Accepted.

Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios,
N., 2015. Simultaneous registration and change detection in
multitemporal, very high resolution remote sensing data. 61–
69.

Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios,
N., 2016. Graph-Based Registration, Change Detection, and
Classification in Very High Resolution Multitemporal Remote
Sensing Data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 9, 1-12.

Volpi, M., Tuia, D., Camps-Valls, G., Kanevski, M. F.,
2012. Unsupervised Change Detection With Kernels. IEEE
Geoscience and Remote Sensing Letters, 9, 1026-1030.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-541-2020 | © Authors 2020. CC BY 4.0 License.

 
547




