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ABSTRACT:

Current popular deep neural networks for semantic segmentation are almost supervised and highly rely on a large amount of labeled
data. However, obtaining a large amount of pixel-level labeled data is time-consuming and laborious. In remote sensing area, this
problem is more urgent. To alleviate this problem, we propose a novel semantic segmentation neural network (S4Net) based on
semi-supervised learning by using unlabeled data. Our model can learn from unlabeled data by consistency regularization, which
enforces the consistency of output under different random transforms and perturbations, such as random affine transform. Thus, the
network is trained by the weighted sum of a supervised loss from labeled data and a consistency regularization loss from unlabeled
data. The experiments we conducted on DeepGlobe land cover classification challenge dataset verified that our network can make
use of unlabeled data to obtain precise results of semantic segmentation and achieve competitive performance when compared to

other methods.

1. INTRODUCTION

In remote sensing science and technology, the classification of
remote sensing images is one of the most basic research issues,
and it is the basis of other remote sensing research and applica-
tion. In the past, traditional machine learning methods, such as
support vector machine, were generally used for classification
and recognition of remote sensing images. Traditional machine
learning methods generally combine human prior knowledge
and intuitive experience to design and select several character-
istics and features that are strongly related to the task (LeCun et
al., 2015).

In recent years, deep learning has become mainstream in im-
age processing and convolutional neural networks (CNN) have
achieved great success (LeCun et al., 2015). With a large num-
ber of data sets, the CNN models can be trained by end-to-end
to get a more robust feature representation and higher accuracy.
Although the currently popular methods can obtain better res-
ults, most of the current models are trained by supervised fash-
ion, which needs a large number of labeled data to cooperate
with deep networks for learning parameters (Zhang et al., 2016,
Zhu et al., 2017, Ball et al., 2017). However, collecting accur-
ately labeled data is extremely time-consuming and laborious,
especially accurate pixel-level labeled data. Because labeled
data requires a certain amount of expert knowledge and is diffi-
cult to obtain for security or privacy considerations (Castrejon
et al., 2017). For example, in the field of remote sensing, it
is difficult to obtain high-precision, high-quality surface cover
data. Therefore, for many practical problems and applications,
the lack of resources to create sufficiently large labeled datasets
has limited the widespread application of deep learning techno-
logies.

A potential promising approach to solve this problem is semi-
supervised learning (SSL). Semi-supervised learning is a type
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Figure 1. Example of supervised learning and semi-supervised
learning. The blue and red dots denote labeled samples and the
green dots denote unlabeled samples.

of machine learning technology that lies between supervised
learning and unsupervised learning. It usually uses a small
number of labeled data and a large number of unlabeled data
to train a neural network (Chapelle et al., 2009). It has found
that combining unlabeled data with a small number of labeled
data can significantly improve learning performance. For ex-
ample, see figure 1, more accurate decision boundaries can be
found by using more unlabeled samples. For supervised learn-
ing, obtaining data annotations is costly and time-consuming,
and is difficult to obtain a large amount of labeled data. While
the acquisition of unlabeled data is relatively cheap, so the ap-
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Figure 2. The proposed semi-supervised semantic segmentation framework (S4Net) based on consistency regularization.
The UNet is used here with a shared-weights strategy. For the labeled data part, the input images are fed into the network to get
predicted outputs, then we can compute supervised loss (such as cross entropy loss). On the other hand, for the unlabeled data part, the
input images are augmented and then fed into the network to get two outputs, and their consistency loss is calculated.

plication of semi-supervised learning is more extensive.

To overcome the problem of a large amount of data required
for supervised learning, we proposed a semantic segmentation
network based on semi-supervised learning, named S4Net in
this paper. Specifically, the consistency regularization was in-
troduced to exploit the unlabeled data, which encourages the
pixel-level consistency of output under different random trans-
forms and perturbations. Finally, the network was trained by the
weighted sum of a supervised loss from labeled data and a con-
sistency regularization loss from unlabeled data. We performed
experiments on a public DeepGlobe land cover classification
challenge dataset and verified this method can take advantage
of unlabeled data and achieve improvements in the context of a
small amount of data.

