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ABSTRACT: 
 
Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders 
in post-disaster scenarios.  Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and 
quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and 
generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring 
sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. 
The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including 
the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect 
degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed 
buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. 
Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate 
how to further classify the found damages and how to improve damage detection for asphalt roads.   
 
 

1. INTRODUCTION 

Infrastructure and urban services are essential for societies and 
economies. However, they are increasingly prone to disruptions 
caused by climate change-induced extreme weather events, rising 
population numbers and general ageing of structures (Hallegatte 
et al., 2019). The key to reducing the impact of these disruptions 
is to increase the resilience of the structures and services. In this 
context, mapping degradation and damage plays an important 
role. Degradation mapping allows for efficient and timely 
maintenance resource allocation, thus prolonging infrastructure 
service life and raising its level of service (Frangopol, 2011). 
Post-disaster damage mapping aids the assessment of damages, 
which in turn aids faster post-disaster relief and recovery (Eguchi 
et al., 2009). For these reasons, damage mapping has been an 
active field of research for decades.  
The field of damage and degradation detection has been strongly 
advanced by deep learning. Instead of handcrafting damage 
features, they can now be learned from the data themselves. So 
far, research on damage mapping using deep learning has 
regarded damage mapping as a supervised classification 
problem. However, a primary issue is that training datasets are 
hard to obtain. This is because most datasets are tailored to fit 
specific research areas, which severely limits research to 
compare methods or to transfer methods to other geographical 
locations or different typologies of damages (Nex et al., 2019b). 
Several benchmark databases have been created in an attempt to 
alleviate these issues (Gupta et al., 2019). Nonetheless, quality 
and quantity of training data remain important issues. Quality 
suffers from manual annotations, introducing bias and error. 
Varied quantities of samples in classes lead to class imbalance. 
Urban areas and infrastructures are visually varied. Damages 
therefore also appear in various shapes, sizes or contexts. 
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Obtaining a sufficient quantity of the full extent of possible 
damages is impractical (Nex et al., 2019b). Additionally, 
assuming that most of the time structures are healthy, damages 
are occurring sparingly in time and space, which makes them 
intrinsically the minority class. On top of that, sampling the never 
before seen damage is impossible, which means that a trained 
deep learning model is unprepared for new scenarios (Akçay et 
al., 2018).  
To solve these issues with training data, we propose to consider 
damages as novelties or anomalies from the undamaged state and 
to use anomaly detecting Generative Adversarial Networks 
(GANs) for damage detection (Akçay et al., 2018). GANs 
consists of two Convolutional Neural Nets (CNNs). The first tries 
to generate false samples by learning to approach the distribution 
of real input data, while the second aims to classify input images 
as either fake or real. They compete against each other in a two-
player zero-sum game and gradually improve in conjunction. By 
learning only the distribution of healthy scenes, unhealthy scenes 
are difficult to approximate, which then serves as a measure of 
degree of anomaly. The main advantages of anomaly detecting 
GANs are that 1) they do not require any labelled training data 
but apart from data of healthy scenes, which are present in 
abundance, 2) they are adept in recognizing the never before seen 
damage, and 3) when trained on a variety of healthy scenes, a 
trained model can be used for inference at different geospatial 
locations or typologies of damages, thereby assisting 
preparedness in post-disaster scenarios (Akçay et al., 2018). 
These advantages alleviate the issues related to training data 
mentioned before. One limitation of anomaly detecting GANs is 
that they are not able to differentiate between types of anomalies. 
However, we believe that the benefit of not needing labelled 
training data outweighs the lack of obtaining descriptive labels. 
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Moreover, this method will improve resilience by increasing 
preparedness in both the post-disaster and routine scenario. 
To our knowledge, GANs are mainly used for training data 
generation or augmentation (Antoniou et al., 2018; Zhu et al., 
2019). Anomaly detecting GANs have only been applied to 
curated datasets which represent simpler tasks than datasets 
coming from real-world scenarios (Beggel et al., 2019; Zenati et 
al., 2018; Zhu et al., 2019). To the best of our knowledge, our 
study is the first to apply anomaly detecting GANs for damage 
detection in real world remote sensing scenarios.  
In this study we aimed to investigate 1) the ability of anomaly 
detecting GANs to detect road infrastructure degradation using 
high resolution Mobile Mapper imagery and detect building 
damage using post-disaster aerial imagery, and 2) the sensitivity 
of this method against various types of pre-processing. 
Specifically, we aimed to detect (but not classify) asphalt 
degradation such as potholes and cracks in a routine 
infrastructure monitoring scenario, and to detect (but not classify) 
damages such as collapsed buildings and rubble piles in a post-
earthquake scenario. To assess the sensitivity of the anomaly 
detecting GAN method, we investigated how performance varied 
with different levels of pre-processing. Specifically, we pre-
processed training data to remove samples that could contain 
objects that in other remote sensing deep learning tasks have 
shown to cause difficulties: vegetation and shadows.  
Additionally, we tested the transferability of models that were 
trained on these different datasets, to assess the practical 
limitations of anomaly detecting GANs. To this end, we 
evaluated the trade-off between the practical constraints of 
training an anomaly detecting GAN and its performance.  
The remainder of the paper is organized as followed. Section 2 
discusses related work, section 3 describes the methodology and 
section 4 discusses our experimental setup, datasets and results. 
Finally, a conclusion and practical considerations are presented 
in section 5. Throughout the paper we will use the term damage 
to refer to both routine degradation and post-disaster damages.  
 
