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ABSTRACT:

Lake ice is a strong climate indicator and has been recognised as part of the Essential Climate Variables (ECV) by the Global Climate
Observing System (GCOS). The dynamics of freezing and thawing, and possible shifts of freezing patterns over time, can help in
understanding the local and global climate systems. One way to acquire the spatio-temporal information about lake ice formation,
independent of clouds, is to analyse webcam images. This paper intends to move towards a universal model for monitoring lake ice
with freely available webcam data. We demonstrate good performance, including the ability to generalise across different winters
and lakes, with a state-of-the-art Convolutional Neural Network (CNN) model for semantic image segmentation, Deeplab v3+.
Moreover, we design a variant of that model, termed Deep-U-Lab, which predicts sharper, more correct segmentation boundaries.
We have tested the model’s ability to generalise with data from multiple camera views and two different winters. On average,
it achieves Intersection-over-Union (IoU) values of ≈71% across different cameras and ≈69% across different winters, greatly
outperforming prior work. Going even further, we show that the model even achieves 60% IoU on arbitrary images scraped from
photo-sharing websites. As part of the work, we introduce a new benchmark dataset of webcam images, Photi-LakeIce, from
multiple cameras and two different winters, along with pixel-wise ground truth annotations.

1. INTRODUCTION

Climate change is and will continue to be, a main challenge for
humanity. In the words of Stephen Haddrill (2014), "Climate
change is a reality that is happening now, and that we can see
its impact across the world". Lakes play an essential role in
the quest to monitor and better understand the climate system.
One important piece of information about lakes in cooler cli-
mate zones are the times, duration and patterns of freezing and
thawing. Long-term changes and shifts of these variables mir-
ror changes in the local climate. Therefore, there is a need to
analyse the temporal dynamics of lake ice, and in fact, it has
been designated an ECV by the GCOS.

This work explores the potential of webcam images, in con-
junction with modern semantic segmentation algorithms such
as Deeplab v3+ (Chen et al., 2018), for lake ice monitoring.
The goal is to construct a spatially resolved time series of the
spatio-temporal extent of lake ice (note that coarser indicators,
e.g., the ice-on and ice-off dates, can easily be derived from
the time series). Given the promising results of Deeplab v3+
on other semantic segmentation tasks such as PASCAL VOC
(Everingham et al., 2015) and Cityscapes (Cordts et al., 2016),
we base our approach on that model.

The core task for the envisaged monitoring system is: in every
camera frame, classify each pixel capturing the lake surface as
water, ice, snow and clutter, i.e., other objects on the lake,
mostly due to human activity such as tents, boats etc. See
Fig. 1c. With a view towards a future operational system, we
do lake detection, followed by fine-grained classification. See
Fig. 1b. In both steps we take advantage of transfer learning
and employ models pre-trained on external databases (here, the
∗ corresponding author

(a) Webcam RGB image (b) Lake detection

(c) Lake ice segmentation (d) Ground truth

Background Water Ice Snow Clutter

(e) Colour code.

Figure 1: (a) Example webcam image of lake St. Moritz, from
the Photi-LakeIce dataset, (b) lake detection result, (c) lake ice
segmentation result, (d) corresponding ground truth labels and
(e) the colour code used throughout the paper.

PASCAL VOC dataset), to compensate for the relative scarcity
of annotated data.

To evaluate any model’s ability to generalise, and in particu-
lar to work with high-capacity deep learning methods, one re-
quires a large and diverse pool of annotated data, i.e., images
with pixel-accurate labels. Webcams on lakes are a challenging
outdoor scenario with limited image quality, and prone to unfa-
vorable illumination, haze, etc; making it at times hard to dis-
tinguish between ice/snow or water, even for the human eye, see
Fig. 2. For our study, we gathered and annotated several web-
cam streams. These include the data from four lakes and three
summers for lake detection, and two lakes and two winters for
lake ice segmentation. Entire data is curated and labelled by
human annotators.
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Contributions.

