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ABSTRACT: 

 

Land use (LU) is an important information source commonly stored in geospatial databases. Most current work on automatic LU 

classification for updating topographic databases considers only one category level (e.g. residential or agricultural) consisting of a 

small number of classes. However, LU databases frequently contain very detailed information, using a hierarchical object catalogue 

where the number of categories differs depending on the hierarchy level. This paper presents a method for the classification of LU on 

the basis of aerial images that differentiates a fine-grained class structure, exploiting the hierarchical relationship between categories 

at different levels of the class catalogue. Starting from a convolutional neural network (CNN) for classifying the categories of all levels, 

we propose a strategy to simultaneously learn the semantic dependencies between different category levels explicitly. The input to the 

CNN consists of aerial images and derived data as well as land cover information derived from semantic segmentation. Its output is 

the class scores at three different semantic levels, based on which predictions that are consistent with the class hierarchy are made. We 

evaluate our method using two test sites and show how the classification accuracy depends on the semantic category level. While at 

the coarsest level, an overall accuracy in the order of 90% can be achieved, at the finest level, this accuracy is reduced to around 65%. 

Our experiments also show which classes are particularly hard to differentiate. 

 

 

1. INTRODUCTION 

Land use (LU) describes the socio-economic function of a piece 

of land. This information is usually collected in geospatial 

databases, often acquired and maintained by national mapping 

agencies. The objects stored in these databases are typically 

represented by polygons with categories indicating the object’s 

LU. To keep such databases up-to-date, the content can be 

compared with new remote sensing data. If the new data 

contradict the database content for a specific object, the object 

class label in the database needs to be updated. To automate this 

process, a class label related to its LU has to be determined from 

the remote sensing data for every object in the database. 

Typically, this is achieved in a procedure consisting of two steps: 

first, the imagery is used to predict the land cover for each pixel; 

the land cover results and the images are combined in a second 

classification process to determine the LU for every database 

object (Gerke et al., 2008; Helmholtz et al., 2012). In this context, 

supervised classification methods are frequently applied, most 

recently based on Convolutional Neural Networks (CNN) (Zhang 

et al., 2018; Yang et al., 2019), which have been shown to 

outperform other classifiers such as Conditional Random Fields 

(CRF) (Albert et al., 2017).  

 

One problem of existing methods for LU classification is that 

they only differentiate a small number of classes, while the object 

catalogues of LU databases may be much more detailed. For 

instance, in the LU layer of the German cadastre, about 190 

categories are differentiated (AdV, 2008). Clearly, this catalogue 

contains object types that cannot be expected to be differentiated 

from remote sensing data, but of course, the usefulness of an 

automatic approach grows with an increasing number of class 

labels. It is an important fact that many topographic databases 

contain LU information in different semantic levels of 

abstraction. At the coarsest level, only a few broad classes such 

as settlement, traffic or vegetation are differentiated. At the finer 

levels, these classes are hierarchically refined, and the full 

number of different categories is only differentiated at the finest 

level of the class structure. Fig. 1 shows two examples for 

database objects with corresponding imagery and the annotations 

from the first three levels of the object catalogue in (AdV, 2008).  
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Figure 1: Two database objects with images (rescaled) and 

categories in three semantic layers. L: semantic layer 

starting from the coarsest (I) to the finest (III).  

 

Albert et al. (2016) investigated the maximum level of semantic 

resolution that their CRF-based LU classification could achieve. 

They divided the land use categories into two levels, both 

corresponding to mixtures of the three coarsest semantic levels 

according to (AdV, 2008). Starting from a classification of the 

coarse level, they refine one coarse category after the other: in a 

greedy iterative procedure one category is split into the maximum 

set of sub-categories and then sub-categories are merged if the 

results indicate they cannot be separated. As a result, Albert et al. 
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(2016) obtain a class structure consisting of a mixture of 10 

categories from different semantic levels of the object catalogue, 

and conclude that this is the largest set of classes that can be 

separated using their approach. In this paper we take a different 

direction. We propose to predict the LU categories of multiple 

semantic levels simultaneously using a CNN-based approach. In 

this context, we exploit the intrinsic relations between the 

categories at different layers, which leads to hierarchical LU 

classification. In our method, the hierarchical relations are 

explicitly integrated into the CNN for training and inference. To 

achieve our goals, we expand the existing two-step procedure of 

(Yang et al., 2019) to this hierarchical setting, adapting a method 

proposed by Hu et al. (2016) for learning structured inference 

neural networks of natural images by modelling label 

relationships for our purposes. The input consists of high-

resolution aerial imagery, a land cover layer obtained by semantic 

classification and derived data such as a Digital Surface Model 

(DSM) and a Digital Terrain Model (DTM). The scientific 

contribution of this paper can be summarized as follows: 

 

 We expand a CNN-based method for the classification of LU 

to predict LU categories at multiple semantic levels 

simultaneously, sharing the feature extraction part of the 

network and adding independent classification heads; this 

corresponds to a multi-task learning approach, e.g. (Leiva-

Murillo et al., 2013). Furthermore, inspired by (Hu et al., 2016), 

we propose to improve this multi-task method by additional 

connections between the semantic layers so that the new 

method incorporates the semantic relations between the 

different hierarchical levels.  

 Based on the multi-task learning network, we propose two 

additional network variants to guarantee hierarchically 

consistent predictions. One variant starts from the predictions 

of the coarsest level and adapts the predictions in the finer 

levels to be consistent, and the other one works in the opposite 

direction. For training the two variants, two novel objective 

functions are proposed. 

 We conduct an extensive set of experiments to compare these 

network variants, to highlight the benefits of considering the 

relations between the different semantic levels and to 

investigate the limits of the proposed approaches in 

differentiating finer class structures.  

 

In section 2, we give a review of related work. Our approach for 

hierarchical land use classification is presented in section 3. 