2. RELATED WORK

In this part, the past proposed semi-supervised learning meth-
ods for image classification are reviewed. After this, we will
discuss related semi-supervised learning works.

Semi-supervised learning (SSL) is somewhere between super-
vised and unsupervised learning (Chapelle et al., 2009). It can
be divided into two categories: transductive learning and in-
ductive learning. It is noted that semi-supervised learning has
to rely on some assumptions. The detailed information please
refer to the book review (Chapelle et al., 2009). Next, we will
review semi-supervised learning methods based on deep learn-
ing methods.

2.1 Semi-supervised learning for image classification

One of the most simple methods is Pseudo-labeling (Lee, 2013),
which is widely used in practice, likely because of its simpli-

city and generality. The class which has the maximum prob-
ability was used as the label of samples. The 7-model and
temporal ensembling (Laine, Aila, 2016) proposed a method
based on consistency regularization that takes advantage of the
stochastic and minimizes the difference between the predictions
under different random transforms and perturbations to input
samples (Sajjadi et al., 2016). Different from the 7-model,
Mean Teacher (Tarvainen, Valpola, 2017) used a more stable
predicted output by using an exponential moving average of
network parameters. Instead of using the randomness of the net-
work, Virtual Adversarial Training (VAT) (Miyato et al., 2018)
directly used as target a small perturbation to input which would
most significantly affect the output of the prediction function in-
spired by adversarial training. Instead of adding perturbations
to each single training sample, Smooth Neighbors on Teacher
Graphs (SNTG) (Luo et al., 2018) encouraged neighbors to get
similar predictions while the non-neighbors are pushed apart
from each other. The Co-Training method (Qiao et al., 2018)
can learn multiple neural networks from different views and
use adversarial examples to force differences between differ-
ent views. Inspired by the mixup method (Zhang et al., 2018),
Interpolation Consistency Training (ICT) (Verma et al., 2019)
proposed a semi-supervised learning method by enforcing the
output at an interpolation of unlabeled samples to be consist-
ent with the interpolation of the output at those samples’ out-
puts. Instead of using the class which has the maximum pre-
dicted probability as labels, Deep Label Propagation (Iscen et
al., 2019) used the transductive label propagation method to ob-
tain pseudo labels according to the manifold assumption. The
MixMatch (Berthelot et al., 2019) combined ideas and compon-
ents from the current dominant paradigms for semi-supervised
learning.
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2.2 Semi-supervised learning for semantic segmentation

Though substantial recent progress has been made in develop-
ing semi-supervised algorithms in image classification task for
comparatively small datasets, many of these methods do not
scale readily to the semantic segmentation task of real-world
applications. Some works have been proposed for semi-
supervised semantic segmentation task in recent years. Hong et
al. (Hong et al., 2015) proposed a decoupled network to learn
classification and segmentation networks separately by exploit-
ing unlabelled samples with image-level labels and pixel-wise
annotations. Souly et el. (Souly et al., 2017) proposed to use a
GAN architecture for semi-supervised semantic segmentation.
In this architecture, generated data, unlabeled data, and labeled
data were fed to a discriminator to get class confidences and
generate confidence maps for each class as well as a label for
fake data. Hung et al. (Hung et al., 2018) also proposed an ad-
versarial network for semi-supervised semantic segmentation.
The difference is they design a fully convolutional discrimin-
ator to discover trustworthy regions of unlabeled samples that
facilitate the training process for segmentation. Kalluri et al.
(Kalluri et al., 2019) devised a universal segmentation model,
which can be jointly trained across different datasets with dif-
ferent categories.

3. METHOD

In this section, we first formulate the semi-supervised learn-
ing problem, and then we present our semi-supervised semantic
segmentation framework, denoted as S4Net.

3.1 Overview

In the context of supervised learning, all the input data is labeled
data D, = {(zF,yF)} N4 and the neural network is usually
trained by minimizing a supervised loss term:

Np,

Lo(Xp,Yi30) =Y t(fo(zh),ul) (1

i=1

where the supervised loss /5 is usually formulated as the cross
entropy loss and fy(-) denotes the neural network with para-
meters 6.