1. We set a new state of the art for lake ice detection from
webcam data.

2. Unlike prior art (Tom et al., 2019), our method generalises
well across different cameras and lakes, and across differ-
ent winters.

3. Along the way we also demonstrate automated lake detec-
tion; a small extension that, however, may be very useful
when scaling to many lakes or moving to non-stationary
(pan-tilt-zoom) cameras.

4. We introduce Deep-U-Lab which produces visibly more
accurate segment boundaries.

5. We report, for the first time, lake ice detection results for
crowd-sourced images from image-sharing websites.

6. We make available a new Photi-LakeIce dataset of web-
cam images, with ground truth annotations for multiple
lakes and winters.

(a) water (b) water (c) water + ice

(d) ice (e) snow + ice (f) snow

Figure 2: Texture variability of water, ice, and snow in the
Photi-LakeIce dataset.

2. RELATED WORK

Lake ice monitoring. To our knowledge, Xiao et al. (2018)
proposed lake ice detection with webcams for the first time.
The authors used the FC-DenseNet model (Jégou et al., 2016)
and performed experiments on a single lake (St. Moritz) for
the winter 2016-17. Another work was reported on monitoring
lake ice and freezing trends from low-resolution optical satellite
data (Tom et al., 2018). They used support vector machines to
detect ice and snow on four Alpine lakes in Switzerland (Sihl,
Sils, Silvaplana, and St. Moritz). Building on those works, an
integrated monitoring system combining satellite imagery, web-
cams and in-situ data was proposed in Tom et al. (2019). Note
that this work reported results on two winters (2016-17 and
2017-18) for the webcam at lake St. Moritz. Duguay and Wang
(2019) provided algorithms to generate a bedfast/floating lake
ice product from Synthetic Aperture Radar (SAR), and Wang
et al. (2018) investigated the performance of a semi-automated
segmentation algorithm for lake ice classification using dual-
polarized RADARSAT-2 imagery. Du et al. (2019) summarised
the physical principles and methods in remote sensing of selec-
ted key variables related to ice, snow, permafrost, water bodies,
and vegetation.

The starting point for the present work was the observation that
the work of Tom et al. (2019) failed to generalise across dif-
ferent cameras viewing the same lake. Our goal was to make
progress towards a system that can be applied not only to dif-
ferent views of the same lake, but also to other lakes and/or data

from different winters. As an even more extreme test, we also
test on crowd-sourced data.

Amateur images for environmental monitoring. Besides lake
ice, there are many more domains where images from webcams
or photo-sharing repositories could benefit environmental mon-
itoring. Examples include Li et al. (2017); Thorpe et al. (2011);
Hoonhout et al. (2015); Wang et al. (2017); Surdu et al. (2015);
Norouzzadeh et al. (2018); Alberton et al. (2017); Bothmann
et al. (2017). Perhaps the closest ones to our work are, on the
one hand, Salvatori et al. (2011), where the goal was to de-
tect the extent of snow cover in webcam images; and on the
other hand, Singh et al. (2019), where different types of floating
ice on rivers were detected with the help of UAV images. We
note that crowd-sourcing techniques are, in general, becoming
more popular for environmental monitoring, e.g., Giuliani et al.
(2016).

Deeplab v3+ for semantic segmentation. Due to their un-
matched versatility and empirical performance, neural networks
have become the preferred tool for many complex image ana-
lysis tasks, and remote sensing is no exception. For the task
of semantic segmentation, Deeplab v3+ (Chen et al., 2018) is
one of the most popular architectures, and the top performer on
several different datasets; including generic consumer pictures,
e.g., PASCAL VOC (Everingham et al., 2015), but also more
specific ones like the recent ModaNet (Zheng et al., 2018), a
large collection of street fashion images. Also in medical im-
age analysis, Deeplab v3+ has been used to segment clinical
image data, e.g., lesions of the liver in abdominal CT images
(Xia et al., 2019). Remote sensing examples include detection
of oil spills in satellite images (Krestenitis et al., 2019) to com-
bat illegal discharges and tank cleaning that pollute the oceans.
And, closer to our work, detecting different types of ice in UAV
images (Singh et al., 2019) as an intermediate step to quantify
river ice concentration with relatively small (in deep learning
terms) datasets.

