
GLOBAL CONTEXT AIDED SEMANTIC SEGMENTATION FOR CLOUD DETECTION
OF REMOTE SENSING IMAGES

Fei Wen, Yongjun Zhang∗, Bin Zhang

School of Remote Sensing and Information Engineering, Wuhan University, China - (wenfei, zhangyj, bin.zhang)@whu.edu.cn

Commission II, WG II/6

KEY WORDS: Cloud detection, CNN, Semantic segmentation, Context, Landsat-8

ABSTRACT:

Cloud detection is a vital preprocessing step for remote sensing image applications, which has been widely studied through Convo-
lutional Neural Networks (CNNs) in recent years. However, the available CNN-based works only extract local/non-local features
by stacked convolution and pooling layers, ignoring global contextual information of the input scenes. In this paper, a novel
segmentation-based network is proposed for cloud detection of remote sensing images. We add a multi-class classification branch
to a U-shaped semantic segmentation network. Through the encoder-decoder architecture, pixelwise classification of cloud, shadow
and landcover can be obtained. Besides, the multi-class classification branch is built on top of the encoder module to extract
global context by identifying what classes exist in the input scene. Linear representation encoded global contextual information is
learned in the added branch, which is to be combined with featuremaps of the decoder and can help to selectively strengthen class-
related features or weaken class-unrelated features at different scales. The whole network is trained and tested in an end-to-end
fashion. Experiments on two Landsat-8 cloud detection datasets show better performance than other deep learning methods, which
finally achieves 90.82% overall accuracy and 0.6992 mIoU on the SPARCS dataset, demonstrating the effectiveness of the proposed
framework for cloud detection in remote sensing images.

1. INTRODUCTION

Due to their imaging mechanism, optical satellite sensors are
inevitably influenced by cloud which can severely degrade im-
age quality or even completely occlude land-covers. Remote
sensing images acquired by such sensors may contaminated by
cloud with high probability, hindering their downstream applic-
ations such as land-cover classification, change detection, en-
vironment monitoring and so on. Cloud detection, as a prepro-
cessing step, plays an important role in remote sensing image
utilization. Screening out cloud and the accompany shadow can
facilitate the following image processing and analysis. There-
fore, many researchers have been dedicated to cloud detection
these years.

The available cloud detection methods can be roughly categor-
ized into rule-based and machine learning approaches. Gen-
erally, the rule-based methods exploit reflectance variance in
different bands and introduce sets of rules that threshold on
single spectral band or combination of spectral bands to identify
cloud in remote sensing images. Cloud shadow is then de-
tected by considering solar geometry and its relative location
to cloud. However, the rule-based methods are sensitive to
image sensors and different scenes because of their empirical
rule sets, which lower their generalization ability. In recent
years, machine learning methods have been applied in many
cloud detection tasks. Traditional machine learning methods
train classifiers to identify cloud pixels or objects described by
handcrafted features. Contrary to utilizing manually designed
features, deep learning methods which employ CNNs to learn
more representative features from training data has achieved
superior performance. At the early stage, CNNs are trained
to classify superpixels or sliding windows of the input image
to generate a cloud probability map, cloud detection result is
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Figure 1. Examples of remote sensing scenes and their
pixel-wise labels with three classes (white for cloud, black for

shadow and gray for clear). For part of scenes having no cloud or
clear pixels, we explore to capture global context of such scenes
to prevent networks from falsely detecting cloud or clear pixels.

then obtained by setting proper threshold on that map. More
straightforwardly, cloud and shadow can be screened out in se-
mantic segmentation frameworks, by which pixel-wise classi-
fication can be directly generated. However, the available se-
mantic segmentation networks used for cloud detection only
utilize local or non-local features through stacked convolution
and pooling layers while ignoring global contextual information
of the whole input scene. In practice, for large remote sensing
images, they have to be cropped into small blocks before be-
ing fed into CNNs because of limited computational resources,
which may result in part of cropped blocks having no cloud
pixels or no clear pixels at all. Examples are shown in Fig 1.
In such cases, global contextual information about what classes
presented in the input scene may help to prevent networks from
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falsely detecting nonexistent objects, thus improving segment-
ation accuracy.