However, for the context of semi-supervised learning, one can
access a number of labeled samples Dy, = {(zF, yf)}fV:Ll and
unlabeled samples Dy = {zf }f;”l, where yF € cardinal(C)
and C is the number of classes. Ni and Ny are the number
of labeled and unlabeled samples with N;, < Ny. The goal
of semi-supervised learning is to get a better model by using
all labeled data and unlabeled data than supervised learning.
Thus, the loss function is formulated as the weighted sum of a
supervised loss £, from labeled data and a regularization loss
L., from unlabeled data or both labeled and unlabeled data:

L=Ls+ Ay 2)

where A is a hyperparameter, which quantified the importance
of the regularization loss.

To make use of unlabeled data, the consistency regularization
(Sajjadi et al., 2016, Laine, Aila, 2016, Tarvainen, Valpola,

Algorithm 1: Mini-batch training for semi-supervised se-
mantic segmentation

Data: labeled samples Dy, = {(zF, y%)} 4, unlabeled

samples Dy = {xf’}f\g

Require: neural network with parameters 6

Require: random perturbation function ¢

for ¢ in [ 1, number of epochs] do

for each minibatch B do

get labeled samples z” and unlabeled samples zV
from B

compute supervised loss £, using Equation (1)

get two random perturbations @1, 2

perform random perturbation on unlabeled samples
2 = p1(27), 75 = pa(2")

get two outputs by feeding perturbation samples to
network fo(2Y), fo(25)

perform inverse transform to get two outputs
1 (fo(21), 05 ' (fo(72))

compute semi-supervised consistency
regularization loss £, using Equation (4)

compute total loss £ = Ls + AL,

update € using optimizer, e.g., SGD

end

end

2017) was usually introduced to exploit the potential data man-
ifolds:

Ny
Lu(Xu30) =Y tu(fo (21, f5 (87)) 3)
i=1

where Z; refers to an example x; that is applied to a random
perturbation. In image classification, the random flip, random
crop and random noise are usually used as the random perturb-
ation. The network parameter 0 is either equal to the original
parameter 6 or any other transformation of it, such as the ex-
ponential moving average over the update of the network. The
consistency regularization term £, often uses mean squared er-
ror (squared L2 norm) or Kullback-Leibler divergence, which
encourages the pixel-level consistency of the output under dif-
ferent random transforms and perturbations.

Description Output size
input Hx W
conv, 7x7, 64, stride 2 H/2 x W/2
max pool, 3x3, stride 2 H/4 x W/4
ResBlockx3 H/4 x W/4 encoder
ResBlock x4 H/8 x W/8
ResBlock x 6 H/16 x W/16
ResBlock x3 H/32 x W/32
conv, 3x3, 192 H/32 x W/32
Transposeconv, 4x4, 128
Concat H/16 x W/16
conv, 3x3, 128
Transposeconv, 4x4, 96
Concat H/8 x W/8
conv, 3x3, 96
Transposeconv, 4 x4, 64 decoder
Concat H/4 x W/4
conv, 3x3, 64
Transposeconv, 4 x4, 48
conv, 3x3, 48 H/2 x Wi2
Transposeconv, 4 x4, 32
conv, 3x3, 32 Hx W
conv, 1x1,C

Table 1. U-Net based ResNet50 encoder.
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3.2 Semi-supervised semantic segmentation framework
(S4Net)

Figure 2 shows the proposed semi-supervised semantic seg-
mentation framework. We adopt the UNet (Ronneberger et al.,
2015) with ResNet-50 (He et al., 2016) model pre-trained on
the ImageNet dataset as our segmentation baseline network.
The decoder network uses 3x3 convolutions and strided 4 x4
transposed convolutions to recover the original input size. The
detailed network structure is shown in Table 1. For labeled
samples, we fed them to the network to compute supervised loss
L., such as cross entropy loss. For unlabeled samples =V, one
can get two different transformed samples ¥, #5 by perform-
ing two random perturbations ¢1, 2, namely ¥ = ¢ (zV),
#5 = p2(zY). Here we use the random affine transformation
as the random perturbation Then, feeding them to the network
can get two outputs fo(£Y), fo(2Y). Different from the clas-
sification task, to compute the pixel-level consistency of two
outputs, we have to perform the inverse transform to put every
pixel to the original location. We denote two inverse transforms
of the random perturbations as (pfl, Yy . Thus, we can get in-
verse transformed outputs o7 ! (f5(27)), w5 ' (fo(#5)) and the
semi-supervised consistency regularization loss can compute as
follows:

W(Xu30) ZE

Here we used mean squared error as the consistency regulariza-
tion loss. For the affine transformation, we used the translation
in the range [-0.2, 0.2] factor of both height and width, scal-
ing in the range [0.75, 1.25] and rotation in the range [—15°,
15°]. As mentioned above, the algorithm flow of the proposed
semi-supervised semantic segmentation framework is shown in
Algorithm 1.

Y(fo (1)) .02t (£2(30))) @

4. EXPERIMENTS
4.1 Dataset

To verity our method, we consider using the land cover classi-
fication dataset on DeepGlobe Challenge ! (Demir et al., 2018).
This dataset offers 1,146 high-resolution sub-meter satellite im-
ages and each image has a size of 2448x2448 pixels. The
whole dataset is split into training, validation and test set, each
with 803, 171 and 172 images. The mask images are RGB im-
ages with 7 classes, see figure 3. The unknown class is ignored
in the evaluation stage.

It is worth noting that we only use the training set as the exper-
imental data, and randomly divide 100, 503, and 200 images as
labeled data, unlabeled data, and validation dataset.

4.2 Implementation Details

Our implementation used the PyTorch framework and an
NVIDIA Titan X GPU was used to accelerate training. We
used stochastic gradient descent (SGD) with a mini-batch size
of 6 to train our model, including 4 labeled samples and 2 un-
labeled samples. The weight decay was set to 0.0001 and the
momentum was set to 0.9. Cosine annealing strategy was used
as the learning rate policy. The initial learning rate started from
0.01 and the models were trained for a total of 100,000 steps.

Lhttps://competitions.codalab.org/competitions/18468

Unknown  Agriculture Forest

Rangeland Urban Barren Water

Figure 3. Some examples of land cover classification dataset on

DeepGlobe Challenge.
Mean IoU
Hung et al. (Hung et al., 2018) 55.1
Baseline 62.1
Fully supervised 66.8
S4Net(Ours) 65.2

Table 2. The results on validation dataset.

For the weight of semi-supervised consistency regularization
loss component A, we used a sigmoid-shaped ramp-up curve
function e >~ in the first 80,000 steps. The maximum of
A is 2.0. For the data augmentation strategy, we used the ran-
dom horizontal and vertical flip. And finally, the crop size is
512x512.

For evaluation, the mean intersection over union (mloU) is cal-
culated as the evaluation metric. The IoU is defined as the size
of the intersection divided by the size of the union of two sets.

Ry N Ryl _
Ry U Ryl

‘Rg me|

IoU =
|Rg| + | Rp| — [Rg N Ry

(&)

where Ry and R, are the set of label pixels and the set of pre-
diction pixels. N and U denote the intersection and union oper-
ations, respectively. | - | denotes the number of pixels in the set.
The mloU can be obtained by averaging the per-class IoU.

4.3 Experimental Results

To evaluate our method, we trained UNet in a supervised way as
the baseline. And we also compared with Hung et al.’s (Hung et
al., 2018) method, in which they used a generative adversarial
network to determine the confidence maps of unlabeled data
output. The experimental results were shown in Table 2. As we
can see, the baseline method can achieve 62.1 mloU. However,
Hung et al.’s method got a worse result. We suspected that the
reason is that the training process is unstable for the generat-
ive adversarial network when the number of unlabeled data is
much larger than that of labeled data. We also trained UNet
both on labeled data and unlabeled data to get the upper bound
of semi-supervised learning and achieved 66.8 mloU. The ex-
perimental result showed that our method can achieve 4.7 mloU
improvement compared with the baseline method.