3. METHODOLOGY

3.1 Deeplab v3+

Deeplab v3+ (Chen et al., 2018) is a CNN architecture for se-
mantic segmentation, designed to learn multi-scale contextual
features while controlling signal decimation, see Fig. 3. The
basic structure is a classical encoder-decoder architecture. We
use Xception65 as the encoder backbone, which is similar to the
well-known Inception network (Szegedy et al., 2015), except
that it uses depth-wise separable convolutions. That is, 2D con-
volutions are applied on each input channel independently, then
combined with 1D convolutions across channels. This saves a
lot of unknowns, without any noticeable performance penalty.
Moreover, all max-pooling operations are replaced by (depth-
wise separable) strided convolutions.

Specific to Deeplab v3+ is the use of Atrous Spatial Pyramid
Pooling (ASPP), to mitigate spatial smoothing but still encode
multi-scale context. Atrous convolution dilates the kernel by
an integer dilation rate k, such that only every k-th pixel of the
input layer is used, thus increasing the receptive field without
downsampling the original input. Overall, the encoder has an
output stride (spatial downsampling from input to final feature
encoding) of 16. In the decoder module, the encoded features
are first upsampled by a factor of 4, then concatenated with the
low-level features from the corresponding encoder layer (after
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Figure 3: Deeplab v3+ architecture. Best if viewed on screen.

reducing the dimensionality of the latter via 1× 1 convolution).
These resulting “mid-resolution” features are transformed with
a further stage of 3× 3 convolutions, then upsampled again by
a factor 4 to recover an output map at the full input resolution.

Deep-U-Lab. To mitigate the model’s tendency towards overly
smooth, imprecise segment boundaries, we add three extra skip
connections from the entry and middle blocks of the encoder,
in the spirit of U-net (Ronneberger et al., 2015). We call this
new version Deep-U-Lab, see Fig. 4. The corresponding feature
maps are directly concatenated together with the final output of
the encoder block. We found that they help to better preserve
high-frequency detail at segment boundaries. The main task of
the encoder is to extract high-level features for various classes,
with a tendency to loose low-level information not crucial for
that task. Hence, we enforce preservation of low-level features
through concatenation, so as to refine the class boundaries.

Exit FlowM iddle FlowEntry Flow 
Block3

Entry Flow 
Block2

Entry Flow 
Block1

Decoder Logits

Encoder : Xception 65

***
Figure 4: Deep-U-Lab. The newly added skip connections are
marked by "*". Best if viewed on screen.

Transfer learning. A remarkable property of deep machine
learning models is their ability to learn features that transfer
well across datasets. We therefore initialise our training with
network weights pre-trained on PASCAL VOC 2012 (Evering-
ham et al., 2015), a standardised image dataset for basic objects
like animals, people, vehicles, etc.. Even if there seemingly is a
considerable domain shift between an existing image collection
(in our case PASCAL) and a new dataset (our lake ice images),
starting from a network learnt for the older dataset and fine-
tuning it quickly adapts it to the new data and task, with much
less data. In particular, batch normalization layers for a large
network are difficult to train, because it calls for big batch sizes
and thus GPU memory. Transfer learning comes to rescue in
scenarios like this.

3.2 Lake detection

It is obvious that classifying lake ice is a lot easier if restricted
to pixels on the lake. Full webcam frames usually include a
lot of background (buildings, mountains, sky, etc.), and passing
them directly to the lake ice classifier can add unnecessary dis-
tractions to the learning and inference stages (e.g., clouds can

be difficult to discriminate from snow). Therefore, we prefer
to localise the lake in a pre-processing step and run the actual
lake ice detection only on lake pixels. For static webcams, it is
relatively easy to localise the lake manually, as in earlier works
(Xiao et al., 2018; Tom et al., 2019). There are, however, situ-
ations where an automatic procedure would be preferable, for
instance, if the lake level varies greatly over the years. Auto-
matic detection of the lake becomes vital if also crowd-sourced
images have to be analysed, since these are typically taken from
variable, unknown viewpoints.