Section 4 describes the experimental evaluation of our approach. 

Conclusions and an outlook are given in section 5. 

 

 

2. RELATED WORK 

We start this review with an overview of LU classification 

techniques before discussing hierarchical classification methods.  

 

As pointed out earlier, methods for LU classification usually 

apply a two-step procedure: first, the land cover is determined 

based on the given image data, and then the land cover together 

with image and derived data (e.g. a DSM) serves as input for LU 

classification. Traditionally, hand-crafted features are derived 

from input data. These features may quantify the spatial 

configuration of the land cover elements within a land use object, 

describing the size and shape of the land cover segments 

(Hermosilla et al., 2012). Other features are based on the 

frequency of local spatial arrangements of land cover elements 

within a land use object (Novack and Stilla, 2015), applying the 

adjacency-event matrix (Barnsley & Barr, 1996; Walde et al., 

2014). Supervised classifiers applied in this context include 

Support Vector Machines (Montanges et al., 2015) and Random 

Forests (Albert et al., 2017), the latter also embedded in 

contextual models like Conditional Random Fields (CRF). 

 

Since the success of AlexNet (Krizhevsky et al., 2012), CNN, 

replacing hand-crafted features by a representation learned from 

training data, have been shown to outperform other classifiers. 

They have also been adopted in remote sensing (Zhu et al., 2017). 

In this context, a big challenge for applying CNN for the 

prediction of class labels for LU polygons is the large variation 

of polygon shapes and sizes. To the best of our knowledge the 

first work classifying LU objects from a geospatial database by 

CNN is (Yang et al., 2018). The authors decompose large 

polygons into multiple patches that can be classified by a CNN. 

However, they extract the employed image and land cover data 

inside the polygon and set the areas outside to 0, which leads to 

a loss of context information. Yang et al. (2019) extend this 

approach by constructing a representation of a polygon by a 

binary mask while using image data for the entire window to be 

classified. In this paper, we adapt their basic framework, but 

extend the LU classification by considering class labels at 

different semantic levels. Zhang et al., (2018) proposed a method 

to classify urban land use objects by applying two CNNs. They 

perform image segmentation and then use the segmentation 

results to obtain polygons based on which the inputs for the two 

CNNs are generated. However, they focus only on urban scenes, 

without any consideration on rural areas. Zhang et al., (2019) 

propose a joint deep learning framework for land cover and land 

use classification where they use multi-layer perceptions for land 

cover classification and a CNN for land use classification based 

on Zhang et al. (2018). They differentiate a set of about 10 LU 

classes in their experiments without further investigations 

concerning the semantic resolution that can be achieved.  

 

Albert et al. (2016) propose a method based on CRF to 

investigate the maximum level of semantic resolution that can be 

achieved, applying the greedy refinement strategy outlined 

earlier, but their goal is to define a suitable class structure rather 

than using the hierarchical structure of the object catalogue in a 

systematic way. Considering multiple semantic levels of cate-

gories can result in the prediction of multiple labels per object, 

which can pose a problem. This issue is tackled in (Hua et al., 

2019). The authors propose a method for multi-label 

classification of aerial images by applying a CNN with LSTM 

(Long Short Term Memory) cells. The goal is to predict a set of 

labels for one input image, describing each object type that 

appears in that image. No semantic relations between the labels 

are modelled explicitly. Therefore, the method cannot be directly 

transferred to our problem. Different semantic levels of cate-

gories can also be dealt with as different categories, and the 

intrinsic relation of the different levels could be tackled by multi-

task learning approaches, e.g. (Leiva-Murillo et al., 2013), 

though this seems not to have been done yet. In computer vision, 

many approaches dedicated to the classification of images with 

semantic relations between categories exist. Deng et al. (2014) 

propose the first CNN-based work for classification with 

semantic relations between different class labels. They define a 

HEX (Hierarchy and Exclusion) graph to model different types 

of semantic relations: two labels may have a hierarchical relation; 

they may be exclusive or overlapping. The CNN only has one 

output layer for all classes, but the HEX graph is considered in 

both, training and inference to achieve a consistent classification 

result, e.g. to ensure that an image cannot be classified as 

showing a cat and a specific dog breed at the same time. 

However, this results in a very complex training and inference 

procedure. Guo et al. (2018) propose a CNN-RNN (recurrent 

neural network) strategy to address hierarchical classification. A 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-599-2020 | © Authors 2020. CC BY 4.0 License.

 
600



 

CNN acts as a feature extractor and is trained to predict class 

labels at the coarse semantic level. Then, the CNN features and 

the output of the coarse level are fed into a RNN structure which 

is used to propagate the information from the coarse level to finer 

labels. Nonetheless, information is only predicted from the coarse 

level to the finer labels. Hu et al. (2016) propose a network based 

on a CNN for hierarchical classification in three levels, using a 

bidirectional message passing mechanism from the class scores 

of the coarse category to the class scores of the fine category and 

vice versa. Thus, the class scores of each level are enhanced 

considering information from other levels of the hierarchy. 

However, the message passing is done only between 

neighbouring levels. Though embedded in a completely different 

context, the method proposed in this paper is inspired by Hu et 

al. (2016). However, we argue that for a specific category level, 

all its ancestor levels and descendant levels are helpful for its 

identification. Thus, we adapt the message passing, so that the 

class scores of one level receive messages from all ancestor levels 

and all descendant levels. More importantly, we can guarantee 

consistency of the predictions with the class hierarchy. 