 

2. RELATED WORK 

2.1 Deep learning based damage mapping 

Traditional damage mapping has been greatly improved by 
advances in earth observation (EO) systems. Traditionally, 
damage mapping was achieved through ground surveys. 
Accessibility to structures, but also the extent of the damages or 
amount of structures to inspect, made these surveys difficult and 
slow (Eguchi et al., 2009). Satellites and airborne remote sensing 
systems allowed for fast and large-scale damage mapping. 
Developments in Unmanned Aerial Vehicles (UAVs) increased 
the possibilities of faster and more detailed monitoring (Kerle et 
al., 2020). EO systems allowed for the collection of a variety of 
data such as optical, Synthetic-aperture Radar (SAR) or Light 
Detection and Ranging (LiDAR) data. Nowadays, optical data 
collection using UAVs is the low-cost alternative for damage 
mapping, aided by the rise in popularity of cheap UAVs (Nex et 
al., 2019a). However, for small-scale degradation monitoring on 
road infrastructures, monitoring systems are required that can 
observe damages in higher resolution. Therefore, Mobile 
Mapping systems or low-cost cameras are used to acquire optical 
imagery of asphalt road surfaces in high resolution (Eisenbach et 
al., 2017; Maeda et al., 2018).  
Despite that in many cases image analysis for damage mapping 
still relies on visual interpretations, the process from data 
acquisition to information retrieval has been vastly accelerated 
by automated image analysis. Automated post-disaster image 
analysis makes use of edge, texture or colour to detect damaged 

building areas. A detailed overview of remote sensing based 
building damage mapping techniques can be found in Dong and 
Shan (2013). For infrastructure crack detection, various 
approaches have been proposed including a variety of image 
filtering techniques (Yeum and Dyke, 2015; Zalama et al., 2014). 
A comprehensive review on infrastructure damage detection can 
be found in Zakeri et al. (2017). The downside to most 
methodologies is the sensitivity of the methods to imaging 
conditions such as lighting, noise, angles and distortions. 
Shadows and varying lighting conditions make it difficult to 
detect damaged buildings or cracks on infrastructures (Dong and 
Shan, 2013). 
There is a considerable amount of literature on damage detection, 
localization and identification using deep learning in the post-
disaster and infrastructure monitoring domain. Infrastructure 
degradation mapping has focused on the detection of cracks, 
corrosion or lamination using CNNs. Cha et al. (2018) applied 
Faster R-CNN to detect and locate multiple types of damages: 
steel lamination, steel and bolt corrosion and concrete cracks. 
Zhang et al.  (2017) developed CrackNet, where depth 
information from laser scans was used to produce 2.5D images to 
detect cracks on roads at pixel level. In most studies, both the 
inability to compare methods as well as extensive manual data 
collection and labelling was reported. In the post-disaster 
domain, debris or building façade damage detection is the main 
feature of interest. Multi-resolution airborne imagery and CNNs 
have been used to detect building damages after an earthquake 
event (Duarte et al., 2018).  Adding 3D information to optical 
data improved subtle damage detection using CNNs (Vetrivel et 
al., 2018).  
Most studies towards damage detection considered it a 
supervised problem, and thus struggled with issues related to 
training data as discussed in the introduction. Additionally, it was 
observed that few studies addressed anomaly detection using 
deep learning. The few that did, were focussed on traffic or crowd 
incident management (Lopez-Fuentes et al., 2018). The proposed 
anomaly detecting GAN approach shows similarities to one-class 
classification method such as one-class Support Vector Machines 
(OCSVM) (Scholkopf et al., 2001). In OCSVM, there is only 
interest in detecting a specific class, while all other classes are 
ignored and labelled as anomalies. Few remote sensing studies 
adopted this method such as the study of Li et al. (2011) towards 
one-class road extraction. The downside of OCSVM is that, 
albeit fewer, labelled training data are still required. 
 
2.2 Generative Adversarial Networks 

Generative Adversarial Networks were introduced by 
Goodfellow et al. (2014) as a way of generating new samples. As 
mentioned in the introduction, two CNNs are trained in 
conjunction: a Generator and a Discriminator. The Generator 
consists of an encoder and a decoder. It aims to learn the 
Generators distribution pg, such that it matches the input data 
distribution pdata. The encoder maps the high-dimensional image 
data (x) to a lower-dimensional latent space (z) to the distribution 
pz. The decoder maps the latent vector back to the image space xg 

with probability pg. The function of the Generator is 𝐺𝐺(𝑥𝑥;  𝜃𝜃𝑔𝑔), 
where θg denotes the architecture of the Generator. The 
Discriminator consists of an encoder that outputs a single scalar 
(z). It aims to distinguish whether the input (x) is either coming 
from pdata or pg. It is described by 𝐷𝐷(𝑥𝑥;  𝜃𝜃𝑑𝑑), where θd denotes the 
encoder CNN. The discriminator aims at reducing 𝐷𝐷(𝐺𝐺(𝑧𝑧)), 
whereas the Generator tries to minimize it according to: log (1 −
𝐷𝐷�𝐺𝐺(𝑧𝑧)�) (Goodfellow et al., 2014). Both models are locked in 
a so called two-player zero-sum game.  In order to improve, the 
features used to correctly detect false samples are passed from 
the Discriminator to the Generator. Vice versa, the properties 
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used to fool the Discriminator are passed to the Discriminator. 
Ideally both models simultaneously improve over time. Once pg 
is equal to pdata, the models cannot improve any further 
(Goodfellow et al., 2014).  
 