In the context of our work, it is natural to also cast the automatic
lake detection as a two-class (foreground, background) pixel-
wise semantic segmentation problem and train another instance
of the segmentation model. For static webcams, we run the lake
detector on summer images, to sidestep the situation where both
the lake and the surrounding ground is covered with snow.

3.3 Lake ice segmentation

Once the lake mask has been determined, the state of the lake
is inferred with a fine-grained classifier. In this step, pixels are
labelled as one of four classes (water, ice, snow, clutter). From
the per-pixel maps, we also extract two parameters often used to
describe the temporal dynamics of the freezing cycle: the ice-on
date, defined as the first day on which the large majority of the
lake surface is frozen, and which is followed by a second day
with also mostly frozen lake (Franssen and Scherrer, 2008);
and the ice-off date, defined symmetrically as the first day on
which a non-negligible part of the lake surface is liquid water,
and followed by a second non-frozen day.

4. DATA

4.1 Webcam data

All our webcam images are manually annotated with the La-
belMe tool (Wada, 2016) to generate pixel-wise ground truth.
Additionally, the dataset is cleaned by discarding excessively
noisy images due to bad weather (thick fog, heavy rain, and
extreme illumination conditions). The images vary in spatial
resolution, magnification, and tilt, depending on camera type
(fixed or rotating) and parameters.

Lake detection dataset. For the task of lake detection, we have
collected image streams from four different lakes: one camera
each for lakes Sihl (rotating), Sils (fixed), and St. Moritz (rotat-
ing) and four cameras (all fixed) for lake Silvaplana. Refer to
Table 2 for more details.
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(a) Cam0 St. Moritz (b) Cam0 St. Moritz FG (c) Cam1 St. Moritz (d) Cam1 St. Moritz FG

(e) Cam2 Sihl (R1) (f) Cam2 Sihl (R1) FG (g) Cam2 Sihl (R2) (h) Cam2 Sihl (R2) FG

(i) Cam2 Sihl (R3) (j) Cam2 Sihl (R3) FG (k) Cam2 Sihl (R4) (l) Cam2 Sihl (R4) FG

Figure 5: Example images from the Photi-LakeIce dataset. 1st row: fixed cameras monitoring lake St. Moritz. 2nd and 3rd rows:
rotating camera (R1, R2, R3, R4 represents different rotations) monitoring lake Sihl. Even columns show the foreground (FG) lake
area for the images shown in the previous column.

Table 1: Key figures of the Photi-LakeIce dataset for different
winters, lakes, and cameras.

Winter Lake Cam #images Res
2016-17 St. Moritz Cam0 820 324×1209
2016-17 St. Moritz Cam1 1180 324×1209
2016-17 Sihl Cam2 500 344×420
2017-18 St. Moritz Cam0 474 324×1209
2017-18 St. Moritz Cam1 443 324×1209
2017-18 Sihl Cam2 600 344×420

Photi-LakeIce dataset. We report lake ice segmentation results
on the Photi-LakeIce dataset, which we make publicly available
to the research community. The dataset comprises of images
from two lakes (St. Moritz, Sihl) and two winters (W2016-17
and W2017-18). See Table 1 for details. For images in this
dataset, we also provide pixel-wise ground truth for foreground-
background segmentation as well as for lake ice segmentation.
There are two different, fixed webcams (Cam0 and Cam1, see
Fig. 5a and c) both observing lake St. Moritz at different zoom
levels. The third camera (Cam 2), at lake Sihl, rotates around
one axis and observes the lake in four different viewing dir-
ections. Example images are shown in Fig. 5. Additionally,
Fig. 6 shows the class frequencies for all classes (background
+ 4 states on the lake), which are fairly imbalanced with ice
and clutter always being under-represented. For lake Sihl, there
are four different camera angles involved in capturing distinct
lake views, causing the difference in background frequencies.
The background frequencies of the same camera slightly vary
across different winters (such as Cam0 of St. Moritz) mostly
due to differences in manual annotations, as these two winters
are annotated by two different operators.