To encode global context information of satellite image blocks,
a novel global context aided semantic segmentation network
(GCANet) is proposed in this paper. In addition to a U-shaped
semantic segmentation network with encoder-decoder architec-
ture, a multi-class classification branch is built on top of the en-
coder module to capture global context of the input scene. Lin-
ear representation learned in this branch is then combined with
featuremaps of the decoder at different scales. In such a way,
the global context information extracted by the added branch
is injected into the semantic segmentation stream. Experiments
on two Landsat-8 datasets show better performance compared
to regular semantic segmentation networks, demonstrating the
effectiveness of the proposed method.

2. RELATED WORKS

Depending on the type of image sources, cloud detection ap-
proaches can be divided into single-image-based and multi-tem-
poral-based ones (Zhang et al., 2019). In this work, we discuss
about the former category and discard the multi-temporal-based
methods. As mentioned, methods for detecting cloud in a single
image can be categorized into rule-based and machine learning
ones. Further, to help understanding, we divide machine learn-
ing approaches into traditional and deep learning parts.

Rule-based methods. To mask cloud and the accompany shad-
ow in remote sensing images, the most basic way is to intro-
duce a set of thresholds on the original or derived products
of image spectral bands. For example, two of the most well-
known rule-based methods are Fmask (Zhu, Woodcock, 2012,
Zhu et al., 2015) and Sen2Cor (Richter et al., 2012), which has
been officially used for Landsat and Sentinel-2 images respect-
ively. After that, some researchers have proposed improve-
ments based on the two methods (Qiu et al., 2019, Zhai et al.,
2018). The rule-based methods are easy to use once the set
of thresholds have been carefully determined through plenty of
validation. However, the predefined rules, namely those thresho-
lds, are sensitive to image sensors, different scenes and illumin-
ation conditions, just to name a few. Besides, the rule-based
methods often depend on certain spectral band that has good re-
action to cloud, which is not always available to many sensors,
lowering their generalization ability. Therefore, more intelli-
gent cloud detection methods need to be investigated.

Traditional machine learning methods. Different from set-
ting a set of thresholds on spectral bands of images to detect
cloud, machine learning methods can learn from higher level
features of images to distinguish cloud pixels from clear ones.
Given well-labeled data pairs (images and the corresponding
cloud masks), these methods train or learn a classifier from
the training samples described by handcrafted features. (Scara-
muzza et al., 2011) proposed two approaches to improve the
ACCA (Hollingsworth et al., 1996) algorithm designed for Land-
sat TM images, one of which added a neural network to re-
fine ambiguous results and another created a larger decision
tree to improve accuracy. (Hughes, Hayes, 2014) developed
the SPARCS (Spatial Procedures for Automated Removal of
Cloud and Shadow) to identify and classify cloud and cloud
shadow, which utilized a neural network approach to determine
classification membership of each pixel in Landsat images. To
explore the representation capability of off-the-shelf image fea-
tures, several SVM (Support Vector Machine)-based methods

were proposed to train linear classifiers to identify cloud super-
pixels or blocks. For instance, (Li et al., 2015) exploited gradi-
ent and gray level co-occurrence matrix to calculate descriptor
for sub-blocks, (Tan et al., 2016) utilized latent semantic model
to represent superpixels as training samples for the SVM. Des-
pite machine learning methods can achieve good results in some
cases, they are still not adaptable enough in practice due to the
limited representation capability of hand-crafted features. With
the development of data acquirement ability, it’s easier to col-
lect large dataset for our specific tasks, which can derive more
flexible and data-driven methods.

Deep learning methods. In recent years, deep learning has
achieved great success in computer vision tasks such as ob-
ject detection, image classification, scene parsing, and so on.
Through CNN, deep learning methods can learn more repres-
entative features directly from data and have shown significant
superior performance compared to traditional machine learning
methods. Therefore, such powerful tool has also been widely
used in remote sensing society these years.

