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ABSTRACT: 
 
In this paper, we present our approach for robust long-term visual localization in large scale urban environments exploiting street level 
imagery. Our approach consists of a 2D-image based localization using image retrieval (NetVLAD) to select reference images. This is 
followed by a 3D-structure based localization with a robust image matcher (DenseSfM) for accurate pose estimation. This visual 
localization approach is evaluated by means of the ‘Sun’ subset of the RobotCar seasons dataset, which is part of the Visual Localization 
benchmark. As the results on the RobotCar benchmark dataset are nearly on par with the top ranked approaches, we focused our 
investigations on reproducibility and performance with own data. For this purpose, we created a dataset with street-level imagery. In 
order to have independent reference and query images, we used a road-based and a tram-based mapping campaign with a time 
difference of four years. The approximately 90% successfully oriented images of both datasets are a good indicator for the robustness 
of our approach. With about 50% success rate, every second image could be localized with a position accuracy better than 0.25 m and 
a rotation accuracy better than 2°. 
 
 

 INTRODUCTION 

Modern vehicle-based and portable mobile mapping systems 
with multi-camera sensor systems combined with state-of-the-art 
georeferencing techniques enable a large-scale acquisition of 
accurate street level imagery. The resulting georeferenced 
collections of indoor or street level imagery covering large 
building complexes, entire cities or even states provide a 
powerful basis for urban infrastructure management. They 
furthermore bear a great potential for accurate visual localization 
and 6DOF pose estimation – even in areas with no or only poor 
GNSS coverage. Such a universally applicable visual localization 
would, for example, enable highly accurate Augmented Reality 
(AR) applications with robust absolute (re-)localization in large-
scale indoor and outdoor environments without a need for an 
additional positioning infrastructure, such as GNSS or WiFi. 
Furthermore, visual localization could be used to significantly 
improve existing inaccurate positioning in street canyons. 
 
In our previous work, we had discussed the concept and 
exploitation of 3D image spaces (Nebiker et al., 2015), consisting 
of collections of accurately georeferenced RGB-D images. 
Capturing such 3D image spaces requires high quality mobile 
mapping systems and advanced georeferencing techniques 
(Cavegn et al., 2018). When it comes to keeping the data up to 
date, the cost of exclusively using high-quality capturing systems 
would be enormous. Hence, there should be a solution for 
integrating images captured by non-geospatial experts with 
consumer devices such as smartphones. However, these 
consumer devices do not contain precise positioning sensors. 
This so far limited georeferencing accuracies to a few meters in 
outdoor environments and even prevented reliable indoor 
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positioning. Visual localization using existing 3D image spaces 
as a reference, not only promises to address the task of sensor 
positioning but also the task of determining the sensor pose. Only 
if both tasks can be solved reliably and accurately, can the new 
imagery be integrated into the existing database and used for 
measurement and asset management tasks. In addition to 
database updating and asset management, there is a high demand 
for real-time device pose estimation for augmented reality 
applications, where 3D image spaces have a great potential for 
serving as reference data. First investigations of visual 
localization using 3D image spaces showed that large temporal 
differences and the associated changes in scene content and 
appearance are one of the main challenges in long-term visual 
localization (Rettenmund et al., 2018). 
 
In this paper, we investigate and demonstrate the capabilities of 
state-of-the art visual localization methods in large-scale urban 
environments. For this, we first introduce our processing 
pipeline, which is built on top of our highly scalable street level 
imagery database. We then introduce our long-term visual 
localization approach emphasising robust and accurate long-term 
matching. We subsequently evaluate our approach, first using the 
‘RobotCar Seasons’ dataset of the long-term visual localization 
benchmark and second using our own Basel Bench50 dataset. We 
finally discuss the results, which demonstrate the capability of 
our visual localization approach to reliably and accurately 
determine 6DOF image poses in urban spaces. 
 