 

 

3. CNN-BASED HIERARCHICAL CLASSIFICATION  

The first input required for our method consists of a LU database 

in which objects are represented by polygons with LU categories 

at multiple semantic levels according to a hierarchical object 

catalogue. Furthermore, a multispectral aerial image (R, G, B, 

NIR), a normalised DSM (nDSM, i.e., the difference between a 

DSM and a DTM) and pixel-wise class scores for land cover from 

a previous classification step are required. In order to produce the 

latter, we use the CNN-based method of Yang et al. (2019), 

which delivers a vector of class scores for every pixel of the input 

image (one entry per land cover class). The input polygon is used 

to generate a binary object mask aligned with the image grid. The 

goal of the proposed method is to predict one class label per 

semantic level for each LU object, extending our previous work 

(Yang et al., 2019). While these labels are known for some of the 

polygons, which can be used for training the CNN, they are to be 

determined for the rest.  

 

In CNN-based LU classification, the large variation of polygons 

in terms of their geometrical extent is a challenge (see examples 

for a very large road and a small residential object in Fig. 1), 

because a CNN requires a fixed input size for the image to be 

classified (256 x 256 pixels in our case). The way in which the 

image patches of that size are prepared is described in section 3.1. 

Section 3.2 outlines the basic CNN structure, introducing a 

multitask learning scenario for LU classification at different 

semantic levels, while Section 3.3 describes several network 

variants that hierarchically interact in training and classification.  

 

3.1 Patch preparation  

The basic approach to prepare the input data is to extract a 

window of 256 x 256 pixels centred at the centre of gravity of the 

object from all data (image and DSM, binary object mask, land 

cover scores) and present it to the CNN. This is unproblematic if 

the polygon size corresponds well to the window size at the 

ground sampling distance (GSD); otherwise the window is either 

dominated by information outside the object (for very small 

objects) or the object does not fit into the window. The method 

we adopt to cope with the latter problem is tiling: we split the 

window enclosing the object into tiles (patches) of the desired 

size and classify all patches having a meaningful overlap with the 

object independently. Afterwards, the results for the individual 

input patches are combined (cf. section 3.3).  

3.2 Baseline CNN architecture 

The basic network architecture we use for LU classification is 

based on the LuNet architecture (Yang et al., 2019). LuNet 

consists of a series of convolutional and pooling layers before 

being split into two branches. The first branch consists of a set of 

convolutional and pooling layers while the second branch (ROI 

location layer) extracts a region of interest from the feature map, 

rescales it and applies convolutions and pooling to that rescaled 

feature map. Before the classification layer, the feature vectors of 

the two branches are concatenated; for more details, we refer the 

reader to (Yang et al., 2019). We keep the entire architecture 

except for the single classification layer, which is replaced by B 

classification layers (one layer per semantic category level). The 

resulting structure is shown in Fig. 2 for B = 3 levels. This 

structure corresponds to a variant of multi-task classification 

(Leiva-Murillo et al., 2013): the predictions of the labels at 

different semantic levels are considered to be different 

classification tasks; the prediction itself is independent, but based 

on a shared (512 dimensional) feature vector extracted from the 

input data. The parameters of all components of the network are 

determined simultaneously. Thus, the CNN learns to produce a 

representation that is meaningful for all tasks.  
 

 
 

Figure 2. Main architecture of LuNet-MT for B = 3 semantic 

levels (level I / coarsest level - level III / finest level). 

 

Integration of the semantic dependencies: Given the object 

catalogue, the relationships between semantic levels are known. 

To add this prior knowledge to the network, we propose to 

expand the network structure so as to consider the semantic 

dependencies. Starting from Fig. 2, we identify each category 

level by a roman numeral from the coarsest level I and increasing 

the number as the semantic resolution is increased. For each 

semantic level l, the classification head consists of one fully 

connected (FC) layer that delivers a vector of un-normalized 

class scores 𝒛𝒍 = ( 𝑧1
𝑙 , … , 𝑧𝑀𝑙

𝑙 )
𝑇

, where 𝐶𝑐
𝑙 =  {𝐶1

𝑙 , … , 𝐶𝑀𝑙

𝑙 } is a 

set of LU classes at category level l and 𝑧𝑐
𝑙  is the class score of an 

image X for class 𝐶𝑐
𝑙. Based on the un-normalized class scores 𝒛𝒍, 

the expansion of the network structure is shown in Fig. 3. There 

are two additional layers per semantic layer, each with a specific 

structure of connections to the previous layer: First, information 

is passed on from coarser levels to finer levels; after that, 

information is passed back from finer levels to coarser levels. The 

expanded network is referred to as LuNet-MT (MT for multi-task) 

in the remainder. 

 

In the first of the two additional layers, we produce a set of 

intermediate class scores 𝒛𝒎𝒊𝒅
𝒍  at each level l, where the class 

score at each level except the first (coarsest) one receives input 

from the same or from all coarser levels in the previous layer of 

the network. For the coarsest level (l = 1), the scores from the 

previous layer are copied, i.e. 𝒛𝒎𝒊𝒅
𝟏 = 𝒛𝟏 . Otherwise, 𝒛𝒎𝒊𝒅

𝒍  is 

computed according to:  
 

𝒛𝒎𝒊𝒅
𝒍 = 𝑊 𝑙 ∙ 𝑓(𝒛𝒍) + ∑ [𝑓(𝑊𝑖

𝑝𝑜𝑠,𝑙
∙ 𝑓(𝒛𝒊)) − 𝑓(𝑊𝑖

𝑛𝑒𝑔,𝑙
∙ 𝑓(𝒛𝒊))] 𝑙−1

𝑖=1 , (1) 
 

where 𝑓() is the ReLU activation function and 𝑊𝑙  as well as 

 𝑊𝑖
𝑝𝑜𝑠,𝑙

,𝑊𝑖
𝑛𝑒𝑔,𝑙

 are the parameters of that layer that are to be 
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learned in training along with the other parameters of the 

network. Here, the superscripts pos and neg specify positive and 

negative semantic relationships. If a category is divided into 

multiple sub-categories at a finer level, these sub-categories are 

positively related to it; a category is negatively related to sub-

categories at a finer level if they are not derived from it. In 

 𝑊𝑖
𝑝𝑜𝑠,𝑙

,𝑊𝑖
𝑛𝑒𝑔,𝑙

, only the parameters with the specific 

relationships are learned and the others are set to 0. 

