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ABSTRACT: 

 

Automatic building change detection has become a topical issue owing to its wide range of applications, such as updating building 

maps. However, accurate building change detection remains challenging, particularly in urban areas. Thus far, there has been limited 

research on the use of the outdated building map (the building map before the update, referred to herein as the old-map) to increase 

the accuracy of building change detection. This paper presents a novel deep-learning-based method for building change detection 

using bitemporal aerial images containing RGB bands, bitemporal digital surface models (DSMs), and an old-map. The aerial images 

have two types of spatial resolutions, 12.5 cm or 16 cm, and the cell size of the DSMs is 50 cm  50 cm. The bitemporal aerial 

images, the height variations calculated using the differences between the bitemporal DSMs, and the old-map were fed into a 

network architecture to build an automatic building change detection model. The performance of the model was quantitatively and 

qualitatively evaluated for an urban area that covered approximately 10 km2 and contained over 21,000 buildings. The results 

indicate that it can detect the building changes with optimum accuracy as compared to other methods that use inputs such as i) 

bitemporal aerial images only, ii) bitemporal aerial images and bitemporal DSMs, and iii) bitemporal aerial images and an old-map. 

The proposed method achieved recall rates of 89.3%, 88.8%, and 99.5% for new, demolished, and other buildings, respectively. The 

results also demonstrate that the old-map is an effective data source for increasing building change detection accuracy. 

 

 

1. INTRODUCTION 

Over the last decade, with advances in computer vision 

techniques, building change detection has emerged as a 

promising field of research in the areas of photogrammetry and 

remote sensing. This general increase in interest may be 

attributed to its wide range of applications. One such application 

is updating building maps. In a building map, the building 

boundary is generally delineated based on orthorectified aerial 

images. For buildings whose boundaries are difficult to judge in 

this manner (such as a building covered by trees), field surveys 

are conducted. Traditionally, building change detection was 

performed manually by comparing aerial images from different 

time periods. Owing to the tedious and time-consuming nature 

of this task, researchers have developed automatic detection 

techniques. However, accurate building change detection 

remains challenging because of differences in the images used 

arising from differences in the cameras, atmospheric conditions, 

and solar angles. Previous studies on building change detection 

have primarily used bitemporal aerial images, focusing on their 

spectral information and color variations (Bourdis et al., 2011). 

However, the methods involved can produce several errors, 

including misdetection (i.e., a changed building going 

undetected) and overdetection (i.e., an unchanged building 

being detected as changed, or several changes attributed to a 

non-building area). The development of digital surface models 

(DSMs) has proven to be effective in improving the accuracy of 

building extraction and change detection (Murakami et al., 

1999; Matikainen et al., 2003; Rottensteiner et al., 2007; 

Matikainen et al., 2010; Tian et al., 2014). Height variations 

represent robust feature information, which contributes to 

building change detection. However, it is challenging to 

distinguish between building changes and non-building changes 
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such as those in trees and vegetation. Furthermore, it is difficult 

to determine the height of a building if the building is partially 

obstructed by trees or the shadows of nearby buildings.  

 

Recently, deep learning techniques have garnered considerable 

attention for achieving satisfying results in several classification 

problems. Researchers have made efforts to adopt deep learning 

techniques to solve the problems of automatic building change 

detection. Convolutional neural networks, which have proven to 

be effective in identifying objects based on their appearance 

variations, have received particular interest in building change 

detection (Daudt et al., 2018; Lim et al., 2018; Maltezos et al., 

2018; Pang et al., 2018; Ji et al., 2019).  However, further 

research on automatic building change detection is required to 

address the challenges that exist in urban areas, such as multiple 

small buildings being in close proximity, buildings being 

partially or wholly obstructed from view, and buildings that are 

complex in shape. The data sources utilized for building change 

detection techniques in previous works are categorized into the 

following three types: i) airborne or satellite imagery data, ii) 

three-dimensional data (i.e., DSMs and digital terrain models 

(DTMs)), and iii) both i) and ii) (Maltezos et al., 2018). 