2.2.1 Anomaly detection using GAN. As mentioned earlier, 
anomaly detecting GANs are only trained on non-anomalous 
images (xnormal) with probability pdata-normal. During inference, 
whenever an anomalous image coming from probability pdata-

abnormal is fed to the Generator, it is expected that the Generator 
will fail to construct a realistic sample xg and thus that pg is far 
removed from pdata-normal. In contrast, if the input image came 
from pdata-normal, the distances are expected to be low. This 
distance can be used to score the degree of anomalousness. Using 
a threshold criteria (φ), these distances can be used to classify and 
quantify anomalies. There are several ways to calculate the 
distance that leads to an anomaly score. For example, we can 
calculate the distance between the generated image (xg) and input 
image (x) or the distance between distribution pg and pdata-normal, 
which is the Wasserstein distance (Arjovsky et al., 2017; 
Goodfellow et al., 2014). 
AnoGAN was one of the first unsupervised deep convolutional 
generative adversarial nets (DCGANs), created to detect 
anomalies in retina images (Schlegl et al., 2017). It consists of a 
single encoder as the Generator and a single decoder for the 
Discriminator. Anomalies were identified using the residual 
distance and the discriminator loss, reaching precision and recall 
scores of 0.88 and 0.73, respectively. F-AnoGAN builds on the 
latter framework (Schlegl et al., 2019). It uses the same CNN 
architecture for the Discriminator and Generator, however now 
the Discriminator makes use of the Wasserstein distance. In 
addition, an encoder was trained seperately to learn the mapping 
from image to latent space, with the sole purpose of speeding up 
inference time. Schlegl et al. (2019) experimented with different 
loss functions to train the encoder and found that the best loss 
function yielded a precision of 0.79, performing slightly better 
than AnoGAN.  
Efficient Gan Based Anomaly Detection (EGBAD) makes use of 
the AnoGAN structure; however, it now employs bidirectional 
learning to train the Encoder simultanuously with the Generator 
and Discriminator (Zenati et al., 2018). This way, the mapping of 
image to latent-space and vice versa is learned in a single step, 
improving on runtime. Higher precision, recall and F1 scores 
were obtained using this method compared to AnoGAN. 
GANomaly was developed by Akcay et al. (2018).  The 
Generator consists of a standard auto-encoder and the 
Discriminator of a standard encoder network, similar to what has 
been described in 2.2. Unique to this framework is the third 
encoder network, whose aim is to map the generated image to 
feature space  �̂�𝑧 in order to implement a loss function which 
minimizes the distance between �̂�𝑧 and 𝑧𝑧. GANomaly was tested 
on x-rays of lugage where firearms or weapons were the anomaly 
class. The False Positive Rate (FPR) and True Positive Rate 
(TPR) were used to calculate the Area under the Receiver 
Operator Curve (AUC). GANomaly yielded higher AUC scores 
compared to AnoGAN. It achieved the lowest runtime compared 
to AnoGAN and EGBAD.  
Skip-GANomaly builds on GANomaly. In Skip-GANomaly the 
Generator is replaced by a skip-connected encoder-decoder 
framework (U-net) (Akçay et al., 2019; Ronneberger et al., 
2015). Features from the encoder layers are copied and 
concatenated to features in the sibling layers in the decoder. 
Therefore, information from varying resolutions is retained in 
subsequent convolutional layers in de decoder, yielding a high 
quality output image. Skip-GANomaly yielded impressive 
results and outperformed GANomaly, AnoGAN and EGBAD on 
the CIFAR10 and the firearms and weapons dataset. Considering 

these results, the state-of-the-art GANomaly and Skip-
GANomaly are adopted in this research and discussed in the 
remainder of this paper.  
 
 

3. METHODOLOGY 

3.1 GANomaly and Skip-GANomaly architectures 

The architectures of GANomaly and Skip-GANomaly can be 
found in Akcay et al. (2018) and Akçay et al. (2019). The loss 
function of both GANomaly and Skip-GANomaly are defined by 
three different loss functions: the adversarial loss, the contextual 
loss and the latent loss. Latent loss is also being called the 
encoder loss in Akcay et al. (2018). The adversarial loss steers 
the Generator to create realistic images that will fool the 
discriminator (Eq. 4). The contextual loss steers the Generator to 
not only create images that will fool the Discriminator, but to 
create images that are contextually sound. To this end, the input 
and generated images are compared at pixel level (Eq. 5).  The 
latent loss steers the encoders inside the Generator and 
Discriminator to construct robust latent representations of the 
input and generated image (Eq. 6).  
 

 𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎‖𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥�)‖2 (4) 
where, 𝑓𝑓(. ) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑥𝑥 [log𝐷𝐷(. )]  
 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 =  ‖𝑥𝑥 − 𝑥𝑥�‖1 (5)  
 𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙 = ‖𝑧𝑧 − �̂�𝑧‖2 (6) 

The overall objective function is defined by: 
 

 𝐿𝐿 = 𝑤𝑤𝑎𝑎𝑑𝑑𝑎𝑎𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 +  𝑤𝑤𝑙𝑙𝑎𝑎𝑙𝑙𝐿𝐿𝑙𝑙𝑎𝑎𝑙𝑙 
 

 

Where 𝑤𝑤𝑎𝑎𝑑𝑑𝑎𝑎,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑤𝑤𝑙𝑙𝑎𝑎𝑙𝑙 are weights that control the influence 
of the individual losses to the objective function.  
 