4.2 Crowd-sourced data

As an even more extreme generalisation task than between dif-
ferent webcam views, we also test the method on individual
images sourced from online image-sharing platforms. We note
that there is a potential to also include such images as comple-
mentary data sources in a monitoring system, as long as they are
time-stamped. We employed keywords such as frozen St. Mor-
itz, lake ice St. Moritz, St. Moritz lake in winter etc. to gather
lake ice images from online platforms such as Google, Flickr,
Pinterest, etc. In total, we collected 150 images, which are all

0%

SIHL (17-18)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SIHL (16-17)

St. M ORITZ 
CAM 1 (17-18)

St. M ORITZ 
CAM 0 (17-18)

St. M ORITZ 
CAM 1 (16-17)

St. M ORITZ 
CAM 0 (16-17)

BACK GROUND WATER ICE SNOW CLUTTER

Figure 6: Class imbalance (ground-truth) in the Photi-LakeIce
dataset. Best if viewed on-screen.

resized to a spatial resolution of 512× 512 for further use. Ex-
amples are shown in Figs. 13a and 14a.

5. EXPERIMENTS, RESULTS AND DISCUSSION

Network details All networks are implemented in Tensorflow.
The lake detection model is trained on image crops of size 500×
500, whereas the lake ice segmentation model, is trained with
crop of size 321 × 321. The evaluation of the (fully convolu-
tional) networks is always run at full image resolution without
any cropping. The per-class losses are balanced by re-weighting
the cross-entropy loss with the inverse (relative) frequencies in
the training set. All models are trained for 100 epochs with
batch sizes of 4 for lake detection and 8 for lake ice segmenta-
tion, respectively. Atrous rates are set to [6, 12, 18] in all exper-
iments. Simple stochastic gradient descent empirically worked
better than more sophisticated optimisation techniques. The
base learning rate is set to 10−5 and reduced according to the
poly schedule (Liu et al., 2015).

5.1 Results on webcam images

Lake detection results. Only summer images are used to avoid
problems due to snow cover (on both the lake and the surround-
ings). The model performed well with ≥0.9 mean Intersection-
over-Union (mIoU) score (weighted according to the class dis-
tribution in the train set) in all cases, see Table 2. We are not
aware of any previous work on lake detection in webcam im-
ages, but note that water bodies are in general segmented rather
well in RGB images. Figure 7 shows the qualitative results of
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Table 2: Mean IoU (mIoU) values of the leave-one-cam-out ex-
periments for lake detection. Silv(0,1,2,3) are the different cam-
era angles for lake Silvaplana. SMS refers to {Sils, St. Moritz,
Sihl}.

Train set Test set mIoULakes #images Lake #images
Silv, Moritz, Sihl 7477 Sils 2075 0.93
Silv, Sils, Sihl 8456 Moritz 1096 0.92
Silv, Sils, Moritz 9104 Sihl 448 0.93
Silv(0,1,2), SMS 7652 Silv(3) 1900 0.95
Silv(0,1,3), SMS 7906 Silv(2) 1646 0.95
Silv(0,2,3), SMS 8676 Silv(1) 876 0.90
Silv(1,2,3), SMS 8041 Silv(0) 1511 0.94

(a) Image (b) Ground truth (c) Prediction

Figure 7: Results of lake detection using Deeplab v3+. The first
three rows shows successful cases, a failure case is displayed in
the last row.

the lake detection, including a failure case in the last row. It
can be observed that the wrong classification occurs in a rather
foggy image that is difficult to judge even for humans. Also,
note the fairly good prediction in the first row, a challenging
case where the lake covers <5% of the image.

Lake ice segmentation results.

Table 3 shows the results for lake ice segmentation on the Photi-
LakeIce dataset. Exhaustive experiments were performed to
evaluate same camera train-test (rows 1-6), cross-camera train-
test (rows 7-10) and cross-winter train-test (rows 11-16).