 RELATED WORK 

Pushed forward by innovations such as augmented reality and 
autonomous driving, the field of visual localization is in rapid 
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evolution. In order to establish a possibility for comparing the 
results of different visual localization approaches Sattler et al. 
(2018) created a benchmark with several datasets, each with 
some distinct characteristics. They also give an overview on the 
various strategies for visual localization. Coarsely, they classify 
the approaches into 3D-structure based, 2D-image based, 
sequence based and learning based visual localization. In 3D-
structure based localization, there is a three-dimensional 
representation of the environments such as a point cloud or a 3D 
model. By searching corresponding points in the structure and the 
image, basic geometric principles can be applied to calculate the 
image pose. However, the big challenge of this approach is to 
determine matching points over long time periods and in varying 
conditions. For speeding up the process, there are several 
methods, that prioritize points close to a reliable match (Sattler et 
al., 2012) or augment feature points with additional visibility 
information (Svärm et al., 2017). However, all these approaches 
rely heavily on the existence of a sufficient number of matching 
points. When using 2D-image based methods, the goal is to 
determine the most similar from the collection of reference 
images. Because it is quite likely that two similar images have 
been captured from the same location, this pose is being used as 
a result. There are methods that use hand-crafted features for 
describing the image’s contents such as DenseVLAD (Torii et al., 
2015), while others include some neural networks as NetVLAD 
(Arandjelovic et al., 2016). The drawback of this method is the 
requirement of a big number of reference images with different 
viewpoints to reach good results.  
 
To reduce the false positive rates of single image localization 
approaches Sattler et al. (2018) propose the use of multiple 
images in the form of a sequence in the correct order. To estimate 
the relative poses of the images visual odometry or visual SLAM 
algorithms can be applied. Current visual odometry and visual 
SLAM algorithms use feature-based methods such as ORB-
SLAM (Mur-Artal et al., 2015) and ORB-SLAM2 (Mur-Artal, 
Tardós, 2017) or direct methods such as LSD-SLAM (Engel et 
al., 2015) and DSO (Wang et al., 2017). Known relative poses 
allow modelling the cameras of the image sequences as a 
generalized camera (Pless, 2003), i.e. as a camera with multiple 
centres of projections. The absolute pose from 2D-3D matches 
can be estimated by using approaches for multi-camera systems 
(Lee et al., 2015) and camera trajectories (Camposeco et al., 
2016). 
 
Learning based localization methods were first introduced by 
Kendall et al. (2015). The main idea is to train neural networks, 
so that they directly regress the pose of an image. While this looks 
promising in some small-scale experiments, this approach is hard 
to scale to real-world problems. Mueller et al. (2018) showed that 
it is possible to improve the performance by integrating 
synthetically generated views of the test site in the training 
dataset. However, this requires a quite detailed 3D model for 
rendering these views. Furthermore, Sattler et al. (2019) point 
out, that the pose regression of these networks is very similar to 
image retrieval followed by applying a slight pose offset. 
 
In recent publications, those getting the best results combine the 
strengths of the different approaches, e.g. Sarlin et al. (2019). 
Instead of using neural networks as a “magic black-box”, they are 
just used as parts of the localization pipeline, where they actually 
generate some benefits. Thus, network architectures such as L2-
Net (Tian et al., 2017; Tian et al., 2019), D2-Net (Dusmanu et al., 
2019) or SuperPoint (DeTone et al., 2018) are used to generate 
point descriptors, which help to generate better matches for the 
use in structure-based image orientation tools such as COLMAP 
(Schönberger, Frahm, 2016). Widya et al. (2018) skip the step of 

keypoint detection by just using an intermediate layer of a 
convolutional neural network as feature map. This generates a 
regular grid of feature vectors. By using image-retrieval, the 
number of image pairs for matching can be reduced. This helps 
to minimize the computational costs. 
 

 PROCESSING PIPELINE 

3.1 Overview 

The reference images of previous mobile mapping campaigns are 
stored in a large-scale cloud-based architecture and accessible 
through an applications programming interface (API), which 
serves the image metadata. By querying the database with the 
approximate position from the navigation sensors, we get the 
spatially nearest neighbours. For each image, the pose, an URL 
to download the actual image and the camera’s intrinsics are 
returned. If the raw orientation of the image is known, the 
resulting list of images can be filtered further by removing the 
images, whose projection centres are near to the assumed 
position, but point to the opposite direction (Figure 1). 
 