3.2 Anomaly classification 

The intersection between the distribution of anomaly scores of 
normal and abnormal samples was found to determine the 
threshold criterion. This criterion is used to classify the test-
samples into either normal or abnormal (Akçay et al., 2018). By 
plotting the histograms of both distributions, this threshold could 
be visualized. Ideally, the distributions are non-overlapping, 
meaning that both anomalies and normal samples are well 
distinguishable. The distributions can therefore serve as a 
measure of descriptive success. 
 
3.3 Performance metrics 

Performance metrics that were considered include Recall, 
Precision, Accuracy, and F1-score (Eq. 9-12). 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓
 (9) 

 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 =  
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑡𝑡
 (10) 

 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴 =
𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑓𝑓

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑡𝑡 + 𝑓𝑓𝑓𝑓
 (11) 

 𝐹𝐹1 =
2𝑡𝑡𝑡𝑡

2𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑡𝑡 + 𝑓𝑓𝑓𝑓
 (12) 

Where, tp is the number of true positives, tn is the number of true 
negatives, fp is the number of false positives and fn is the number 
of false negatives.  
Recall was deemed most important since it is an indicator of how 
many of the total damages were actually retrieved. However, 
precision should also be considered, since it is an indicator of 
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how many of the positive samples were actually damages. In 
addition, AUC was calculated to allow comparison with other 
anomaly detecting GANs. As mentioned in 2.2.1, AUC is the area 
under the curve when the TPR and FPR are plotted against each 
other.  
 
3.4 Sensitivity analysis 

As explained in the introduction, we aimed at showing how 
anomaly detecting GANs performed with different levels and 
types of pre-processing. When there are no time or capacity 
constraints, such as in infrastructure monitoring scenarios, users 
could choose to reach for maximum accuracy or other 
performance metrics. To this end, the original datasets were 
modified and the model performances were compared.  
As was mentioned in the introduction, modifications to the post-
disaster dataset include the removal of images from the dataset 
that contain vegetation and shadows. These classes are generally 
difficult to classify in deep learning classification tasks. Shadows 
can make crack detection or building damage detection difficult. 
Moreover, in temperate regions, vegetation changes during the 
year. The variety of contrast could make it difficult to learn the 
data distribution of normal images. To this end, the Canopy 
Shadow Index (SI) (Eq. 7) and the Green-Red Vegetation Index 
(GRVI) (Eq. 8) was calculated for each image  (Azizi et al., 2008; 
Motohka et al., 2010). To determine the maximum amount of 
positive pixels that could contain these classes, a threshold 
criterion was determined empirically. The images that exceeded 
this threshold were removed from the dataset. In addition to 
vegetation and shadow removal, one post-disaster dataset was 
converted from RGB to greyscale to investigate how sensitive 
anomaly detecting GANs are to colour-information. 
 

 𝑆𝑆𝑆𝑆 =  �(256− 𝐵𝐵2) ∗ (256− 𝐵𝐵3) (7) 

 𝐺𝐺𝑅𝑅𝐺𝐺𝑆𝑆 =  
𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐 −  𝜌𝜌𝑔𝑔𝑔𝑔𝑑𝑑
𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐 +  𝜌𝜌𝑔𝑔𝑔𝑔𝑑𝑑

 (8) 

 
In the road infrastructure dataset, we observed that damages were 
not located on road markings. Therefore, we argued that they do 
not convey information on degradation. For that reason, any 
image containing a road marking was removed from the dataset. 
In this dataset road markings were displayed as large areas of 
white pixels in geometric shapes. Images containing road 
markings were identified using Gaussian blurring, dilation-and-
erosion and thresholding techniques. The threshold criteria were 
again determined empirically. 
 
3.5 Transferability of trained models 

We further build on the aim explained in section 3.3. When there 
are time and capacity constraints, a user might choose to balance 
quality and speed. For this purpose a trained model is tested on 
the test-sets of other datasets, varying in degree of complexity. 
Comparing the resulting metrics should give an impression to 
what extent we can improve preparedness in time-sensitive 
scenarios by training models in advance.  
 
3.6 Damage segmentation 

The qualitative performance of anomaly detecting GANs was 
evaluated by creating damage segmentation maps. As explained 
earlier, the fake and real images are likely to be more different 
when the real image contains an anomaly. The pixel-wise 
difference between the real and generated image were calculated 
to obtain pixel-level anomaly scores. It was expected that the 
pixels located on damages have higher anomaly scores than non-

damaged pixels. To select which pixels to visualize, a threshold 
criterion was determined empirically. The actual spatial 
distribution of damages was expected to surface by visualizing 
them. These visualizations were evaluated manually for 
correctness since no pixel level annotation were available to 
evaluate the segmentation maps against.  
 