As for detecting cloud and cloud shadow in remote sensing
images, the available methods involving deep learning can be
grouped into classification-based and segmentation-based ones.
From the point of classification, (Shendryk et al., 2019) pro-
posed a multi-network ensemble strategy to perform multi-label
classification for high-resolution satellite sub-scenes with cloud,
shadow or land-cover. (Shi et al., 2016) trained a CNN to learn
features of superpixels and generated cloud probability map by
identifying each superpixel of the input image. More straight-
forwardly, cloud, cloud shadow and land-cover pixels can be
directly labeled through semantic segmentation. (Jeppesen et
al., 2019) introduced a U-net (Ronneberger et al., 2015) based
network with a symmetric architecture linked by skip connec-
tion to screen out cloud and cloud shadow. Similarly, (Chai
et al., 2019) applied the well-known SegNet (Badrinarayanan
et al., 2017) architecture that consisted of a encoder and a de-
coder module for cloud detection, of which the encoder was
based on VGG (Simonyan, Zisserman, 2014) while the decoder
was made up of several up-sampling layers. To improve feature
learning, (Shao et al., 2019) constructed a multiscale feature
fusion network to detect thick and thin cloud and non-cloud
pixels of remote sensing images. These networks are end-to-
end and have been demonstrated to perform better than tradi-
tional methods. However, they only extract local or non-local
features through stacked convolution and pooling operations or
fuse multiscale features including global spatial features, the
global context information of the input scene has not been fully
utilized for remote sensing images.

In contrast, we propose a semantic segmentation network com-
bined with global contextual information, in which an auxil-
iary multi-class classification branch is added to encode con-
textual information of the whole input scene. The advantage
is intuitive: if the input scene is completely clear without any
cloud pixels, the features learned from the classification branch
should help to selectively strengthen land-cover related features
while weakening cloud related features, reducing the probabil-
ity of falsely detecting some pixels as cloud in such scene, thus
improve the semantic segmentation accuracy.

3. METHODOLOGY

With the development of deep learning, some researchers have
altered to apply CNNs on cloud detection tasks. The detection

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-583-2020 | © Authors 2020. CC BY 4.0 License.

 
584



Figure 2. Flowchart of the proposed GCANet.

of cloud and its shadow in remote sensing images is treated
as pixel-wise labeling problem, which is solved using a vari-
ety of semantic segmentation networks. As shown in Fig 2,
the proposed framework in this paper also utilizes a semantic
segmentation architecture as skeleton, while additionally a new
branch is added to assist segmentation. The skeleton is con-
sisted of encoder and decoder module linked by skip connec-
tion. The added branch performs multi-class classification on
top of featuremaps of the encoder. Besides, the linear represent-
ation learned from this branch is combined with featuremaps of
the decoder at each scale. The whole framework is end-to-end
for training and testing. Details of the skeleton and the added
branch are described in the following sections.

3.1 U-shaped semantic segmentation architecture

Depending on whether the featuremaps are up-sampled back
to original resolution directly or step by step, the architectures
of semantic segmentation networks can be roughly categorized
as FCN-like or U-shaped. The FCN-like architectures are of-
ten with larger model size, while the U-shape architectures are
more lightweight and have been proven to be effective for tasks
with limited training samples. Inspired by U-Net (Ronneberger
et al., 2015) which has been successfully used in medical im-
age processing, we adopt a U-shaped architecture as the skel-
eton of our network for cloud detection of remote sensing im-
ages. The skeleton extracts features through a encoder mod-
ule and up-samples the featuremaps through a decoder module.
For each feature layer at the same scale in the encoder and de-
coder module, a skip connection is applied to fuse features as
similar with the U-Net. Different from the original U-Net, the
feature extractors of other widely used classification networks
can be adopted as encoder in the proposed architecture. To up-
sample featuremaps back to the same size as the input image,
the decoder module either applies deconvolution or bilinear up-
sampling. To trade off between model size and segmentation
accuracy, lightweight networks, such as VGG (Simonyan, Zis-
serman, 2014), can be used as the backbone of encoder module.
Bilinear upsampling is often preferred when building decoder
module because of parameter free.