Because image matching is the part of the processing workflow, 
that consumes most of time and resources, we search for the 
reference images that are most similar to the query image. 
NetVLAD (Arandjelovic et al., 2016) uses a neural network with 
the VGG-16 architecture (Simonyan, Zisserman, 2015) to create 
a global descriptor for each image. Comparing these descriptor 
vectors is much faster than matching all feature vectors for all 
keypoints in an image. 
 
Once we have identified the reference images, that are most 
similar to the query image, we can perform feature matching on 
a much smaller number of image pairs (Figure 1). To get better 
geometric conditions, it is important to have the keypoints evenly 
distributed over the whole image. The DenseSfM approach by 
Widya et al. (2018), achieves this by using an intermediate 
feature map of the VGG-16 network as descriptors. Hence, there 
is a regular grid of feature vectors, that spans all of the image. To 
increase the accuracy, the features get relocalized into the full-
size image by searching for the pixels, that had the biggest 
influence on the respective descriptor. 
 

 

Figure 1. Our processing workflow 

For the actual image orientation process, we use COLMAP v3.6 
(Schönberger, Frahm, 2016), which allows us to use the known 
exterior orientation parameters of the reference images. Hence, 
we get a COLMAP model, where only the query image needs to 
be aligned with respect to the fixed reference images. First, we 
generate a COLMAP model with the processed features and 
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matches as well as the camera specifications and the exterior 
orientation parameters (EOP) of the reference images. We then 
use the functions of COLMAP to reconstruct the 3D coordinates 
of the feature matches by fixing the known EOPs of the reference 
images and to register the query image via the matched feature 
points (Figure 1). 
 
3.2 Robust Long-Term Matching 

While trying to achieve better results using the traditional SIFT 
features (Lowe, 2004), we reached a limit of handcrafted feature 
descriptors for long-term matching. While these features are 
designed to be invariant for slight changes in illumination and 
orientation, they fail miserably in robustly establishing long-term 
correspondences. Especially the changing appearance of the 
environment caused by seasonal changes such as snow covered 
or wet roads as well as shadows or strong sunlight leads to serious 
problems (Figure 2). 
 

 

Figure 2. Four images of the Robot Car Seasons dataset 
depicting the same location in different conditions 

By matching the same images multiple times with different 
parametrization of the matcher, we showed that relaxing the 
restrictions for outlier filtering results in more matches. However, 
the additional matches have a high probability of getting 
eliminated during the bundle adjustment, which in other words 
just means they are outliers that got rejected for some reason. 
 
To overcome these limitations, feature descriptors should 
incorporate some semantic information. When a neural network 
is applied to create image features, semantics get somewhat 
implicitly integrated into the descriptor vector. Thus, we 
compared different types of trained descriptors. Among LF-Net 
(Ono et al., 2018), SuperPoint (DeTone et al., 2018), DenseSfM 
(Widya et al., 2018) and SOSNet (Tian et al., 2019), DenseSfM 
achieved the best results on our dataset. 
 
 
 
 

 ROBOTCAR BENCHMARK 

To test the performance of our approach, we chose to process a 
dataset of the long-term visualization benchmark by Sattler et al. 
(2018). This benchmark provides various image collections 
along with the corresponding orientation values, which can be 
used as reference data, as well as some images, where no further 
data is provided, which are used as query images.  
Of the datasets provided, ‘RobotCar Seasons’ is the one, which 
is most similar to our imagery. It consists of image sequences 
captured during the Oxford RobotCar experiment by Maddern et 
al. (2017) and has similar characteristics to street level imagery 
acquired by mobile mapping systems. 
 
4.1 Evaluation Strategy 

The long-term visual localization benchmark uses a joint 
evaluation of position and rotation. The calculated poses are 
compared to the ground truth poses as follows: For the positions, 
the Euclidean distance is used. And for the rotations, the minimal 
angle required to align the two rotations is computed. The 
formulae used for the calculation can be found in Sattler et al. 
(2018). 
 