3.7 Comparison against other methods 

We compared anomaly detecting GANs against one supervised 
and one unsupervised classification method. The supervised 
method makes use of transfer learning and fine-tuning. Transfer 
learning is a method where a model trained on a different task, is 
applied to another task. Fine-tuning refers to the process where 
only the final layer of the pre-trained model are re-trained for the 
new task using the new dataset. The advantage of transfer 
learning is that general concepts do not have to be learned 
anymore, if the pre-trained model was trained on a generalizable 
dataset. The advantage of fine-tuning is that time and resources 
can be spend to learn specific concepts for the task at hand. In 
this research we fine-tuned Densenet161 which was pre-trained 
on the ImageNet dataset (Huang et al., 2017).  
The unsupervised method makes use of OCSVM which was 
mentioned in earlier. SVM aims to separate distinctive classes by 
finding the decision boundary which separates the classes. In 
SVM the aim is usually to distinguish two classes from each 
other. In OCSVM, the aim is to distinguish a specific class from 
others. OCSVM can be used in anomaly detection to detect the 
target class (for example: “apples”) and label all the other 
samples as outliers (“non-apples”). In this specific case, we use 
OCSVM aim to distinguish normal cases (“undamaged”) from 
abnormal cases (“damaged”). Again, the advantage is that no 
damaged training data is needed. The disadvantage is that this 
method is sensitive to the tuning of the OCSVM parameters, or 
the number of features (Li et al., 2011). Because the images in 
our datasets contain many features (image height x image width 
x nr. of channels), instead of applying OCSVM on all the image 
features, we first extracted image features from the pre-trained 
DenseNet161. To reduce the amount of features, the most 
important features were selected using Principal Component 
Analysis. The remaining features were used in OCSVM.  
 
 

4. EXPERIMENTS 

4.1 Datasets 

4.1.1 German Asphalt Pavement Distress dataset. The 
infrastructure dataset consists of patches from the German 
Asphalt Pavement Distress (GAP) dataset v1.0 (Eisenbach et al., 
2017). GAP v1.0 consists of 1969 high resolution greyscale 
images of road surfaces. They were acquired using a mobile 
mapping system, a vehicle mounted with stereo-cameras facing 
the surface. Each image covers approximately 2.84 x 1.0 m in a 
1920 x 1080 resolution with a Ground Sampling Distance of 1.2 
mm x 1.2 mm. The images were acquired at driving speed and 
shadows were kept to a minimum by using a synchronized 
lighting unit. The images were pixel annotated by experts for 
road surface damages. These include: cracks, potholes or 
patching. Even though, in GAP v1 only two labels exist: damaged 
or undamaged. From these images, patches were extracted of 
64x64 pixels (Figure 1). Each patch is labelled as either damaged 
or undamaged.  
The GAP dataset has a high signal-to-noise ratio. The damage 
feature is mainly expressed in brightness values in a geometrical 
shape (linear, round, etc.). The surrounding pixels, however, are 
depicted as random variation of brightness values, making it hard 
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to extract the damage signal. In this research noise was not treated 
explicitly and no feature enhancement techniques were added.  
 
4.1.2 Buildings dataset. For the Buildings dataset we selected 
patches of 80x80, derived from a collection of aerial imagery 
(Figure 1). Several images represent healthy urban scenes in 
Europe, while others represent post-earthquake urban scenes in 
New Zealand, Italy and Haiti (Nex et al., 2019b). Damages 
consist of collapsed buildings, or damaged roofs and facades. 
Patches were manually drawn, extracted and labelled. 
 
4.1.3 Pre-processing. As explained earlier, the datasets were 
treated using various levels of pre-processing to investigate the 
performance of the proposed method. Figure 2 shows an example 
of pre-processing on a pavement patch where the amount of 
pixels containing road markings exceeds the threshold of 10%.  
Figure 3 shows an example where the amount of vegetation and 
shadow pixels exceed the threshold of 10%. Table 1 describes all 
the datasets that were used in this research. In GAP2 the road 
markings were removed from the original GAP. In Buildings 2 
(B2), shadows and vegetation were removed. The threshold 
criterion was set low, in order to remove even small patches of 
vegetation or shadows in a strict manner. In Buildings 3 (B3), 
only vegetation was removed. In Buildings 4 (B4), only shadows 
were removed. In Buildings 5 (B5) both vegetation and shadows 
were removed similar to B2, only this time higher threshold 
values were used. 
In all datasets, the undamaged patches were split in 80/20 train 
and test set. As mentioned before, only undamaged patches were 
used for model development. The undamaged patches in the test 
dataset in combination with all the damaged patches were used 
for evaluation. 
 

 
Figure 1. Example of damaged and undamaged samples within 

the GAP and Buildings dataset. 

 
Figure 2. Example of road marking removal. 

 

 
Figure 3. Example of vegetation and shadow removal. 