However, several researchers have considered the possibility of 

using an outdated building map (the building map before an 

update), referred to herein as the old-map, as an input data 

source to improve the accuracy of building change detection. In 

Japan, most municipal governments acquire aerial images and 

update building maps every year or three years. Therefore, the 

aerial images and building map for the previous period can be 

obtained at a relatively low cost.  

 

This work investigates the potential of an old-map for 

improving the accuracy of building change detection. A new 

method is presented for building change detection that uses 

bitemporal aerial images, bitemporal DSMs, and an old-map, 

along with deep learning techniques. The performance was 

evaluated for an urban area that covered approximately 10 km2 
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and contained over 21,000 buildings. The proposed method was 

compared to methods that rely on the following inputs: i) 

bitemporal aerial images only, ii) bitemporal aerial images and 

bitemporal DSMs, and iii) bitemporal aerial images and an old-

map. 

 

2. DATA DESCRIPTION 

In this study, two urban areas located in different provinces of 

Japan were selected to demonstrate the proposed method. One 

area, the training area, was used to generate training data to 

build the automatic building change detection model, whereas 

the other, the test area, was used to evaluate the method. The 

training area was over 50 km2 in size and contained 

approximately 110,000 buildings. The test area was 

approximately 10 km2 in size and contained over 21,000 

buildings. Both the training area and test area had typical urban 

features, such as small buildings in close proximity, buildings 

partially or wholly shaded by nearby buildings, buildings with 

complex shapes, and numerous plants and roads.  

 

2.1 Input data sources 

An overview of the input data sources is given in Table 1. 

 

Area Data Year 
Spatial 

Resolution 

Training 

Old-ortho  2013 16 cm 

New-ortho 2015 12.5 cm 

Old-DSM 2013 50 cm 

New-DSM 2015 50 cm 

Old-map 2013 - 

Test 

Old-ortho  2018 12.5 cm 

New-ortho 2019 12.5 cm 

Old-DSM 2018 50 cm 

New-DSM 2019 50 cm 

Old-map 2018 - 

 

Table 1. Overview of input data sources 

 

2.1.1 Bitemporal aerial images: Bitemporal aerial images 

of the training area were acquired in 2013 and 2015. Aerial 

images of the test area were acquired in 2018 and 2019. Ortho 

images were derived from the aerial images. The ortho images 

generated from the earlier and later aerial images are referred to 

herein as old-ortho and new-ortho images, respectively; all of 

them are not true ortho images, that is, not all vertical features 

were re-projected into ortho images. The spatial resolution of 

the old-ortho images of the training area (16 cm/pixel) differs 

from that of other ortho images (12.5 cm/pixel). 

 

2.1.2 Bitemporal DSMs: DSMs were obtained from the 

aerial images using a stereo matching technique; those obtained 

from the earlier and later aerial images are referred to herein as 

old-DSM and new-DSM, respectively. DSMs obtained in text 

format consisted of a list of rows with X, Y, and Z coordinates. 

The spatial resolution of the DSMs was 50 cm  50 cm for each 

cell.  

 

2.1.3 Old-map: The old-map used in this study was obtained 

for the same period as the earlier aerial images. Each polygon in 

the old-map represents a boundary of a building. 

 

2.2 Reference map 

By comparing old-ortho and new-ortho images, a building 

change map (referred to herein as a reference map) was 

manually created based on the old-map. The objects in the 

reference map were categorized into three groups: new 

buildings, demolished buildings, and other buildings. Other 

buildings included unchanged buildings, new building parts, 

and demolished building parts. New buildings were added and 

labeled as “new buildings”, demolished buildings were labeled 

as “demolished buildings”, and other buildings were labeled as 

“other buildings”. Reference maps were created for both the 

training and test areas. The reference map of the training area 

was used to establish the ground truth assigned to the training 

dataset, whereas that of the test area was utilized to evaluate the 

performance of the proposed method. The reference map of the 

training area consisted of 3,298 new buildings, 2,091 

demolished buildings, and 108,593 other buildings. The 

reference map of the test area consisted of 193 new buildings 

(150 of them greater than 20 m2 in size), 189 demolished 

buildings (143 of them greater than 20 m2 in size), and 21,616 

other buildings. The small buildings (less than 20 m2 in size), 

which were mostly warehouses, were not considered in this 

study; only new buildings and demolished buildings greater 

than 20 m2 in size were considered. Thus, the performance of 

the proposed method was evaluated using the 150 new buildings, 

143 demolished buildings, and 21,616 other buildings in the test 

area. 