For the same camera train-test experiments, the model is trained
randomly on 75% of the images and tested on the remaining
25%. As shown in Table 3 (rows 1 and 2), the mIoU scores of
the proposed approach are respectively 19 and 7 percent points
higher than the ones reported by Tom et al. (2019). For lake
St. Moritz, in addition to the results on the winter 2016-17, we
report results for the winter 2017-18. Additionally, we present
results on a second, more challenging lake (Sihl), for both win-
ters. As can be seen in Fig. 5, the images from lake Sihl (Cam2)
are of significantly lower quality, with severe compression arti-
facts, low spatial resolution, and small lake area in pixels, which
amplifies the influence of small, miss-classified regions on the
error metrics. Consequently, our method performs worse than
for St. Moritz, but still reaches >76% correct classification un-
der the rather strict IoU metric. We note that there is no clutter
class since no events take place on lake Sihl.

The main drawback of prior studies on lake ice detection is
their models’ inability to generalise from one camera view to
another (Xiao et al., 2018; Tom et al., 2019). For the cross-
camera experiments (rows 7-10, Table 3), our model is trained
on all images from one camera and tested on all images from
another camera. As per Table 3, for winter 2016-17, the mIoU
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(b) Cam1 (test) results when
trained using the data from Cam1
(train).

iso-f1 curves
Precision-recall for class Water (area = 0.95)
Precision-recall for class Ice (area = 0.77)
Precision-recall for class Snow (area = 0.93)
Precision-recall for class Clutter (area = 0.44)

0.0 0.4 0.6 0.80.2 1.0
0.0

0.8

0.6

0.4

0.2

1.0

RECALL

P
R

E
C

IS
IO

N

(c) Cam0 results when trained us-
ing the data from Cam1.
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(d) Cam1 results when trained us-
ing the data from Cam0.

Figure 8: Precision-recall curves (Lake St. Moritz). Best if
viewed on screen.

results for that experiment surpass the FC-DenseNet (Tom et
al., 2019) by margin of 35 to 40 percent points. This huge im-
provement clearly shows the superior ability of the deep learn-
ing architecture to learn generally applicable “visual concepts”
and avoid overfitting to specific sensor characteristics and view-
points. For completeness, we also report cross camera results
for winter 2017-18. They are a bit worse than those for 2016-
17, due to more complex appearance and lighting during that
season (e.g., black ice) that cause increased confusion between
ice and water.

For an operational system, the ultimate goal is to train on the
data from a set of lakes from one, or a few, winters and then ap-
ply the system in further winters, without the need to annotate
further reference data. Hence, we also performed cross-winter
experiments to assess the generalisation across winters. i.e., the
model is trained on the data from one full winter and tested on
the data acquired from the same viewpoint over a second winter.
The results (Table 3, rows 11-16) show that the model also
generalises quite well across winters. For St. Moritz, a model
trained on winter 2016-17 reaches an IoU of 77% on 2017-18,
a gain of 20 percent points over prior art (Tom et al., 2019). For
Cam0, there is also a substantial gain of 14 percent points. It
can, however, also be seen that there is still room for improve-
ment in less favorable imaging settings such as lake Sihl, where
the segmentation of ice and snow in a different winter largely
fails.

For a more comprehensive assessment of the per-class results
we also generate precision-recall curves, see Fig. 8. It can be
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(a) Webcam image (b) Ground truth (c) Deep-U-Lab (d) Deeplab v3+

Figure 9: Deeplab v3+ vs. Deep-U-lab. Segmentation boundaries are visibly crisper and more accurate with additional skip
connections.

Table 3: Lake ice segmentation results (IoU) on the Photi-LakeIce dataset. For comparison, we also show results of Tom et al.
(2019) where available, in grey. We outperform them in all instances.