 
Dataset Description # undamaged  

patches 
# damaged 
patches 

GAP Original GAP 
dataset 

5.221.249 679.154 
 
 

GAP2 No road 
markings 

5.079.787 567.250 

B Original 
buildings 
dataset 

430.475 3.113 

B2 No vegetation 
or shadows 
(strict) 

12.830 575 

B2_grey No vegetation 
or shadows 
(strict) in 
greyscale 

12.830 575 

B3 No vegetation 55.509 1.703 
B4 No shadows 62.622 636 
B5 No vegetation 

or shadows 
(lenient) 

91.126 3.113 

Table 1. Description of the different datasets used in this research 
plus the number of undamaged and damaged patches.  
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4.2 Hyper-parameter tuning 

In order to ensure that a model performs optimally for each 
dataset and each architecture, hyper-parameter tuning was 
required. Hyper-parameters influence how fast or how efficient 
the objective function can be reached. The main parameters tuned 
for Skip-GANomaly were the loss weights (𝑤𝑤𝑎𝑎𝑑𝑑𝑎𝑎,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑤𝑤𝑙𝑙𝑎𝑎𝑙𝑙) 
and the size of the latent vector z. The size of z influences the 
amount of information retained in z and subsequently the encoder 
loss. In addition, GANomaly was tuned for the number of extra 
layers present in the Generators encoder and decoder. The size of 
the encoder and decoder influences the amount of convolutional 
layers. The models were trained on a single GPU (TITAN XP) 
and on 16 CPU cores. On average, a model was trained on 12.000 
samples for 10 epochs within 18 hours. During inference, 
deriving labels of a batch containing 64 samples, averaged 4.2 
milliseconds.  
 
4.3 Results 

4.3.1 Performance metrics. To evaluate the results, we 
inspected the performance metrics, the generated images and the 
anomaly scores distribution. The performance metrics are 
reported in Table 2. The best performing models were selected 
based on the recall-precision trade-off. Practically speaking, we 
wanted to retrieve all damaged samples, while at the same time 
not burden first responders or maintenance workers with 
manually eliminating false positives. We therefore valued recall 
over precision. Comparing GANomaly and Skip-GANomaly, 
Skip-GANomaly performed better on all metrics with the 
occasional exception for precision. While Skip-GANomaly 
reached recall values of up to 0.95, GANomaly did not reach 
values higher than 0.86.  This trend is in line with findings in 
Akçay et al. (2019) where AUC values between 0.68 and 0.94 
were found. 
 

 Recall Precision Accuracy F1-
score 

AUC 

GGAP 
SGAP 

0.180 
0.478 

0.514 
0.642 

0.537 
0.631 

0.266 
0.547 

0.57 
0.68 

GGAP2 
SGAP2 

0.032 
0.401 

0.421 
0.545 

0.560 
0.593 

0.059 
0.462 

0.58 
0.62 

GB 
SB 

0.608 
0.686 

0.26 
0.298 

0.857 
0.870 

0.364 
0.416 

0.82 
0.90 

GB2 
SB2 
SB2_grey 

0.863 
0.955 
0.883 

0.92 
0.873 
0.849 

0.937 
0.945 
0.919 

0.89 
0.912 
0.866 

0.98 
0.98 
0.98 

GB3 
SB3 

0.501 
0.775 

0.732 
0.591 

0.838 
0.819 

0.595 
0.671 

0.85 
0.89 

GB4 
SB4 

0.723 
0.951 

0.526 
0.623 

0.913 
0.941 

0.609 
0.753 

0.94 
0.98 

GB5 
SB5 

0.568 
0.814 

0.838 
0.738 

0.860 
0.877 

0.677 
0.774 

0.93 
0.94 

Table 2. Recall, Precision, Accuracy, F1-score and AUC-score 
for all datasets (denoted by subscript) using GANomaly (G) and 
Skip-GANomaly (S).  
 
The generated images are shown in Figure 4. GANomaly 
consistently failed to generate realistic samples. Skip-
GANomaly, on the other hand, showed that it is able to create 
fake samples that are indistinguishable from reality. We believe 
that the skip-connections in U-net successfully allowed multi-
scale information to be passed forward to the decoder network.  
Interestingly, despite the inability of GANomaly to generate 
realistic images, some models obtained high performance metrics 
such as GB2. This can be explained by inspecting the distribution 
of anomaly scores (Figure 5). As explained in section 3.2, well 

distinguishable anomaly distributions can be considered as a 
measure of descriptiveness. Figure 5 shows that the anomaly 
scores distributions of GB2 are largely overlapping. The threshold 
value of 0.078, which divides abnormal from normal samples, 
can be considered non-descriptive. A majority of the abnormal 
test samples were correctly classified as normal. Consequently, a 
high tp and low fn value is obtained, therefore yielding high recall 
and precision values. Nonetheless, we conclude that the 
descriptive value of the model is low. In contrast we found that 
SB2 has a high descriptive value (Figure 6). The anomaly 
distributions are well distinguishable and most samples are 
correctly classified, resulting in high recall and precision values.  
The results showed that building damages were distinctively 
different from normal. However, besides damages, the GAP and 
Buildings datasets did not contain anomalies other than damages. 
Non-damaged anomalies could include: tire-marks, debris or on 
purpose demolished buildings. We argue that would they be 
present in the dataset, they would also be classified as being 
anomalous. Therefore, the fp score for damages would increase 
since no distinction is made between damaged or non-damaged 
anomalies. Nonetheless, as discussed in the introduction, we 
argue that the benefit of not needing labelled training data, 
outweighs the lack of obtaining descriptive labels. Moreover, we 
argue that retrieving non-damaged anomalies still provides 
information on deviations from normal. Future research will 
focus on anomaly classification, in order to provide end-users 
with more qualitative information about the found anomalies.  
 

Figure 4. Real and generated fake images for GANomaly and 
Skip-GANomaly. 