 

3. BUILDING CHANGE DETECTION METHOD 

The following are the processing steps. First, the bitemporal 

ortho images were resampled to achieve the same spatial 

resolution. Second, color correction of the old-ortho and new-

ortho images of both the training area and test area was 

conducted. Third, height variations were calculated from the 

differences between the old-DSM and new-DSM. Fourth, the 

old-map image was exported from the old-map. Finally, the old-

ortho images, new-ortho images, height variations, and old-map 

images were fed into a network architecture to train the building 

change detection model that was applied to the test area. More 

details on these process steps are provided below. 

 

3.1 Resampling 

All of the ortho images were adjusted to the same spatial 

resolution as the old-ortho images of the training area (16 

cm/pixel). 

 

3.2 Ortho color correction 

Significant differences in color variations in the old-ortho and 

new-ortho images were observed, which may have been caused 

by differences in the cameras, atmospheric conditions, and solar 

angles. To eliminate potential disturbances that these factors 

may cause to the performance of the building change detection 

method, the mean and standard deviation of each channel 

(RGB) were calculated for both the old-ortho and new-ortho 

images. The RGB value of each pixel in the old-ortho and new-

ortho images was transformed using Equation 1.  

 

i i

i

i

x m
y

s


                                   (1) 

 

Here, 

i = red, green, or blue channel 

xi = value of the channel 

mi = mean value of the channel 

si = standard deviation of the channel 

yi = value of the channel after correction 
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3.3 Height variations 

Height variations were obtained from value differences between 

the old-DSM and new-DSM, which were calculated by 

subtracting old-DSM values from new-DSM values and 

approximating each difference to the nearest integer. The height 

variation was read into the NumPy array at the same spatial 

resolution as the ortho image (16 cm/pixel). Compared to 

directly feeding the old-DSM and new-DSM into the network, 

height variations can reduce the amount of information given to 

the network. 

 

3.4 Old-map image 

The old-map image was exported and saved as a grayscale 

image. The areas within the building boundaries were white, 

and non-building areas were black. 

 

3.5 Training/test phase  

The training area was divided into blocks of 256  256 pixels 

without overlap. For each block, the old-ortho image, new-ortho 

image, height variation, and old-map image were considered as 

a training data sample set. Because of imbalances in the 

numbers of new, demolished, and other buildings, new and 

demolished building samples were augmented by cropping 256 

 256 pixels around the centers of new and demolished building 

polygons. The centers of these buildings were obtained from the 

reference map. A total of 37,252 training samples were 

generated, and a ground truth value was assigned to each 

training dataset created. Ground truth was transformed from the 

reference map, with red, blue, white, and black labels for the 

areas within a new building boundary, a demolished building 

boundary, any other building boundary, and a non-building area, 

respectively. The test area was divided into blocks of 256  256 

pixels with a forward and side overlap of 56 pixels to obtain a 

seamless tiling of the predicted output.  

 

U-Net is regarded as a remarkable, successful, and popular 

network architecture for semantic segmentation (Ronneberger et 

al., 2015). In this study, a U-Net-based encoder–decoder 

network architecture was designed, as illustrated in Figure 1. 