The poses are assigned to three precision classes: High, Medium 
and Coarse. The criteria for a class are matched, if the differences 
for both position and rotation are below a certain threshold. These 
thresholds vary depending on the dataset. The threshold values 
given for RobotCar Seasons are shown in Table 1. 
 

 Position [m] Rotation [deg] 
High 0.25 2 
Medium 0.5 5 
Coarse 5 10 

Table 1. Threshold values for RobotCar Seasons 
 

4.2 Reference Data 

The Oxford RobotCar platform was used to capture a long-term 
dataset for autonomous driving use cases. The RobotCar is 
equipped with different cameras, 2D and 3D LiDAR, as well as 
an inertial and GNSS navigation system (Maddern et al., 2017). 
The imagery selected for the RobotCar Seasons benchmark 
dataset, was captured at intervals of one Meter using three 
synchronized global shutter Point Grey Grasshopper 2 cameras. 
The intrinsics of the cameras as well as their relative poses are 
known (Sattler et al., 2018). The cameras with a resolution of 
1024 x 1024 pixels (1MP) were mounted to the left, rear and right 
of the car. A more detailed description of the configuration and 
specification of the cameras can be found in Maddern et al. 
(2017). 
 
Sattler et al. (2018) created 49 non-overlapping local 3D models 
from a reference traversal by using bundle adjustment. The query 
images were obtained by gathering all images within 10 m of a 
reference position in each 3D model. The Dataset consists of 
26121 reference images and 11934 query images of nine 
traversals covering different seasonal and illumination 
conditions. The poses of the reference images are available in 
local COLMAP model coordinates. For competitive reasons, 
neither the exact nor approximated poses of the query images are 
provided. 
 
4.3 Test Site 

As the whole RobotCar Seasons dataset contains 11’934 query 
images, we decided to process only one traversal. As the 
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traversals cover various weather conditions, we choose the ‘sun’ 
traversal, which is most similar to typical street level imagery and 
to the images we intend to process in this pipeline. The sun subset 
of RobotCar Seasons consists of 1380 query images. 
 
4.4 Collection of Approximate Values 

In our use case we always have at least very coarse approximate 
values for the image poses, e.g. from the last GNSS position fix 
or from WiFi or cellular network IDs. Therefore, we first had to 
derive initial values from the available original RobotCar data 
(Maddern et al., 2017). For the calculation of the query image 
poses in local COLMAP model coordinates, we only used the 
rear camera, because it has the smallest offset to the inertial and 
GNSS navigation system. We purposely did not aim at exact 
approximate values for our use case. For this reason, the offsets 
of the lever arms and relative orientations of the cameras were 
not considered. The datasets of the different sensors of the 
RobotCar are not time synchronous. Therefore, for each image 
pose of the rear camera the GPS position with the smallest time 
difference was searched and assigned to the images. A 2D 
similarity transformation was then calculated between the 
corresponding images in the global coordinate system and the 
COLMAP model coordinates. The transformation parameters 
were applied to the RobotCar positions of the query images in 
order to obtain the approximate image poses in local COLMAP 
model coordinates. 
 
4.5 Results 

Our results for the investigated ‘Sun’ subset of the RobotCar 
Seasons dataset are shown in Table 2. With 89.3% in the Coarse 
accuracy class (position error < 5 m and orientation error < 10°), 
70.2% in the Medium class (< 0.5 m and < 5°), and 47.0% in the 
High class (< 0.25 m and < 2°), our results are on a competitive 
level with those of HF-Net (Sarlin et al., 2019), the leading 
approach at the time of writing. Our results are significantly 
superior to exclusively neural network based global descriptors, 
such as NetVLAD (Arandjelovic et al., 2016), which in itself is 
part of our processing pipeline. 
 
The nearly 90% of successful image localizations in the Coarse 
class and only 10% ‘failed’ localizations are a good indicator for 
the robustness of our approach. Improving the results in the 
Medium and High class proved to be a challenging undertaking, 
requiring careful attention to calibration parameters and error-
free source code. However, with a 47% success rate in the High 
class, nearly every second single image is localized with a 
position accuracy better than 0.25 m and a rotation accuracy of 
better than 2°.  
 