 

In the second additional layer, we produce the final un-

normalized class scores 𝒛𝒐𝒖𝒕
𝒍  at each level l. Here, the class score 

at each level except the last (finest) one receives input from the 

same or from all finer levels in the previous layer. For the finest 

level (l = B), the scores from the previous layer are copied, i.e. 

𝒛𝒐𝒖𝒕
𝑩 = 𝒛𝒎𝒊𝒅

𝑩 . Otherwise, 𝒛𝒐𝒖𝒕
𝒍  is computed according to:  

 

𝒛𝒐𝒖𝒕
𝒍 = 𝑉𝑙 ∙ 𝑓(𝒛𝒎𝒊𝒅

𝒍 ) + ∑ [𝑓(𝑉𝑗
𝑝𝑜𝑠,𝑙

∙ 𝑓(𝒛𝒎𝒊𝒅
𝒋

)) − 𝑓(𝑉𝑗
𝑛𝑒𝑔,𝑙

∙ 𝑓(𝒛𝒎𝒊𝒅
𝒋

))] 𝐵
𝑗=𝑙+1 , (2) 

 

where 𝑉𝑙 and  𝑉𝑗
𝑝𝑜𝑠,𝑙

, 𝑉𝑗
𝑛𝑒𝑔,𝑙

 are the parameters of that layer and 

𝑓() is the ReLU function. The superscripts pos and neg have the 

same meaning as in eq. 1. Finally, the un-normalized class scores 

are passed through a softmax layer to obtain probabilistic scores, 

i.e., for each layer, 𝒛𝒐𝒖𝒕
𝒍  is used as the argument of the softmax 

function.  
 

 𝑃(𝐶𝑐
𝑙|X) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝒐𝒖𝒕

𝒍 , 𝐶𝑐
𝑙) =  

𝑒𝑥𝑝 (𝑧𝑜𝑢𝑡,𝑐
𝑙 )

∑ 𝑒𝑥𝑝 (𝑧𝑜𝑢𝑡,𝑚
𝑙 )

𝑀𝑙
𝑚=1

,    (3) 

 

Training is based on stochastic mini-batch gradient descent 

(SGD) with weight decay and step learning policy; the objective 

function is the extended focal loss (Yang et al., 2019):  
 

     𝐿 = −
1

𝑁
∙ ∑ [𝑦𝑐

𝑙,𝑘 ∙ (1 − 𝑃 (𝐶𝑐
𝑙
|𝑋𝑘))

𝛾 ∙ 𝑙𝑜𝑔 (𝑃 (𝐶𝑐
𝑙
|𝑋𝑘))]𝑙,𝑐,𝑘 ,       (4) 

 

where 𝑋𝑘  is the kth image in a mini-batch, N is the number of 

images in a mini-batch, and 𝑦𝑐
𝑙,𝑘

 is 1 if the training label of 𝑋𝑘 is 

𝐶𝑐
𝑙  in level l and 0 otherwise. More details about training are 

given in Section 4.1.  
 

 
 

Figure 3. Expanded classification head of LuNet-MT. Please 

refer to the text for the explanation of the variables. The 

leftmost green bars correspond to the green bars 

containing the class scores in Fig. 2. Please note that 

ReLU activation is not shown here. 

 

3.3 Network variants and implementation 

LuNet-MT obtains predictions of multiple semantic levels 

simultaneously while exploring the semantic dependencies 

explicitly. However, the predictions are not guaranteed to be 

consistent with the object catalogue hierarchy. For instance, one 

object predicted as settlement at the coarse level could be 

predicted as road traffic at the fine level. Obviously, these two 

predictions are not hierarchically related. To obtain predictions 

that are consistent with the class hierarchy, two strategies for 

hierarchical training and inference are proposed. The first one is 

referred to as coarse-to-fine (C2F). Using this strategy, we first 

predict the categories at the coarsest level (I) and use them to 

control the predictions at the finer levels. During inference, only 

the un-normalized scores of the sub-categories at a finer level 

which are derived from the predicted category at the coarser level 

are used as input of the softmax function to obtain probabilistic 

scores. During training, the ground truth labels of coarser levels 

are used to select the un-normalized scores at the finer level. The 

second strategy is referred to as fine-to-coarse (F2C). Here, we 

first predict the categories at the finest level (III). Then we select 

the category of which the category at the finest level is a sub-

class as its prediction at the coarser level. An illustration of the 

two approaches is shown in Fig. 4. Note that if the first 

predictions in the C2F approach are wrong, the subsequent 

predictions at the finer levels will be wrong as well. Nonetheless, 

in the F2C approach, there is still chance to obtain right 

predictions at the coarser levels if the first predictions are wrong. 

Relying on the two approaches, two network variants based on 

LuNet-MT are proposed.  
 

 
 

Fig. 4:  Illustration of the C2F and F2C approaches (see main 

text for a description of the two strategies). The lines 

between levels indicate hierarchical relations between 

classes at different semantic levels. a, b are classes at 

level I, the classes at the subsequent levels are sub-

classes of a and b, respectively. 

 

3.3.1 HierLuNet-C2F: this variant realizes the C2F strategy. The 

probabilistic scores at the finer levels are:  
 

𝑃′(𝐶𝑐
𝑙|X) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝒐𝒖𝒕

𝒔𝒖𝒃,𝒍, 𝐶𝑐
𝑙) =  

𝑒𝑥𝑝 (𝑧𝑜𝑢𝑡,𝑐
𝑠𝑢𝑏,𝑙

)

∑ 𝑒𝑥𝑝 (𝑧𝑜𝑢𝑡,𝑚
𝑠𝑢𝑏,𝑙

)
𝑀𝑙
𝑚=1

, 𝑖𝑓 𝑙 > 1, (5) 

 

𝒛𝒐𝒖𝒕
𝒔𝒖𝒃,𝒍

 are the un-normalized scores in level l consistent with the 

coarser level. Together with the class scores 𝑃(𝐶𝑐
1|X)  of the 

coarsest level, these variants of the class scores are plugged into 

eq. 4 for optimization.  