3.2 Multi-class classification

As mentioned, we add a multi-class classification branch to the
semantic segmentation skeleton. Taking the last feature layer of
the encoder module as input, the added branch firstly squeezes
the multi-channel featuremap to channel-wise factors by apply-
ing global average pooling. Details about the squeeze will be
described later. These factors are channel-wise statistics and
have two meaningful usage. On one hand, these factors can be
rescaled to combine with feature layers in the decoder module,
which can recalibrate featuremaps for better segmentation. On

the other hand, a fully connected layer with Sigmoid function is
built on top of these factors to predict what kind of classes are
presented in the input scene. The motivation is straightforward.
For a subimage cropped from one large original remote sensing
image, if we can identify what categories presented in the input
scene, it should help to prevent the network from falsely detect-
ing nonexistent objects. When training with the added branch,
multi-class labels of the training samples can be directly gen-
erated from segmentation labels by checking what categories
exist in those samples. Finally, binary cross entropy loss can be
utilized to regularize this auxiliary branch.

3.3 Global context aided semantic segmentation

3.3.1 Global context pooling. In fact, global information
has been widely used in semantic segmentation networks these
years. Most of these methods extract global features at the deep
layer of networks by global average pooling. Then the global
features are fused with other featuremaps before being fed into
the following layers (Chen et al., 2017, Zhao et al., 2017). How-
ever, these global features have no explicit contextual meanings
due to the lack of additional supervised information on the in-
put scene. To cover this shortage, (Zhang et al., 2018) designed
a context encoding network (EncNet) to capture global contex-
tual information by identifying what classes in the input scene,
thus improved semantic segmentation performance.

Based on framework of the EncNet, the global contextual in-
formation can be obtained in a simpler way. To help under-
standing, we briefly introduce the key context encoding (CE)
module in EncNet. The CE gathers dictionary learning and re-
sidual encoding together to generate robust representations for
the input image. Given an input featuremap with the shape of
C × H × W , The CE considers it as a set of C−dimensi-
onal input features X = {x1, ..., xN}, where N is equal to
H ×W , which learns a dictionary D = {d1, ..., dK} contain-
ing K codewords of C−dimensional and a set of smoothing
factors S = {s1, ..., sK}. Then a fixed length representation
for the input featuremap, denoted as E = {e1, ..., eK} and ei
is C−dimensional, can be generated. Finally, the encoded rep-
resentation E was aggregated by e = ΣK

k=1φ(ek), where φ de-
notes Batch Normalization with ReLU activation. The CE was
modified based on the module originally proposed in (Zhang
et al., 2017) for texture recognition which used all entries of
the encoded representations for classification. However, the CE
reduces to a pooling layer after the encoded representation be-
ing aggregated to a linear representation so that it may be reas-
onable to simplify such a complex module. In this work, we
directly apply global average pooling on deep features of the
encoder to replace CE, which we name it context pooling (CP).
For one thing, a pooling layer is parameter free compared to
the CE module. For another thing, output of the global average
pooling has direct statistic relationship with the input features.

Similar to CE module, a linear representation of the featuremap
output by the encoder can be generated through CP, which will
be used in two ways. On one hand, followed by a fully connec-
ted layer, the linear representation can be further transferred to
channel-wise featuremap scaling factors through γ = δ(We),
where W denotes weights of the fully connected layer and δ
is the sigmoid function. The scaling factors will be combined
with featuremaps of the decoder by channel-wise multiplica-
tion, aiming to selectively strengthen or weaken certain fea-
tures. On the other hand, additional fully connected layer with
sigmoid function is built on top of this linear representation
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Figure 3. Architecture of the proposed GCANet. The skeleton is a U-shaped architecture similar to the UNet. A multi-class
classification branch is added on top of the encoder. The new branch learns linear representation of the input featuremap. Through

fully connected layers, the linear representation is, on one way, used to identify classes presented in the input scenes, and is combined
with featuremaps of the encoder by channel-wise multiplication on the other way.

to predict categories presented in the input scene, which acts
as auxiliary supervised contextual information to aid semantic
segmentation.