 RobotCar Seasons - Sun 
High Medium Coarse 

HF-Net [%] 52.0 74.3 93.3 
Ours [%] 47.0 70.2 89.3 
ActiveSearch [%] 29.6 57.4 84.1 
NetVLAD [%] 5.7 16.5 86.7 

Table 2. Results for the RobotCar Seasons Benchmark (‘Sun’ 
subset) 

 
 

 BASEL DATASET 

As our RobotCar Benchmark results are nearly on par with the 
top-ranked approaches, we further investigated the reproducibi-
lity and performance of our approach with our own street level 
imagery data. 
 
5.1 Test Site and Data 

5.1.1 Acquisition System: The street level data used in the 
subsequent investigations was captured using our vehicle-based 
multi-view stereovision mobile mapping system, which was 
presented in several of our previous publications, including 
Cavegn et al. (2018). Depending on the system setup, there are 
several stereo camera systems, a panoramic camera and a 
GNSS/INS positioning system. All sensors are mounted on a 
rigid frame that guarantees a stable relative orientation of all 
stereo systems and the positioning system. With its included 
positioning sensors, this system delivers the pose of the images 
by means of direct georeferencing. This ‘standard’ georeferen-
cing can be improved by post processing the trajectory and 
including ground control points. An additional improvement can 
be achieved by image-based georeferencing using bundle 
adjustment (Cavegn et al., 2016). We treated the image poses 
from advanced direct georeferencing as known reference values, 
when visually localizing single images of the sequences. 
  
5.1.2 Used Datasets: We subsequently used two series of 
mobile mapping imagery that had been captured in the city of 
Basel (Switzerland) in two independent campaigns, which were 
four years apart: 
a) a road-based mapping campaign in Summer 2014 using a 

car-based mobile mapping system and  
b) a rail-based mapping campaign in Summer 2018, where the 

system had been mounted on a tramway. 
 
As can be seen in Figure 3, the Basel dataset covers a dense urban 
area with multi-storey buildings, narrow streets, partly dense 
vegetation, overpasses etc., which makes accurate geo-
referencing a challenge. The two campaigns were georeferenced 
using state-of-the-art GNSS-based direct sensor orientation. No 
additional image-based co-registration between the image 
sequences of the two mapping campaigns was applied. As shown 
by Cavegn et al. (2018), we thus can expect the trajectory and 
subsequent absolute pose accuracy of our reference data sets to 
be in the order of a few decimetres. 
 
In order to have independent reference and query image datasets, 
we chose the street level imagery from the rail-based campaign 
b) as reference data set and the imagery from the road-based 
campaign a) as query dataset. Query images were selected by 
using spatial operations to filter road segments, that are situated 
next to tramlines, or do even have tram lines included in the lanes 
(e.g. see Figure 3, top right, bottom left and bottom right). Then 
we randomly selected images of the image sequences on these 
street segments. With a visual verification, we removed the 
images, that are impossible to localize. Reasons for this could be, 
that the image is only showing a single wall without any 
characteristic features or that there are other vehicles that block 
the view on the environment. We selected 50 query images for 
our Basel Bench50 dataset (Figure 3). The geometric resolution 
of the images depends on the sensor. The reference images have 
resolutions between 5 and 12 MP, while all query images have a 
resolution of 2 MP. Other than in the RobotCar benchmark, in 
the Basel Bench50 reference poses are known to the authors, 
which subsequently enables a more sophisticated and detailed 
evaluation. 
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Figure 3. Four representative query images of our Basel 

Bench50 dataset 

 
5.2 Evaluation 

In order to evaluate the results of the investigations on our own 
data, we used the same precision classes as for the RobotCar 
dataset (Table 1). We computed the Euclidean distance for the 
positions and the minimal angle for the rotations between the 
processed and the ground-truth poses. In addition, we can 
examine our results for systematic deviations based on the known 
image poses. Therefore, we generated Scatterplots where the 
positional differences were plotted against the rotation 
differences. 
 