 

3.3.2 HierLuNet-F2C: this variant realizes the F2C strategy. 

First, the probabilistic scores of the finest level (III) are 

determined using eq. 3. For the coarser levels (I and II), softmax 

is not suitable to obtain the probabilistic scores, because the 

classes have to be the ancestors of the class at level III and, 

consequently, the predictions are known. Thus, we apply the 

sigmoid function to the corresponding un-normalized scores to 

generate normalized scores.  
 

�̂�(𝐶𝑐
𝑙|X) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑜𝑢𝑡

𝑐,𝑙 ), 𝑖𝑓 𝑙 < 𝐵,  (6) 
 

During training, the objective function consists of two parts: for 

the finest level, it is the same as eq. 4, referred to as 𝐿𝐼𝐼𝐼, and for 

the coarser levels (I and II, 𝑙 < 𝐵), the objective function is: 
 

𝐿𝐼,𝐼𝐼 = −
1

𝑁
∙

      ∑

{
 
 

 
 𝑦𝑐

𝑙,𝑘 ∙ �̃�𝑐
𝑙,𝑘 ∙ (1 − �̂�(𝐶𝑐

𝑙|𝑋𝑘))
𝛾
∙ 𝑙𝑜𝑔 (�̂�(𝐶𝑐

𝑙|𝑋𝑘)) +

(1 − 𝑦𝑐
𝑙,𝑘 ∙ �̃�𝑐

𝑙,𝑘) ∙ [𝑦𝑐
𝑙,𝑘 ∙ (1 − �̂�(𝐶𝑐

𝑙|𝑋𝑘))
𝛾
∙ 𝑙𝑜𝑔 (�̂�(𝐶𝑐

𝑙|𝑋𝑘)) +

(1 − 𝑦𝑐
𝑙,𝑘) ∙ (�̂�(𝐶𝑐

𝑙|𝑋𝑘))
𝛾
∙ 𝑙𝑜𝑔 (1 − �̂�(𝐶𝑐

𝑙|𝑋𝑘))] }
 
 

 
 

𝑙,𝑐,𝑘 ,  (7) 
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where �̃�𝑐
𝑙,𝑘

 is 1 if the prediction of image 𝑋𝑘.is class 𝐶𝑐
𝑙 in level l 

and 0 otherwise. If the prediction matches the ground truth 

(i.e. 𝑦𝑐
𝑙,𝑘 = �̃�𝑐

𝑙,𝑘 = 1) , the probabilistic score of class 𝐶𝑐
𝑙 is to be 

maximized; otherwise, the probabilistic score of the referenced 

category is to be maximized and the others are to be minimized. 

The sum of 𝐿𝐼𝐼𝐼 + 𝐿𝐼,𝐼𝐼 is used for optimization.  

 

3.3.3 Inference at object level: The inference of the objects 

which are not split during tiling is straightforward by using the 

prediction of the related patches. The inference of objects which 

had to be split (termed as compound objects) differs in the 

different network variants. In variant LuNet-MT, for a compound 

object, the product of the probabilistic class scores of the patches 

in each individual semantic level is computed. Subsequently, the 

product is used for obtaining the predicted label. In variant 

HierLuNet-C2F, for a compound object, the prediction in the 

coarsest level (I) is made by a majority vote of the predictions of 

its patches. To guarantee hierarchical consistency, the predictions 

in the finer levels are sorted in a descending order according to 

their occurrences. Searching the predictions based on the order is 

undertaken and the best one which is a sub-category of the 

prediction in the coarser level is considered as the predicted label. 

Finally, in variant HierLuNet-F2C, for a compound object, the 

prediction of the finest level (III) is taken by majority vote of the 

predictions of the related patches. The prediction procedure of 

the coarser levels is similar to the one in HierLuNet-C2F, but in 

the opposite direction, so that hierarchical consistency is 

guaranteed. 

 

3.3.4 Implementation: all networks are implemented based on 

the tensorflow framework (Abadi et al., 2015). We use a GPU 

(Nvidia TitanX, 12GB) to accelerate training and inference. 

 

 

4. EXPERIMENTS 

4.1 Test Data und Test Setup 

4.1.1. Test Data: We use two German test sites for our 

experiments. The first one is located in Hameln. It covers an area 

of 2 x 6 km2 and shows various urban and rural characteristics. 

The other one is located in Schleswig, covering an area of 6 x 6 

km2 and having similar characteristics as Hameln. For both test 

sites, digital orthophotos (DOP), a DTM, a DSM derived by 

image matching and land use objects from the German 

Authoritative Real Estate Cadastre Information System (ALKIS) 

are available. The DOP are multispectral images (RGB + infrared 

/ IR) with a GSD of 20 cm. We generated a normalised DSM 

(nDSM) by subtracting the DTM from DSM. The reference for 

land use objects was derived from the geospatial database. To 

obtain the hierarchical class structure, we follow the ALKIS 

object catalogue (AdV, 2008). The details of the hierarchical 

class structure along with the number of samples are presented in 

Tab. 1. Note that the class structures for the two test sites are 

slightly different because some classes only occur in one test site. 

In level I, the structures are the same with 4 categories. In level 

II, although there are 15 categories, both test sites only contain 

samples for 14 categories: in Schleswig, there is no sample for 

class railway, whereas in Hameln, there is none for stagnant 

water. In level III, there are 25 categories in Hameln and 27 

categories in Schleswig. In total, there are 2945 land use objects 

in Hameln and 4345 in Schleswig. 