Lake Train set Test set Water Ice Snow Clutter mIoUCam Winter Cam Winter
St. Moritz Cam0 16-17 Cam0 16-17 0.98 / 0.70 0.95 / 0.87 0.95 / 0.89 0.97 / 0.63 0.96 / 0.77
St. Moritz Cam1 16-17 Cam1 16-17 0.99 / 0.90 0.96 / 0.92 0.95 / 0.94 0.79 / 0.62 0.92 / 0.85
St. Moritz Cam0 17-18 Cam0 17-18 0.97 0.88 0.96 0.87 0.93
St. Moritz Cam1 17-18 Cam1 17-18 0.93 0.84 0.92 0.84 0.89
Sihl Cam2 16-17 Cam2 16-17 0.79 0.62 0.81 — 0.74
Sihl Cam2 17-18 Cam2 17-18 0.81 0.69 0.86 — 0.79
St. Moritz Cam0 16-17 Cam1 16-17 0.76 / 0.36 0.75 / 0.57 0.84 / 0.37 0.61 / 0.27 0.74 / 0.39
St. Moritz Cam1 16-17 Cam0 16-17 0.94 / 0.32 0.75 / 0.41 0.92 / 0.33 0.48 / 0.43 0.77 / 0.37
St. Moritz Cam0 17-18 Cam1 17-18 0.62 0.66 0.89 0.42 0.64
St. Moritz Cam1 17-18 Cam0 17-18 0.59 0.67 0.91 0.51 0.67
St. Moritz Cam0 16-17 Cam0 17-18 0.64 / 0.45 0.58 / 0.44 0.87 / 0.83 0.59 / 0.40 0.67 / 0.53
St. Moritz Cam0 17-18 Cam0 16-17 0.98 0.91 0.94 0.58 0.87
St. Moritz Cam1 16-17 Cam1 17-18 0.86 / 0.80 0.71 / 0.58 0.93 / 0.92 0.57 / 0.33 0.77 / 0.57
St. Moritz Cam1 17-18 Cam1 16-17 0.93 0.76 0.86 0.65 0.80
Sihl Cam2 16-17 Cam2 17-18 0.61 0.14 0.35 — 0.51
Sihl Cam2 17-18 Cam2 16-17 0.41 0.18 0.45 — 0.50

(a) Image (b) Ground Truth (c) Prediction

Figure 10: Cam0 results when the model is trained only on
Cam1.

(a) Image (b) Ground Truth (c) Prediction

Figure 11: Cam1 results when the model is trained only on
Cam0.

seen that the performance for ice and clutter is inferior to the
other two classes. A large part of the errors for clutter are ac-
tually due to imprecise ground truth rather than prediction er-
rors of the model, as the annotated masks for thin and intricate
structures like flagpoles, food stalls and individual people on
the lake tend to be “bulk annotations” that greatly inflate the
(relative) amount of clutter in the ground truth, leading to large
(relative) errors. According to the curves, thresholds of 0.60
precision and 0.80 recall shows good a trade-off between the
true-positive and false-positive rates for cross-camera results.
However for same-camera results, the thresholds are much bet-

ter ranging from 0.80 for Cam1 to 0.90 for Cam0.

Qualitative example results are shown in Figs. 10 and 11. Some-
times the images are even confusing for humans to annotate
correctly, e.g., Fig. 10, row 2 shows an example of ice with
smudged snow on top, for which the “correct” labeling is not
well-defined. We note that our segmentation method is robust
against cloud/mountain shadows cast on the lake (row 3). In
another interesting case (Fig. 11, row 2) the network “corrects”
human labeling errors, where humans are present on the frozen
lake, but not annotated due to their small size.

Ice-on/off results. Freeze-up and break-up periods are of par-
ticular interest for climate monitoring. To estimate the ice-

Table 4: Ice-on/off dates predicted by our approach.