5.3 Results 

The results of the Basel Bench50 test are shown in Figure 3. With 
92% of the localized images in the Coarse accuracy class 
(position error < 5 m and orientation error < 10°) and 56% in the 
High class (< 0.25 m and < 2°) the results on our own data 
outperform the results made on the RobotCar Seasons dataset. 
The Medium class (< 0.5 m and < 5°) with 60% of oriented 
images shows a drop of 10% compared to the results on the 
RobotCar Seasons dataset. The reasons for the better results on 
our own data in the classes High and Coarse could be due to the 
better image quality, better geometric resolution, the known 
camera intrinsics and calibration parameters. However, it should 
be noted that all images that were verified as ‘impossible’ to 
localize were previously removed from the dataset. 
 

 Basel Bench50 
High Medium Coarse 

Ours [%] 56 60 92 

Table 3. Results on Own Data 

 
There is no indicator of systematic deviations to explain the 
decrease in the Medium class (Figure 4). The most obvious 
reason is that our dataset contains local differences between the 
two campaigns (road and rail-based campaign) because no co-
registration of the two campaigns had been done. An indication 
of this is the accumulation of image poses with positional 
differences of about 0.8 m and rotational differences of about 
0.5° (Figure 4). 
 

 

Figure 4. Scatterplot of the positional and rotation differences 
between processed image poses and ground truth poses 

 
 CONCLUSION 

In this paper we presented our approach for long-term visual 
localization in urban environments. Our approach combines a 
2D-image based and a 3D-structure based visual localization 
strategy. We first use image retrieval (NetVLAD) to find the 
most similar images. Then we extract and match densely 
distributed features by DenseSfM. We subsequently use the SfM-
software COLMAP to reconstruct a sparse point cloud of the 
matched features of the reference images and register the query 
image to these feature points. We subsequently evaluated our 
Visual Localization approach using two test data sets. On the 
RobotCar Seasons dataset of the long-term visual localization 
benchmark, we achieved results that are nearly on-par with the 
top ranked methods with 89.3% in the Coarse class (position 
error < 5 m and rotation error < 10°), 70.2% in the Medium class 
(< 0.5 m and < 5°) and 47.0% in the High class (< 0.25 m and 
< 2°). On our own street level data, we were able to outperform 
the results from the RobotCar dataset in the precision classes 
High and Coarse by 10% and 3% respectively. The success rate 
for the Medium class was around 10% lower than the RobotCar 
dataset. 
 
The 92% of successful image localizations in the Coarse class 
and only 8% ‘failed’ localizations are a good indicator for the 
robustness of our approach. Improving the results in the Medium 
and High class proved to be a challenging undertaking, requiring 
careful attention to calibration parameters, consistent and 
accurate reference data, as well as error-free source code. With a 
56% success rate in the High class, more than every second single 
street-level image is localized with a position accuracy better 
than 0.25 m and a rotation accuracy of better than 2°. 
 
These results demonstrate the enormous potential of long-term 
visual localization in combination with accurately georeferenced 
street level imagery. In this combination, visual localization not 
only provides accurate and ubiquitous positioning but a powerful 
6DOF pose determination method. This could make visual 
localization an ideal absolute positioning backend for future 
Augmented Reality applications – in outdoor and indoor 
environments alike. In order to make such an ubiquitous and 
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instant 6DOF positioning service a reality, our main current 
limitation, the very high computational cost and required time for 
processing an accurate image pose, needs to be overcome. 
 

 OUTLOOK 

In our future work we will test our visual localization workflow 
with a large (500 images), representative and co-registered 
dataset without previously removing images classified as 
‘impossible’ to localize. This should show the full accuracy 
potential of our approach. We will also address the current 
processing power and time requirements of our feature extraction 
and matching approach. For this, we will be investigating other 
feature descriptors with the goal of enabling real-time 
applications in the longer run.  
 
With regard to the use of our approach in very challenging 
environments, such as railway tracks, the robustness has to be 
increased even further. For this purpose, we intend to use 
sequential information of consecutive images. We expect that the 
use of image sequences will lead to significantly more robust 
visual localization results than from single images only. 
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