 

4.1.2. Test setup: Each test dataset is split into two blocks for 

cross validation. The block size is 10000 x 15000 pixels (6 km2) 

and 30000 x 15000 pixels (18 km2) for Hameln and Schleswig, 

respectively. In each test run, one block is used for training and 

the other one for testing. In each block about 15% samples from 

all training samples are taken out as validation samples, and the 

rest is for training. We compare all network variants described in 

section 3.3. In all cases, the evaluation is based on the number of 

correctly classified database objects (polygons) and we report the 

average overall accuracy (OA) and F1 scores over both test runs 

of cross validation.  
 

level I level II level III #H #S 

se
tt

le
m

en
t 

residential area 

(residential) 

residential in use 528 803 

extended residential area 

(ext. residential) 
34 61 

industry area (industry) 

factory area (factory)  87 39 

business area (business) 193 158 

energy area ( energy) 54 62 

mixed-used area (mixed) 
mixed-used area (mixed) 9 127 

Forestry - 51 

special area (special) 

special area (special) 135 - 

public usage  - 143 

historic setup  - 13 

recreation area 

(recreation) 

sport & leisure area 

(leisure) 
27 64 

Graveyard 299 365 

tr
a
ff

ic
 

road traffic 

motor-road  491 732 

traffic-guided area (traffic-

guided) 
87 75 

path 

roadway  244 - 

foot / bike path  233 - 

Path - 287 

parking lot (parking) parking lot (parking) 91 76 

railway 

railway  39 - 

railway-guided area 

(rail.guided) 
47 - 

ve
g
et

a
ti

o
n

 

agriculture  

farm land  58 214 

grass land - 427 

garden land  83 13 

fallow land  17 - 

forest 

hardwood  - 117 

Softwood - 37 

hard or softwood 33 - 

hard & softwood 15 134 

grove Grove 51 88 

undeveloped 

Undeveloped 31 - 

moor or swamp - 101 

vegetation free area (non-

veg.) 
- 15 

w
a
te

r 

sy
st

em
 

flowing water (flowing) 
River 19 29 

Creek 40 12 

stagnant water (stagnant) stagnant water (stagnant) - 102 

 

Table 1. Hierarchical class structure. Abbreviations are shown 

in brackets. #H / #S: number of samples in level III for 

Hameln and Schleswig, respectively. “-“ indicates that 

a class does not occur in the respective dataset.  

 

To obtain the land cover input, the FuseEnc network of Yang et 

al. (2019) is applied, where RGB, IR and nDSM data serve are 

used. It was trained like in the original publication, where pixel-

based overall accuracies of 89.1% and 87.3% were reported for 

Hameln and Schleswig, respectively. We differentiated eight 

land cover classes (building, sealed area, bare soil, grass, tree, 

water, car and others), so that the input patches for the networks 

for predicting LU have 14 bands (4 DOP bands, nDSM, binary 

mask, 8 land cover inputs).  

 

For the training of all network variants, the hyper-parameter of 

the focal loss (eq. 2) is set to 𝛾  = 1; the hyper-parameter for 

weight decay is 0.0005. We train all networks for eight epochs 

(an epoch consists of a set of iterations so that in one epoch all 

samples are used for training once. The number of iterations per 

epoch is the number of training samples divided by the mini batch 

size), using a base learning rate of 0.001 and reducing it to 0.0001 

after four epochs. The mini batch size is set to 12. We apply data 

augmentation by vertical and horizontal flipping and by applying 

random rotations in certain intervals, where the interval and, thus, 

the amount of data augmentation depends the size of the 

polygons. When tiling is applied, the interval is 30° for polygons 
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that have to be split because they do not fit into the input window 

of the CNN and 5° for all the other polygons. Consequently, after 

data augmentation, there are 354178 and 479978 patches for 

Hameln and Schleswig, respectively.  

 

4.2 Evaluation  

Tab. 2 presents the results of the land use classification of all 

network variants in the two test sites. In section 4.2.1, we 

compare the results of the three network variants described in 

section 3.3. After that, we take an exemplary closer look at the 

performance of one of the better variants (HierLuNet-F2C) in 

section 4.2.2. 

 

4.2.1 Comparison between the network variants: Comparing 

the network variants described in section 3.3, the multi-task 

learning (LuNet-MT) delivers better results in terms of OA in 

most cases in both test sites. First, we compare the two network 

architectures of multi-task learning (LuNet-MT) and its variant 

with hierarchical training and inference in a coarse-to-fine 

manner (HierLuNet-C2F). In both sites, LuNet-MT performs 

better than HierLuNet-C2F in all evaluation metrics of all 

category levels. In Hameln, compared to LuNet-MT, the drops of 

HierLuNet-C2F in terms of OAs are around 2.5% in level II and 

level III, whereas the OAs of level I are very similar close (-

0.2%). Besides, there are larger drops in terms of average F1 

scores in level II and III, which are around 4%. However, the 

results of HierLuNet-C2F in Schleswig are much worse than the 

ones of LuNet-MT: the drops in terms of OA are 3.5% (I), 4.2% 

(II) and 6.0% (III), whereas the drops in terms of average F1 

score are 5.2% (I), 5.1% (II) and 4.9% (III). Like in Hameln, the 

drops of average F1 scores are a little larger than the ones of OAs. 