 

 
Figure 5. Anomaly scores distribution for GB2 

 
Figure 6. Anomaly scores distribution for SB2. 
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4.3.2 Sensitivity analysis. As explained in section 3.4 we 
investigated the sensitivity of this method to varying levels of 
pre-processing, since it would shed light on practical 
considerations in operational settings. Only the performance on 
the Buildings datasets improved once the complexity was 
reduced (Table 2). Specifically, Skip-GANomaly models trained 
on the least complex datasets (B2, B3, B4 and B5) performed 
better than when trained on the most complex dataset (B). Skip-
GANomaly, trained on the least complex and heaviest pre-
processed dataset B2, outperformed the rest, yielding 0.955 recall 
and 0.873 precision. Despite these results, in practice, one should 
consider the effort spent on curating B2. Less effort was spent on 
creating B5, while yielding the respectable results of 0.814, 0.738 
for recall and precision, respectively. Despite the performance on 
B2, B5 poses a viable alternative, balancing effort, time and 
performance, without sacrificing a lot on performance, which is 
preferable in post-disaster scenarios.  Other findings showed that 
the Skip-GANomaly model trained without shadows (B4) 
performed better than when trained without vegetation (B3), 
suggesting that the anomaly detecting GANs were more sensitive 
to shadows. We speculate that this has to do with the lack of 
contrast and colour inside the shadowed areas. As mentioned in 
the introduction, this has been reported to inhibit the detection of 
edges inside shadowed areas. We argue that less information was 
retained in the CNN’s feature maps and latent vector (z) which 
led to a rise in contextual loss. In line with this reasoning, 
vegetation did exhibit contrast and colour. Therefore, it added 
information to intermediate feature maps and value to the 
contextual loss. Evidence of the importance of colour was also 
found when comparing SB2 and SB2_grey (Table 2). This showed 
that performance drops once colour information is removed. 
More evidence was found in a converging contextual loss of 
approximately 0.5 and 0.7 for SB2 and SB2_grey, respectively, 
showing that greyscale images yield higher loss. A final finding 
was that, surprisingly, removing road markings did not improve 
performance. They might have unexpectedly provided contextual 
information throughout the patch which leads to a better 
approximation of Pdata-normal.  
 
4.3.3 False Negatives, False Positives. We investigated the 
False Positives (FPs) and False Negatives (FNs) to understand 
where both GANomaly and Skip-GANomaly failed in giving the 
correct classification (Figure 7). Most FNs in the Buildings 
dataset, depicted major geometrical features or areas that still 
depict a (blurred) pattern. Uninterrupted blurred features and 
areas may resemble normal images too closely. FPs mostly 
consisted of large homogeneous areas and colours. Patches with 
little contrast did not fit the learned distribution of normal 
patches. Improvements could be achieved by increasing the patch 
size, such that more contextual information is added to the model. 
Distinguishing damages on asphalt patches was even more 
problematic. Damages were sometimes too subtle to detect. 
Notice for example the red outlined patch in Figure 7. Thorough 
selection of patches that clearly represent damages is expected to 
improve performance although in practice this would be 
impractical.  
 

  

  
Figure 7. False Negatives (left) and False Positives (right) of 

SB2 (top) and SGAP (bottom). 
 
4.3.4 Transferability of trained models. As explained in 
section 3.5, we tested trained models on the test sets of other 
datasets to investigate to what degree preparedness can be 
achieved. Figure 8 shows the performance of Skip-GANomaly 
models that are tested on the test-sets of Building datasets on 
which they were not trained. A primary observation is that a 
model trained on a pre-processed dataset yielded satisfying 
results when tested on other pre-processed datasets on which it 
was not trained. SB1, the model trained on the original dataset, 
yielded worse results on pre-processed datasets (B2, B3, B4 or 
B5). On the other side of the spectrum, the model trained on the 
heavily pre-processed dataset (B2) did not perform well on either 
the pre-processed (B3, B4 or B5) or the original datasets (B1). 
We observed that a compromise yielded the best outcome. 
Specifically, SB3 is a moderately pre-processed dataset which did 
not perform well on the neither the heaviest pre-processed (B2) 
nor the original dataset (B1), but performed satisfyingly on 
equally pre-processed datasets (B4 and B5). Similarly, SB4 
seemed to perform on par on other equally pre-processed 
datasets, except on B3 which seemed to suggest that shadows 
were exhibiting a significant effect on model performance. 
Lastly, SB5 performed well on all pre-processed datasets, but not 
on the original dataset (B1).  
 
4.3.5 Damage segmentation. In order to evaluate whether 
anomaly scores were indeed higher on damaged pixels, we 
visualized the pixel level anomaly scores based on a threshold 
criterion. Two criteria were found empirically and set at the 
second and third quantile.  
Figure 9 shows anomaly segmentations of a damaged Buildings 
and GAP patch. Although no clear outline of the damaged 
sections are found, a higher density of anomaly pixels was 
observed around damaged areas. In the buildings patch, the 
anomaly density is higher in the upper-left corner where a 
collapsed roof and debris is visible and less dense in the lower-
right corner where the roof is intact. In the pavement patch, a 
higher density is observed around the crack. This suggests that 
two of our assumptions are correct. The anomaly detecting GAN 
is less adept in generating damaged images and damaged pixels 
yield higher pixel level anomaly scores than others. The network 
can not only identify, but also locate damages inside images. A 
disadvantage of this visualization method is that the threshold is 
determined empirically. Future research should focus on 
extracting the threshold automatically instead of setting it 
manually.  
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Figure 8. Cross-test results. Trained Skip-GANomaly Building models are tested on other Building test-sets which were not used for 

training. 
 