3.3.2 Featuremap recalibration. Through CE module in t-
he EncNet, the featuremap was adaptively recalculated before
upsampling by conducting channel-wise multiplication with sc-
aling factors. Similarly, (Hu et al., 2018) proposed a ”Squeeze-
and-Excitation” (SE) block as a plug and play module to adapt-
ively recalibrate channel-wise feature response. The SE block
firstly squeezed the featuremap to a linear representation throug-
h global average pooling. Then, two fully connected layers
were built on top of it to learn a nonlinear transformation that
models interaction between channels. Finally, the SE block
output recalibrated featuremap after performing channel-wise
multiplication with the transformed linear representation. Intu-
itively, the CE module and SE block act as a featuremap recal-
ibration module which selectively emphasize or de-emphasize
certain feature channels to improve feature representation abil-
ity.

Through CP module, a linear representation encoded global
contextual information can be learned, then it should be trans-
ferred to featuremap scaling factors and applied to rescale fea-
turemaps similar to CE and SE. In this paper, we adopt such fea-
turemap recalibration strategy in the proposed U-shaped archi-
tecture. Since the decoder up-samples featuremaps at different
scales step by step, we introduce multiple groups of channel-
wise scaling factors for featuremaps of the decoder at each scale.
Each group scaling factors is generated from the same linear
representation through one fully connected layer to match the
channel dimension of each featuremap of the decoder. Different
from recalibrating featuremap only once in CE, we obtain sev-
eral groups of scaling factors and recalibrate all the featuremaps
of the decoder at different scales.

3.3.3 Network architecture. To combine global context po-
oling and featuremap recalibration together, we propose a Global
Context Aided semantic segmentation Network (GCANet). The

Figure 4. Details of the CP module in GCANet. Two
convolution layers are built to increase nonlinearity before

global average pooling. The same strategy is applied in EncNet

architecture of GCANet is shown in Fig 3. The skeleton is
a U-shaped structure which is consisted of an encoder and a
decoder. The encoder extracts multiscale features of the input
image while the decoder up-samples the featuremaps back to
the input scale. Similar to other U-shape networks, a skip con-
nection is built between the encoder and the decoder to fuse
features at the same scale. To trade-off between model size and
accuracy, we utilize VGG16 as the backbone of the encoder.
For the decoder, bilinear upsampling is used to replace decon-
volution operators in the original U-Net.

Apart from the skeleton, a multi-class classification branch is
added as in Fig 3. The branch Firstly squeezes the featuremap
output from the encoder into a linear representation through the
CP module. Architecture of the CP module is shown in Fig
4. Similar to the EncNet, we build two convolution layers be-
fore the global average pooling layer. After that, on one way,
the linear representation is transformed by five different fully
connected layers with sigmoid activation function, which gen-
erates five groups of channel-wise scaling factors with differ-
ent length. Each group of scaling factors is corresponding to
a feature layer of the decoder at certain scale. Then channel-
wise multiplication between featuremaps at five different scales
of the encoder and their related scaling factors are conducted
to selectively strengthen and weaken certain features. On the
other way, the linear representation is fed into another fully
connected layer followed by sigmoid activation function to pre-
dict the categories presented in the input scene. There are two
outputs of the GCANet. The semantic segmentation skeleton

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-583-2020 | © Authors 2020. CC BY 4.0 License.

 
586



is regularized by cross entropy loss (CE loss) and the multi-
class classification branch is regularized by binary cross entropy
loss (BCE loss). During training, the final loss (f loss) of the
GCANet is calculated by weighted summing the segmentation
loss (S loss) and the classification loss (C loss):

f loss = S loss+ λC loss (1)