The detailed per-class performance of our method and other
methods on the validation dataset were presented in Table 3.
Similarly, Hung et al.’s method got worse results, especially
forest land, rangeland. We find that our semi-supervised method
outperforms supervised baseline methods by a significant mar-
gin, for example getting 4.22% and 23.92% improvement for
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Figure 4. The results of the baseline method and our method.

forest land and rangeland. For barren land and water class, We also visualized some results of the validation dataset for
our method can get 57.97 and 81.10 mloU and achieve better qualitative comparison, as illustrated in Figure 4. As we can
performance compared with fully supervised results. Thus, we see, our semi-supervised method can do better for details than
believe that our proposed method takes advantage of unlabeled the baseline method. And our semi-supervised method can
data. achieve better integrity and correctness. For example, our
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Agriculture Tand | Forest land | Rangeland | Urban land | Barren Iand | Water

Hung et al. (Hung et al., 2018) 80.80 53.66 12.97 69.57 45.51 67.95
Baseline 84.54 63.72 23.16 73.29 51.22 76.95

Fully supervised 87.10 72.63 32.95 77.00 51.69 79.35
S4Net(Ours) 83.85 66.41 28.70 73.35 57.97 81.10

Table 3. The detailed per-class performance of our method and other methods.
The bold font means the performance of our method is lager than the baseline method and Hung et al.’s method.

obtain considerable results.

We also observed that when the

65

64

mioU

62

61

0.2 2 10 20 100
A

Figure 5. The results of different choices for A based on mloU
on validation dataset.

method can get a better result for the fourth image, where the
clouds in the image are correctly classified.

4.4 Hyperparameter analysis

In this section, the weight of semi-supervised consistency reg-
ularization loss A will be analyzed. Since it is not possible to
try all possible values, based on previous literature (Laine, Aila,
2016, Verma et al., 2019), we used five different A choices here:
0.2, 2, 10, 20 and 100. The implementation detail and setting
are same as the previous experiments. We evaluate the results
of different A choices based on mloU on the validation dataset
and the experimental results are shown in Figure 5. As shown
in Figure 5, the reported result significantly more than the other
four values when the weight value equal to 2.0. Thus, we use
2.0 as the default weight of semi-supervised consistency regu-
larization loss.

4.5 Evaluation robustness of the proposed method

Number of Iabeled data
20 50 100
Baseline 51.52+£3.47 59.29£3.43 63.51+£0.97
S4Net(Ours) | 53.47+£2.82 61.70£4.32 66.42+1.75

Table 4. The results on validation dataset using three different
number of labeled data.

To evaluate the robustness of the proposed method, we con-
sidered three different numbers of labeled samples. In detail,
same as previous experiments, 200 images from 803 were se-
lected as the validation set according, and the data containing
labeled and unlabeled data were divided from the remaining
603 images. Then we run three times to calculate the mean and
standard deviation by using different random seed.

The results obtained are recorded in Table 4. Under three dif-
ferent settings, the proposed method is superior to the baseline
method. Even in the case where the number of labeled data is
very small, that is, the training dataset containing 20 labeled
data (the rest are unlabeled data), the proposed method can still

number of labeled data was reduced from 50 to 20, there was a
larger decrease in accuracy. We attribute this to the fact that the
network cannot get enough valid and correct signals from the
training data species when there is a small number of labeled
data. However, we can mitigate this problem by utilizing large
amounts of unlabeled data through semi-supervised learning.

5. CONCLUSION

In this work, a novel semi-supervised semantic segmentation
framework (S4Net) was proposed via enforcing consistency reg-
ularization for remote sensing images. The proposed method
can make use of unlabeled data to improve performance by en-
couraging the pixel-level consistency of output under different
random transforms and perturbations. The experiments show
that this method is promising and can bring higher accuracy
when there are fewer labeled samples. Especially in remote
sensing application scenarios, such as pan-sharpening (Zhang
et al., 2019a) and super-resolution (Zhang et al., 2019b), where
accurately labeled data is difficult to obtain, semi-supervised
learning can play a greater role.

In the future, we will continue working for semi-supervised to
make use of unlabeled data and future research should consider
more diverse transformations or perturbations. For example,
we can introduce adversarial perturbation to augment training
samples.
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