Second, we compare LuNet-MT with HierLuNet-F2C, the one 

with hierarchical training and inference in a fine-to-coarse 

manner. In Hameln, the OA of LuNet-MT outperforms the one of 

HierLuNet-F2C up to 1.8% over all levels. The difference in 

terms of average F1 score is much larger (5.4% at level II and 

3.0% at level III). Nonetheless, there is an exception for the mean 

F1 score at level I where there is an increase of 1.2% in 

HierLuNet-F2C. Looking at the results in Schleswig, there is 

another picture in terms of OA: HierLuNet-F2C outperforms 

LuNet-MT by 2.5% at level II and 1.3% at level III, but with a 

drop of 0.4% at level I. There is a drop of average F1 scores with 

1.9% at level I, but at the level II we find an improvement of 0.6% 

whereas at level III the average F1 scores are most similar. In 

conclusion, HierLuNet-F2C performs almost equivalent as 

LuNet-MT in Schleswig. The final comparison is between 

HierLuNet-F2C and HierLuNet-C2F, where in Schleswig the 

former outperforms the latter in terms of OA and average F1 

score over all levels, and the largest difference of OA is the one 

at level III with 7.3%. In Hameln, HierLuNet-F2C delivers 

mostly better results except for the average F1 score at level II 

for which there is a drop of 1.6%. Thus, it seems that the 

hierarchical LU classification benefits more from a fine-to-coarse 

procedure. 

 

Over the three variants, it is clear that the multi-task learning 

(LuNet-MT) delivers better results in most cases. The big 

disadvantage of LuNet-MT, however, lies in the fact that their 

predictions do not guarantee a consistent hierarchical result. For 

instance, in Hameln, 9.1% of the predictions are non-consistent 

with the hierarchy, whereas in Schleswig the amount is 15.1%. 

These predictions are obviously not suitable for further 

processing. On the other hand, the drawback of HierLuNet-C2F 

and HierLuNet-F2C is that if the first prediction is wrong (level 

I in the former and level III in the latter), the successive 

predictions in the finer (coarser) levels would be wrong as well.  

Network 

variant 

Category level 

I II III 

OA 𝐹1̅̅̅̅  OA 𝐹1̅̅̅̅  OA 𝐹1̅̅̅̅  

Hameln 

LuNet-MT 90.8 82.9 73.4 58.0 64.9 44.0 

HierLuNet-C2F 90.6 82.9 71.2 54.2 62.2 40.3 

HierLuNet-F2C 90.5 84.1 71.8 52.6 63.1 41.0 

Schleswig 

LuNet-MT 88.1 83.4 67.6 53.7 62.5 41.5 

HierLuNet-C2F 85.6 78.2 63.2 48.6 56.5 36.6 

HierLuNet-F2C 87.7 81.5 70.1 54.3 63.8 41.3 
 

Table 2: Overview of the results of hierarchical land use 

classification for all network variants (cf. section 3.4.1) 

for Hameln and Schleswig. 𝐹1̅̅̅̅ : average F1 score [%], 

OA: Overall Accuracy [%]. Best scores are shown in 

bold font. 
 

Comparing the results achieved by all variants, the expected 

decrease of classification accuracy when increasing the semantic 

resolution is obvious. At the coarsest level (I), the OA is around 

90% for all variants. It would seem that CNN-based classification 

at this level is better than the one of the CRF-based method (85%) 

reported in (Albert et al., 2016), although the class structures are 

not identical and, thus, a direct comparison is impossible. At the 

intermediate level, we observe a drop in OA of about 15%-20%. 

The fact that the drop in the average F1 scores is even larger 

indicates that a non-negligible number of classes can no longer 

be differentiated. Finally, the performance at the finest level is 

even lower, with a drop in the order of another 5%-10% in OA 

compared to level II. Again, the drop in the average F1 scores is 

larger. There are two main reasons for the problems at the 

semantic level II. First, the number of training samples of 

individual classes is much lower, leading to insufficient 

representation of this category (cf. Tab. 1). Second, in many 

cases, the properties of the objects in shape and composition of 

land cover types are quite similar among classes derived from the 

same ancestor category. For instance, class industry area in level 

II is very similar to residential area with dense buildings and 

sealed streets.  

 

4.2.2 Detailed analysis of HierLuNet-F2C: Tab. 3 presents the 

F1 scores and OA for all classes achieved by this network variant, 

which applies hierarchical training and inference in a fine-to-

coarse manner. We analyse these results level by level.  

 

Level I: In this level, the four categories can be separated easily 

in both Hameln and Schleswig. However, in both cases, average 

F1 scores of less than 80% for the class water system indicate a 

problem with that class. This may partly be due to the fact that 

there are very few samples of that class (2.0% of all objects in 

Hameln and 3.3% in Schleswig). Furthermore, an analysis of the 

confusion matrix shows that about 30% of the samples of water 

system are confused with traffic in both sites. The reason could 

be that both kinds of object are very similar in shape and land 

cover components (e.g. both are surrounded by grass and trees, 

and they may be occluded by the latter), which, in combination 

with the lack of training samples for water, prevents the CNN 

from learning to differentiate these classes.  

 

Level II: the categories of level II are related to level I based on 

the semantic relationships shown in Tab. 1. We analyse the 

results according to the categories of level I.  

 

There are only three level II sub-categories of settlement 

achieving F1 scores over 50% in both data sets (residential area, 

industry area, recreation area). Samples of the other categories 

are very hard to be correctly recognized. The main source of 
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errors is a confusion between mixed-used area and industry area. 

Again, this may be due to their similar appearance and 

compositions of land cover (cf. Fig. 5-a).  

 

Among the sub-categories of traffic, the road traffic and path are 

differentiated most easily (F1 scores > 65% in both sites). 

Parking lot is classified much better in Hameln than in 

Schleswig. It is most frequently confused with road traffic and 

industry area; in Schleswig, about 34% and 39% of the parking 

lot objects are classified as road traffic and industry area, 

respectively. This may be attributed to the similar appearance of 

these objects. Fig. 5-a shows an example for a confusion between 

parking lot and industry area.  