4. EXPERIMENTS

4.1 Datasets

To test the performance of the proposed framework, two Landsat-
8 OLI (Operational Land Imager) datasets are used in our ex-
periments. One is the Landsat Boime dateset (Foga et al., 2017)
which contains 96 Landsat-8 Level-1 products, and another is
the Spatial Procedures for Automated Removal of Cloud and
Shadow (SPARCS) dataset consisted of 80 well labeled Landsat-
8 scenes with 1000 x 1000 pixels. Since the purpose is to detect
both cloud and cloud shadow in Landsat images, while only 32
products of the Biome have cloud shadow labeled, we use this
subset of Biome dataset and the whole SPARCS dataset in our
experiments. The original labels are rearranged to have only
three classes that represent cloud shadow, clear and cloud re-
spectively. To normalize pixel value into 0 ∼ 1, all images are
converted to TOA reflectance products. Only four bands (blue,
green, red and NIR) are used in order to make our framework
more adaptive to regular remote sensing images with limited
bands. We construct two groups of experiments to demonstrate
the effectiveness of the proposed method. For the first group,
only Biome subset is used, of which 24 Level-1 products are
for training and the rest are for testing. For the second group,
all images of the Biome subset are used for training while the
SPARCS scenes are used for test. During training, all Land-
sat images are cropped into blocks with the size of 256 x 256
pixels. When testing, inference is conducted on partly over-
lapped sliding windows with the size of 256 x 256 pixels of the
input images.

4.2 Implementation details

The proposed framework is implemented in PyTorch. For the
skeleton architecture, we use pre-trained VGG16 with Batch
Normalization (BN) as the backbone of our encoder module.
The decoder is made up of five bilinear up-sampling layers.
Similar to UNet, featuremaps of encoder and decoder at the
same scale are concatenated through skip connection and remap-
ped by depth convolution before up-sampling as shown in Fig
3. The network is learned from the weighted sum of segment-
ation loss and classification loss. When training, Adam optim-
izer with base learning rate 0.0001 is used. The momentum is
set to 0.9 and the weight decay is set to 0.0001. The networks
are trained for 100 epochs on the two groups of experiments.
The weight of classification loss is set to 0.4. Data augmenta-
tion, including random blur, gaussian noise, flip and rotation, is
applied during training.

To demonstrate the effectiveness of the proposed network, one
rule-based method (Fmask) and several deep learning methods
(UNet, FCN (Long et al., 2015), Deeplabv3 (Chen et al., 2017))
are compared. We use the latest Fmask4.0 to detect cloud and
cloud shadow with recommended parameters. The UNet, acts
as the baseline of our method, has exactly the same structure
as the skeleton of our network, and the other two networks
are implemented on the basis of PytorchEncoding (Zhang et

al., 2018). For quantitative comparison, we adopt typical met-
rics used in semantic segmentation tasks for evaluation, which
are pixel accuracy (pixAcc) and mean Intersection of Union
(mIoU).

4.3 Experimental results

Two groups of experiments were conducted to demonstrate the
effectiveness of the proposed framework. For the first group
of experiments, we were aiming at verifying the superior per-
formance of U-shaped architecture compared to FCN-like ar-
chitecture for cloud detection task. In computer vision, state-
of-the-art semantic segmentation methods all utilize FCN-like
architecture. These networks adopt ResNet as backbone, which
often have bigger model size and achieve better accuracy than
U-shaped networks. The reason may lie in that enough data is
available for training and testing. However, this is not the case
in remote sensing.

The results are shown in table 1, Fmask achieved much worse
results than deep learning methods on the Biome subset. The
Fmask indeed can detect cloud well in some cases, it is not ro-
bust enough due to complicated image scenes and illuminance
condition. Among deep learning methods, networks with U-
shaped architecture performed better than FCN-like ones. On
one hand, the image number and variety of our dataset is much
smaller than that of computer vision datasets such as ImageNet
(Deng et al., 2009). On the other hand, the segmented classes of
cloud detection task are much less than that in computer vision
tasks. FCN-like networks are too complex for cloud detection
in remote sensing because of their high probability of overfit-
ting. As a result, they are prone to converge to a inferior res-
ults. On the contrary, U-shaped networks are more suitable for
cloud detection task due to their moderate model size. At last,
as can be seen in table 1, the proposed framework shows bet-
ter performance than UNet because of the added classification
branch.

Table 1. Results of the first group of experiments. The 2-4
columns denote the IoU of each class respectively.