Lake Winter Ice-on Ice-off
St. Moritz 16-17 14.12.16 18.03-26.04.17
St. Moritz 17-18 06.12.17 27.04.18
Sihl 16-17 29.12.16, 31.12.17,

04.01.17, 05.01.17,
07.01.17, 11.01.17,
10.02.17 14.02.17

Sihl 17-18 29.12.17, 02.01.18,
15.02.18, 23.03.18,
27.03.18, 05.04.18,
11.04.18 16.04.18

on/off dates, we produce a daily time series of the (fractional)
frozen lake area in a camera’s field of view, for the winter 2017−
18 (Figs. 12). The areas in individual images are aggregated
with a daily median, then smoothed with another 3-day me-
dian. The latter filters out individual days with difficult condi-
tions and improves the model predictions by almost 3%. The
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Figure 12: Frozen area time series with- and without post-processing: results of Cam0 when the network is trained using the data
from Cam1. Red bars indicate periods of data gaps, where no images are stored due to technical failures.

estimated ice-on/off dates are shown in Table 4. We determ-
ined the ice-on/off dates for lake St. Moritz from Cam0, which
covers a larger portion of the lake. For lake Sihl, multiple ice-
on and off dates are found, as that lake is in a warmer (lower)
region of Switzerland and froze/thawed four times within the
same winter. See Table 4.

Table 5: Lake ice segmentation results (IoU) on crowd-sourced
dataset.

Water Ice Snow Clutter mIoU
0.60 0.32 0.71 0.79 0.60

(a) Image (b) Ground truth (c) Prediction

Figure 13: Lake detection on crowd-sourced data.

5.2 Results on crowd-sourced images

Crowd-sourced images have a rather different data distribution,
among others due to better image sensors and optical compon-
ents, less aggressive compression, more vivid colours due to
on-device electronics and image editing, etc. Thus, they are, ar-
guably, an even more challenging test of model generalisation.
With the model trained on webcam images (St. Moritz winter
2016-17), lake detection in crowd-sourced images yields an IoU
of 75% for the background and 64% for the lake. Qualitative
results are shown in Fig. 13.

For the semantic segmentation task, we apply the model trained
on webcam images (St. Moritz winter 2016-17) on the crowd-
sourced images. Quantitative results are presented in Table
5. Note that these are still significantly better than the cross-
camera generalisation results of Tom et al. (2019). Qualitative
examples are shown in Fig. 14.

(a) Image (b) Ground truth (c) Prediction

Figure 14: Lake ice segmentation on crowd-sourced data.

5.3 Discussion

A natural question that arises is: Why does Deep-U-Lab per-
form a lot better compared to FC-DenseNet for lake ice detec-

tion? While it is difficult to conclusively attribute the empir-
ical performance of deep neural networks to specific architec-
tural choices, we speculate that there are two main reasons why
Deep-U-Lab is superior to FC-DenseNet.

First, by following a popular “standard” architecture, we can
start from very well pre-trained weights – yet another confirm-
ation that the benefits of pre-training on big datasets often out-
weigh the perceived domain gap to specific sensor and applic-
ation settings. Unfortunately, we could not complete the com-
parison by training Deep-U-Lab from scratch with our data, as
this did not converge. Second, our model has a much larger re-
ceptive field around every pixel, due to the atrous convolutions.
It appears that long-range context and texture, which only our
model can exploit, play an important role for lake ice detection.

6. CONCLUSION AND OUTLOOK

One conclusion that we drew from our study is that the pre-
vious, pioneering attempts (Xiao et al., 2018; Tom et al., 2019)
underestimated the potential of deep convolutional networks for
lake ice detection with webcams. We found that with modern
high-performance architectures like Deeplab v3+, in particular
our variant Deep-U-lab, segmentation results are near-perfect
within the data of one camera over one winter (i.e., in the scen-
ario where a portion of the data is annotated manually, then
extrapolation to the remaining frames is automatic). Moreover,
also generalisation to different views of the same lake, as well
as to different winters with the same camera viewpoint, works
fairly well. Especially the latter case is very interesting for an
operational scenario: it is quite likely that a system trained on
data from two or three winters would reach well above 80% IoU
for all classes of interest. Moreover, it appears within reach to
even complement dedicated monitoring cameras (or, in touristic
places, public webcams) with amateur images opportunistically
gleaned from the web.

An open question for future work is how to minimise the ini-
tial annotation effort, to simplify the introduction of monitoring
systems especially at new locations. A fascinating extension
could be to adopt ideas from few-shot learning and/or active
learning to quickly adapt the system to new locations.
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