The encoder extracts multi-scale features, and the decoder uses 

skip-connections from the encoder to produce a more accurate 

localization of building boundaries. The encoder primarily 

consists of three blocks. Each block consists of two convolution 

layers (each activated by the tanh method) and a   2  2 max 

pooling operation with a stride of two for downsampling. The 

decoder also primarily consists of three blocks, each block 

having an upsampling of the feature map followed by a 

convolution layer that halved the number of feature channels, a 

concatenation with skip-connections from the encoder, and two 

convolution layers (each activated using the tanh method). At 

the final layer, a 1  1 convolution (activated using the softmax 

method) is used to map each 64-component feature vector to the 

desired four classes (new, demolished, other, and non-building 

area). Batches of size 256 × 256 pixels cropped from old-ortho 

images, new-ortho images, height variations, and old-map 

images of the training area were fed into the network to build 

the model. Each batch consisted of eight channels, including an 

old-ortho image (three channels), a new-ortho image (three 

channels), height variation expressed as a NumPy array (one 

channel), and an old-map image (one channel). After the model 

was obtained, batches of size 256  256 pixels cropped from 

old-ortho images, new-ortho images, height variations, and old-

map images of the test area were used as inputs to the model for 

predictive purposes. The size of the prediction results for each 

block of test data was 256  256 pixels. The predictions were 

merged in a large raster format with the test area as the region. 

During the merging process, the center region (200  200 pixels) 

within each prediction result was used for validation, while the 

marginal region was unused. To evaluate the performance of the 

proposed method, the raster format data were polygonized as 

polygon data in a shapefile format. The product of this step is 

referred to as a prediction map. Each polygon had classified 

information inherited from the colors in the prediction results. 

The colors red, blue, and white denoted a new building, a 

demolished building, and any other type of building, 

respectively. To eliminate the noise, the prediction map masked 

all polygons with area smaller than 3 m2. 

 

4. EXPERIMENTS AND RESULTS 

Table 2 shows the three methods selected for comparison with 

the proposed building change detection method. The focus of 

the comparison was on evaluating the effectiveness of different 

types of input data sources. In the proposed method, old-ortho 

images, new-ortho images, height variations, and an old-map 

were used as input. In the O method, the input data consisted of 

only old-ortho and new-ortho images. In the O+H method, the 

input data consisted of old-ortho images, new-ortho images, and 

height variations. In the O+M method, the input data included 

old-ortho images, new-ortho images, and an old-map. 

 

Method 
Bitemporal  

ortho images 

Height 

variations 
Old-map 

O ✔   

O+H ✔ ✔  

O+M ✔  ✔ 

Proposed ✔ ✔ ✔ 

 

Table 2. Input data types for comparison of methods 

 

 
 

Figure 1. Network architecture 
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For all methods, the same training data and test data were used. 

The network architecture was the same in each case. The 

network was trained for 50 epochs using the Adadelta method 

(Zeiler, 2012) as the optimization algorithm for each method. 

All of the methods were trained on a workstation equipped with 

four NVIDIA GeForce RTX2080 Ti (11 GB) GPUs. Two 

methods were processed at a time; the training process for each 

method was allocated to two GPUs. The time required for each 

training process was approximately 13 hours. 

 

4.1 Evaluation 

The quantitative and qualitative evaluations of the methods 

were based on comparison with the reference map. The 

accuracy of the building change detection accomplished by each 

method was assessed using building-based accuracy measures. 

A confusion matrix was defined for new buildings, as shown in 

Table 3.  

 

                    Actual 

Predicted 
New  Not New 

New TP FP 

Not New FN TN 

 

Table 3. Confusion matrix for new buildings 

 

True positive (TP) is the number of buildings if there was an 

overlap between new buildings in the prediction map and those 

in the reference map. False positive (FP) is the number of 

overdetections, that is, new buildings detected by the method 

that do not overlap with any new buildings in the reference map. 

False negative (FN) is the number of misdetections, that is, new 

buildings in the reference map that the method failed to 

accurately detect. The confusion matrices for demolished 

buildings and other buildings were defined in the same manner 

as that for new buildings.  

 

The building detection accuracy achieved for each category of 

buildings (new, demolished, and other) was assessed using the 

precision, recall, and F2-score measures given by Equation 2.  

 

2

2
(1 )

(
2

)

TP
Precision

TP FP

TP
Recall

TP FN

Precision Recall
F

Precision Recall
score 





 











   (2) 

 

Here, 

TP = true positive 

FP = false positive 

FN = false negative 

β = 2 

 

A high recall value indicates a low misdetection rate, whereas a 

high precision indicates a low overdetection rate. The F2-score 

is a metric that combines recall and precision using the 

harmonic mean. The value of β reflects the ratio of the 

influences of precision and recall; for example, a β value of 2 

indicates that the recall has more influence than the precision. 