Method shadow clear cloud mIoU picAcc
Fmask 0.1894 0.8011 0.5788 0.5231 0.8234
UNet 0.5779 0.8750 0.6906 0.7145 0.8991
FCN 0.5162 0.8665 0.6852 0.6893 0.8857

Deeplab 0.4980 0.8562 0.6258 0.6600 0.8733
GCANet 0.6003 0.8929 0.7205 0.7379 0.9116

To test generality of the proposed framework, we conducted
the second group of experiments, which trained the networks
on the whole Biome subset and tested on the SPARCS. The 80
scenes of the SPARCS are cropped from 80 different original
Landsat images distributed at all over the world. Images in the
SPARCS are of better variety and labeling quality than those
in the Biome. The results are shown in table 2. The Fmask
achieved the best IoU of cloud but it’s overall accuracy and
mIoU were still worse than deep learning methods. Different
from deep learning methods that used only 4 bands of Landsat-
8 images, the Fmask used all bands to identify pixel classes.
As we found in our experiments, even though the Fmask could
obtain acceptable detection results of cloud, it was often unable
to detect cloud shadow well. Among deep learning methods,
the U-shaped networks still performed better than the FCN-like
ones, and the proposed framework outperformed the UNet.

To intuitively show the improvement of our method compared
to other methods, we visualize some cloud detection results of
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Three cloud detection examples of the SPARCS. Column (a) is the original Landsat-8 images; column (b) is the ground-truth
labels; column (c)(d)(e)(f)(g) are the results of Fmask, FCN, Deeplab, UNet and the proposed GCANet respectively.

Table 2. Results of the second group of experiments. The 2-4
columns denote the IoU of each class respectively.

Method shadow clear cloud mIoU picAcc
Fmask 0.3626 0.8678 0.7535 0.6613 0.8822
UNet 0.4457 0.8812 0.7144 0.6804 0.8977
FCN 0.4014 0.8739 0.6822 0.6525 0.8894

Deeplab 0.4207 0.8777 0.6718 0.6567 0.8891
GCANet 0.4625 0.8978 0.7372 0.6992 0.9082

the SPARCS as shown in Fig 5. Thanks to global contextual
information and featuremap recalibration, GCANet has lower
probability of falsely detecting non-cloud objects as cloud. As
can be seen in the first row of Fig 5, all other methods ex-
cept GCANet have falsely detected red box region which is
covered with snow as cloud region. Snow has always been a
challenge to cloud detection because of its similarity to cloud.
Even though Fmask uses more bands than GCANet, it is still
prone to misclassify snow pixels. Apart from higher detection
accuracy, results of U-shaped networks are finer than those of
FCN-like networks. Further, compared to the baseline network,
the GCANet outperforms the UNet in both accuracy and fine-
ness. We visualize two zoom views marked as blue boxes in
Fig 5. As shown in Fig 6, GCANet obtains slightly finer results
than UNet. Above all, both quantitative and qualitative result
outperforms the compared methods, demonstrating the effect-
iveness of proposed method.

5. CONCLUSION

In order to capture global contextual information of remote sens-
ing sub-scenes, a global context aided semantic segmentation
network named as GCANet is proposed for cloud and cloud
shadow detection in this paper. we add a multi-class classific-
ation branch to a U-shaped network with encoder and decoder
structure. The added branch is built on top of the featuremap
output from the encoder, which is aimed at capture contextual
information by identifying what categories exist in the input
scene. The linear representation learned from this branch is
combined with featuremaps of the decoder at all scales to se-
lectively strengthen class related features or weaken class un-
related features. By explicitly employing global context of the
input scene in such a supervised way, the proposed network

(a) (b)

Figure 6. Zoom views of two sites in cloud detection results of
the SPARCS. Column (a) is the results of UNet; Column (b) is

the result of GCANet.

can achieve better results than its counterpart without the clas-
sification branch and other deep learning methods. Besides,
the multi-class labels of training samples can be directly ob-
tained from semantic segmentation labels, which is easy to ful-
fill. The experiments have demonstrated the effectiveness of the
proposed method.

Though the introduction of global contextual information is in-
tuitive, the improvement on quantitative results is not signific-
ant enough compared to the existed U-shaped network as shown
in our experiments. Future works may lie in two folds. For one
thing, the diversity and labeling quality of image data need to
be improved. For another, more datasets including different re-
mote sensing images, such as sentinel-2 or other high resolution
images, need to be investigated and tested in order to verity the
effectiveness and robustness of the proposed framework.
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