 
Figure 9. Anomaly segmentation for a damaged building (top row) and a damaged pavement (bottom row). 

 
 
4.3.6 Comparison against state of the art. Table 3 shows 
how our method compared against other classification methods. 
OCSVM performed worse than our proposed method. This has 
likely to do with the nature of the target class. Normal buildings 
are diverse in visual appearance. This diversity makes it difficult 
to maximize the distance between the target class and anomalies. 
While our method scored high on all performance metrics, the 
fine-tuned DenseNet outperformed our method. The advantage 
of a pre-trained network is that less effort is required to train a 
model. However, more importantly, the main disadvantage is that 
damaged examples are needed. As discussed earlier, this is a 
problem for most damage mapping tasks. Our method has 
therefore a clear advantage while minimally sacrificing on 
performance.  
 

 Recall Precision Accuracy F1-
score 

OCSVM 0.074 0.777 0.107 0.088 
DenseNet 1.000 0.957 0.957 0.978 
SB2 0.955 0.873 0.945 0.912 

Table 3. Comparison of our method against other unsupervised 
and supervised methods. 

5. CONCLUSION 

In the context of increasing resilience in the public domain, this 
study investigated 1) the ability of anomaly detecting GANs to 
detect degradation in road infrastructures using Mobile Mapping 
imagery and building damages in urban settings using post-
disaster aerial imagery, and 2) the sensitivity of this method 
against various types of pre-processing. Two distinctive datasets 
were used: a high resolution road surface mobile mapper dataset 
(GAP) and a post-earthquake urban aerial imagery dataset 
(Buildings). Two state of the art anomaly detecting GANs were 
applied: GANomaly and Skip-GANomaly.  
Only Skip-GANomaly performed satisfyingly when detecting 
damages in the buildings dataset. GANomaly was consistently 
not able to find the descriptive features of damages and therefore 
to detect damages. We conclude that the U-net architecture of 
Skip-GANomaly’s Generator plays the largest role in providing 
good results. 
In order to test the sensitivity of the models against different 
levels of pre-processing, the datasets were pre-processed to 
reduce the complexity of the datasets. Specifically, shadows and 
vegetation were removed from the Buildings dataset and road 
markings were removed from the GAP dataset. No improvements 
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were visible for the GAP dataset. For the Buildings dataset 
however, reducing its complexity improved recall and precision 
measures. Shadow removal improved performance the most.  
We investigated, to what extent trained models can be transferred 
to other datasets. This would show to what extent preparedness 
in operational settings can be facilitated using anomaly detecting 
GANs. Results showed that models trained on pre-processed 
datasets were able to infer satisfying results on less pre-processed 
datasets.  
We visualized the spatial location of high pixel level anomaly 
scores. We found that the density of anomalous pixels is higher 
at damaged locations. This shows that anomaly detecting GANs 
are not only able to identify damages, but also to locate damages.  
Finally, we compared anomaly detecting GANs with other 
commonly used classification methods. Our method performed 
better than the unsupervised OCSVM, although it was 
outperformed by supervised transfer learning and fine-tuning. 
The main disadvantage of the latter method, is that training 
examples of damages are required. As explained in the 
introduction, this is difficult to obtain in most real world 
classification tasks. Our method yields results close to the 
supervised method, while not needing any training examples but 
from healthy scenes. We argue that our method is therefore the 
most suitable for damage mapping tasks. 
These results allow us to make practical suggestions for efficient 
damage detection in post-disaster scenarios using anomaly 
detecting GANs: a model should be trained on datasets in which 
at least shadows are removed. Too heavy pruning might give 
adverse effects. Inference should be done on datasets in which at 
least some pre-processing has been done. Removing shadows is 
advised as it produces the best results, however this comes at the 
price of not being able to detect damages in shadowed areas. 
Moreover, depending on the size of your training data, training 
may take a significant amount of time, which might not be 
available in post-disaster scenarios.  Inference time however is 
fast. Therefore, we suggest to train models in advance, so that 
inference can be done immediately when needed. Finally, we 
advise end-users to remember that retrieved samples can be 
considered anomalous but not all can be considered damages. No 
practical suggestions can be made for asphalt damage detection. 
This task remains a challenge. We argue this is mainly caused by 
the difficult nature of asphalt damages which are difficult to 
distinguish. Adding an additional source of information, such as 
depth from Light Detection and Ranging (LiDAR) sensors, might 
aid in distinguishing physical damages from normal. 
This study is the first to show that unsupervised damage detection 
using anomaly detecting GANs is possible without the need of 
any prior damage information. This eases model development 
and facilitates preparedness in post-disaster damage mapping 
scenarios. We argue that this framework can be used to detect 
damages in a large range of damage or post-disaster typologies, 
no matter the nature of the damage. Therefore, this work is 
valuable, as it signals the start of a shift from task-specific 
supervised damage mapping to a uniform unsupervised damage 
mapping approach. Future work will investigate the 
transferability of this method to other geographical locations or 
typologies of damages. Furthermore, we will investigate how to 
reduce the signal-to-noise ratio in asphalt imagery, how to 
distinguish non-damaged anomalies from damaged anomalies 
and how to further segment and classify damages.  
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