This study was more focused on recall (which reflects the rate 

of misdetection) than precision (which reflects the rate of 

overdetection). This is because when the results of building 

change detection are used to update the old-map, overdetection 

can be corrected easily through subsequent human inspection, 

whereas misdetection requires the entire area to be checked to 

find all the buildings that have changed.  

 

To evaluate the ability of each method to detect changes in new 

and demolished buildings, the average precision, recall, and F2-

score were calculated using the micro-average method based on 

Equation 3. The values of the parameters referred to here as 

Aprecision, Arecall, and AF2-score, respectively. Aprecision 

and Arecall indicate the ability of a method to detect real 

changes and all real changes, respectively. The AF2-score is a 

metric that combines Aprecision and Arecall using the harmonic 

mean setting β = 2.  

 

2

2
2 )(1

( )

new demolished

new demolished new demolished

new demolished

new demolished new demolished

TP TP
Aprecision
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Aprecision Arecall
score 




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  




  





 



  (3) 

 

Here,  

TPnew = true positive for new building  

TPdemolished = true positive for demolished building 

FPnew = false positive for new building 

FPdemolished = false positive for demolished building 

FNnew = false negative for new building 

FNdemolished = false negative for demolished building 

β = 2 

 

The optimal value for precision, recall, F2-score, Aprecision, 

Arecall, and AF2-score is 1, i.e., when they are all equal to 1, no 

misdetection or overdetection occurs.  

 

4.2 Results and discussion 

The confusion matrix results for each building class for each 

method are shown in Table 4.  

 

Method Class TP FN FP 

O 

New 126 24 263 

Demolished 87 56 184 

Other 18680 2936 2814 

O+H 

New 131 19 363 

Demolished 107 36 190 

Other 18606 3010 2469 

O+M 

New 127 23 192 

Demolished 108 35 104 

Other 21539 77 313 

Proposed 

New 134 16 206 

Demolished 127 16 182 

Other 21510 106 217 

 

Table 4. Results for each method and building class 

 

The calculated values of Aprecision, Arecall, AF2-score, 

precision, recall, and F2-score for each building class (new, 

demolished, and other) according to Table 4 are plotted in 

Figure 2. 
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4.2.1 Quantitative evaluation 

 

As shown in Figure 2(a), the proposed method achieved a 

higher AF2-score (71.7%) than the other methods. This implies 

that it demonstrated optimum performance in detecting building 

changes, with an optimal balance of lower misdetection and 

lower overdetection rates. The O+M method achieved the 

second highest AF2-score of 69.0%, the O+H method achieved 

the third highest AF2-score of 60.6%, whereas the O method 

achieved the lowest AF2-score of 58.1%. Thus, it can be 

confirmed that neither DSMs nor old-map can account for the 

accuracy of the building change detection task. The proposed 

method also yielded the highest Arecall (Figure 2(a)), recallnew 

(Figure 2(b)), and recalldemolished (Figure 2(c)) scores of 89.1%, 

89.3%, and 88.8%, respectively. This indicates that the 

proposed method achieved the lowest misdetection rate in the 

building change detection process.  

 

To evaluate the impact of the old-map, the following pairwise 

comparisons of the methods without and with the old-map were 

conducted. 

(1) O method vs. O+M method 

The O+M method achieved better results than the O method by 

all measures (Figure 2(a)). The Aprecision, Arecall, and AF2-

score values for the O+M method were 44.3%, 80.2%, and 

69.0%, respectively, whereas those for the O method were 

32.2%, 72.7%, and 58.1%, respectively. 

(2) O+H method vs. proposed method 

The proposed method achieved better results than the O+H 

method by all measures (Figure 2(a)). The Aprecision, Arecall, 

and AF2-score values for the proposed method were 40.2%, 

89.1%, and 71.7%, respectively, whereas those for the O+H 

method were 30.0%, 81.2%, and 60.6%. 

 

As shown in Figure 2(d), the respective precision, recall, and 

F2-score values for the O+M method and the proposed method 

are significantly better than those for the O and O+H methods. 

This confirms the effectiveness of using the old-map as input 

for the building change detection task.  