 

Among the sub-categories of vegetation, agriculture is 

particularly well classified (F1 > 70%) in both cases. In 

Schleswig, forest also achieves a high F1 score (84.5%), while 

there are problems in Hameln, where much fewer samples of that 

class are available (48, as opposed to 288 in Schleswig). The 

other sub-categories are not differentiated very well. The largest 

amount of confusion for grove occurs with recreation area and 

forest. These classes mostly consist of low and high vegetation, 

which makes them very similar to grove (cf. Fig. 5-b). The 

category undeveloped is mainly confused with agriculture.  

 

Level III: while in level III, some classes can be differentiated 

very well, e.g. residential in use or motor-road, in general it is 

more difficult to separate them than those of the other levels. 

More than half of the categories achieve F1 scores smaller than 

50%. Again, a major reason is that the number of training 

samples for some class is quite small.  

 

In summary, as the number of categories increases from level to 

level, they are harder to be classified correctly. While at the finer 

levels, the similarity in appearance and land cover composition 

of some categories (e.g. industry area vs. mix-used area; grove 

vs. forest) may be problematic under all circumstances, it would 

seem obvious that in order to achieve satisfactory results, the 

number of training samples has to be increased. Given the fact 

that the number of objects is given by the database, the way to do 

so is to increase the size of the area that is processed.  
 

a 
   

   

b 
 

  

 
  

 

Figure 5: Similar land use objects in category level II with 

polygon masks (binary images) and DOP (RGB). From 

left to right in group a: mixed used area, industry area, 

parking lot; From left to right in group b: recreation 

area, grove, forest. The images are rescaled for 

visualization. 

 

 

5. CONCLUSION 

In this paper, we have presented three CNN-based methods for 

the classification of LU in multiple hierarchal semantic levels. 

The first CNN classifies the categories of all levels 

independently, while the other two apply the hierarchical training 

Hameln Schleswig 

level I level II level III level I level II level III 

category F1 category F1 category F1 category F1 category F1 category F1 

settlement 91.7 

residential 83.8 
residential in use 85.2 

settlement 90.4 

residential 80.0 
residential in use 81.9 

ext. residential 57.9 ext. residential 58.9 

industry 58.5 

factory 25.6 

industry 52.8 

factory 6.0 

business 48.7 business 43.3 

energy 27.6 energy 29.1 

mixed 0 mixed 0 
mixed 26.8 

mix.res 23.5 

special 33.0 special 33.0 forestry 24.6 

recreation 73.4 
leisure 18.6 

special 29.6 
public usage 31.3 

graveyard 73.7 historic setup 0 

traffic 92.5 

road traffic 82.1 
motor-road 86.4 

recreation 62.5 
leisure 38.3 

traffic-guided 53.5 graveyard 58.9 

path 78.1 
guideway 55.2 

traffic 86.1 

road traffic 81.0 
motor-road  84.4 

foot / bike path 50.7 traffic-guided 41.6 

parking 38.7 parking 38.7 path 65.1 path 65.1 

railway 51.6 
railway 45.3 parking 3.7 parking 3.7 

rail. guided 53.5 

vegetation 90.6 

agriculture 89.9 

farm land 84.0 

vegetation 80.0 

agriculture 72.8 

farm land 54.4 grass land 80.8 

garden land 57.8 garden land 34.0 

fallow land 0 

forest 84.5 

hardwood  49.4 

forest 54.1 
hard or softwood 47.8 softwood 53.7 

hard & softwood 0 hard & softwood 22.6 

grove 32.3 grove 32.3 grove 43.9 grove 43.9 

undeveloped 6.0 undeveloped 6.0 
undeveloped 46.9 

moor or swamp 48.4 

water 

system 
72.2 

water 

system 
72.2 

river 0 
non-veg. 15.6 

water 

system 
58.8 

flowing 29.8 
river 29.7 

creek 72.1 
creek 0 

stagnant 63.8 stagnant 63.8 
 

Table 3:  F1 scores (%) of individual category of all levels from HierLuNet-F2C. The F1 scores over 50% are printed in bold font.  
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and inference (coarse to fine vs. fine to coarse) in a manner that 

guarantees hierarchical consistency. All methods require a 

strategy for providing the CNN with an input of an appropriate 

size. The categories at the coarsest level are most easily to be 

discerned: in both test sites, we achieved an OA around 90%. As 

the number of categories is increased, they are harder to be 

classified correctly. The main reasons seem to be that the number 

of training samples per class is heavily reduced and at the finer 

levels, there are more and more categories that have very similar 

appearance. Our experimental results also show that multi-task 

learning without applying hierarchical training and inference 

delivers good results in most cases, yet suffering from severe 

hierarchical inconsistency. For instance, there are 15.1% non-

hierarchical predictions in Schleswig. By introducing fine-to-

coarse hierarchical training and inference into the CNN, the 

hierarchical predictions are guaranteed and the difference in 

terms of OA to the predictions of multi-task learning are less than 

2% over all levels in both test sites, which is quite satisfactory.  

 

In the current results we have observed some overfitting when 

comparing the classification results on the training and the 

validation data set, which we will further investigate in the future 

by simplifying the network (and thus reducing the number of 

parameters to be learnt) and by increasing the amount of training 

data. In our future work, we want to improve the prediction 

procedure so that we obtain the most probable tuple of class 

labels that is consistent with the class hierarchy for every object 

rather than fixing the class label at the coarsest or the finest level 

of the hierarchy as it is done now in the C2F and F2C strategies. 

Second, similarly to (Albert et al., 2016) we will further analyse 

the class structures used for the classification based on the object 

catalogue. Finally, an increase of the number of training samples, 

which requires the availability of true annotations for larger 

areas, is a pre-requisite for reliable results (Kaiser et al., 2017). 

Such samples can be derived automatically from existing maps if 

a strategy to mitigate errors in the class labels of training samples 

(label noise) is developed, e.g. (Maas, et al., 2019). 
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