 

Additionally, the effect of using height variation information 

was compared with that of using the old-map. The O+M method 

achieved the highest Aprecision, as well as a higher AF2-score 

than the O+H method; the O+H method achieved a higher 

Arecall, but the difference was not significant (Figure 2(a)). 

These results suggest that the old-map is more useful than DSM 

data.

 

 

 

 

 

    
    (a) Results for Aprecision, Arecall, and AF2-score                  (b) Precision, recall, and F2-score for new building detection 

 

    
(c) Precision, recall, and F2-score for demolished building detection   (d) Precision, recall, and F2-score for other building detection 

 

 

Figure 2. Quantitative results for the different methods 
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4.2.2 Qualitative evaluation 

 

To qualitatively evaluate the results, sample automatic building 

change detection results obtained using the different methods 

were plotted, as shown in Figure 3. The size of the subarea 

shown in the figure is 100 m × 100 m. The red, blue, white, and 

black regions denote new buildings, demolished buildings, other 

buildings, and non-building areas, respectively. This plot 

confirms that the proposed method outperforms the other 

methods. The results obtained using the proposed method 

(Figure 3(g)) are similar to the reference map (Figure 3(c)). In 

particular, the boundary regions of demolished buildings and 

those of other buildings are almost identical. This is because the 

boundary information of demolished and other buildings was 

embedded in the old-map, which was used as an input. The 

O+M method (Figure 3(f)) effectively obtained the boundary 

regions of other buildings and yielded results almost identical to 

the reference map. It was also able to obtain the boundary 

regions of new buildings. However, its performance was 

comparatively poor for demolished buildings. As shown in 

Figure 3(f), the boundary of the demolished building in the 

upper left part of the image was extracted well (green frame), 

but a large portion of that of the demolished building at the 

center was missed (yellow frame). This may be because the 

O+M method does not use DSM data. As the color of that 

region in the new-ortho image is similar to the color of the roofs 

of some buildings, the O+M method misdetected the existence 

of those buildings. The prediction results for the O+H method 

(Figure 3(e)) include a non-existent new building (yellow 

frame) and a non-building marked as demolished (green frame). 

Compared to the proposed method, the O+H method performed 

worse in extracting building boundaries, particularly for other 

buildings. It is evident that the results of the O method (Figure 

3(d)) are the least accurate of all in terms of new (yellow frame), 

demolished (green frame), and other buildings.  

5. CONCLUSIONS 

In this paper, a building change detection method that uses 

bitemporal aerial images, bitemporal DSMs, and an old-map is 

proposed. Batches of 256  256 pixels cropped from old-ortho 

images, new-ortho images, height variations, and old-map 

images were fed into a network based on the U-Net architecture 

to obtain a building change detection model. The performance 

of the proposed method was evaluated for an urban area of 

approximately 10 km2, with 150 new buildings (greater than 20 

m2), 143 demolished buildings (greater than 20 m2), and 21,616 

other buildings. The proposed method achieved recall rates of 

89.3%, 88.8%, and 99.5% for new, demolished, and other 

buildings, respectively. The results showed that the proposed 

method has low misdetection. The method over-detected 206 

new, 182 demolished, and 217 other buildings (Table 4). 

However, these overdetections only amounted to a small 

percentage of the total of over 21,000 buildings. Furthermore, 

overdetections can be corrected easily by subsequent human 

inspection. Compared to the O, O+H, and O+M methods, the 

proposed method achieved the optimum, most balanced average 

quality rate. The results showed that the proposed method is 

suitable for building change detection tasks and demonstrated 

the effectiveness of the old-map as a data source for improving 

the accuracy of building change detection. In future work, we 

will optimize the hyper-parameters of the U-Net network, such 

as activation functions, and perform further comparisons with 

other methods that use inputs such as i) bitemporal DSMs and 

an old-map and ii) new-ortho images, bitemporal DSMs, and an 

old-map. 
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(a) Old-ortho                                    (b) New-ortho                           (c) Reference map 
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Figure 3. Examples of building change detection using different methods (100 m  100 m) 

(red: new; blue: demolished; white: other buildings; black: non-building) 
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