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ABSTRACT:

Ship detection plays an important role in military and civil fields. Despite it has been studied for decays, ship detection in remote
sensing images is still a challenging topic. In this work, we come up with a novel ship detection framework based on the keypoint
extraction technique. We use a convolutional neural network to detect ship keypoints and then cluster the keypoints into groups,
where each group is composed of keypoints belonging to the same ship. The choice of the keypoints is specifically considered to
derive an effective ship representation. One keypoint is located at the center of the ship and the rest four keypoints are located at
the head, the tail, the midpoint of the left side and the midpoint of the right side, respectively. Since these keypoints are distributed
in a diamond, we name our network DiamondNet. In addition, a corresponding clustering algorithm based on the geometric
characteristics of the ships is proposed to cluster keypoints into groups. We demonstrate that our method provides a more flexible
and effective way to represent ships than the popular anchor-based methods, since either the rectangular bounding box or the
rotated bounding box of each ship instance can be easily derived from the ship keypoints. Experiments on two datasets reveal that
our DiamondNet reaches the state-of-the-art results.

1. INTRODUCTION

Ship detection in remote sensing images has played an impor-
tant role in military and civil fields. It can not only help to
supervise the fishery, but also facilitate the protection of mar-
itime traffic (Zhu et al., 2010; Corbane et al., 2010). The re-
search on ship detection has been extensively studied for sev-
eral decades (Zhu et al., 2010; Yang et al., 2013), but it is still
a challenging topic. Thanks to the rapid development of convo-
lutional neural networks (CNNs) (Krizhevsky et al., 2012; He
et al., 2016), it has been possible to achieve the accurate local-
ization of ships in remote sensing images (Yang et al., 2018;
Feng et al., 2019; Zhang et al., 2016; Fu et al., 2020; Wang
et al., 2019) In this paper, we achieve the ship detection based
on the keypoint extraction technique (Newell et al., 2016; Cao
et al., 2017). Thereby, the detected keypoints and the derived
bounding boxes are shown in Figure 1.

The mainstream of the ship detection methods (Jiang et al.,
2017; Feng et al., 2019; Yang et al., 2018) or the common ob-
ject detection methods (Girshick, 2015; Ren et al., 2015; Liu et
al., 2016) are based on the anchor mechanism. These methods
highly depend on a series of anchor boxes as the reference and
require a set of complicated and heuristic rules to match the an-
chor boxes and the corresponding objects (Ren et al., 2015; Lin
et al., 2017a). The design of the anchor boxes has to be care-
fully considered and tuned through experiments. To derive a
better detection result, the two-stage detectors (Ren et al., 2015;
Lin et al., 2017a) firstly use a Region Proposal Network (RPN)
(Ren et al., 2015) to compute a series of class-agnostic poten-
tial bounding boxes. Afterwards, a category prediction and a
finer location regression process has to be further made (Ren et
al., 2015). Instead, the one-stage detectors (Zhang et al., 2016)
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Figure 1. An example of the five keypoints of a ship and the
derived ship detection results. (a) The definition of the ship

keypoints: one point located at the center of the ship and four
other points located at the head, the tail, the midpoint of the left

side and the midpoint of the right side, respectively. (b) The
regular rectangular bounding box derived from the keypoints.

(c) The rotated bounding box derived from the keypoints.

are proposed to combine the two mentioned stages. However,
the performance is not competitive to the two-stage detectors.
In addition, these anchor-based methods (Ren et al., 2015; Liu
et al., 2016; Lin et al., 2017a) usually derive the regular rect-
angular bounding boxes as presented in Figure 1(b), while a
regular bounding box cannot represent a ship accurately as it
usually contains a large portion of background pixels. Despite
that some other anchor-based methods are proposed (Yang et
al., 2018; Feng et al., 2019) to derive the rotated bounding boxes
(as shown in Figure 1(c)), they require extra complicated oper-
ators. Therefore, the complexity and the inherent drawbacks of
the anchor-based methods cannot be solved simultaneously.

In this work, we propose a simple yet effective ship detection
framework based on the keypoint extraction technique (Newell
et al., 2016; Cao et al., 2017), which simultaneously reduces
the complexity and overcomes the inherent drawbacks of the
anchor-based methods. On the one hand, compared with the
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(a) (b) (c)

Figure 2. Three different keypoint definition strategies. (a) Two
keypoints are located at the top-left corner and the bottom-right
corner of the bounding box of an object. (b) Four extreme points
are selected as the keypoints. (c) We define five keypoints: the
center point and four other points located at the head, the tail,
the midpoint of the left side and the midpint of the right side,

respectively.

anchor-based methods, the convolutional neural network used
for the keypoint extraction can be quite simple. Both the com-
plicated match process (Ren et al., 2015; Lin et al., 2017a) and
the RPN (Ren et al., 2015) are not necessary anymore. On the
other hand, the keypoints provide a more flexible way to repre-
sent ships since the keypoints can further derive the regular rect-
angular bounding boxes (as shown in Figure 1(b)) and the ro-
tated bounding boxes (as shown in Figure 1(c)). In this regard,
the keypoints can effectively and accurately represent ships and
our method based on keypoint extraction inherently overcome
the drawbacks of the anchor-based methods.

We note that we are not the first to apply keypoint extraction
to the object detection task, but to the best of our knowledge,
we are the first to apply the idea to ship detection. Further-
more, our method is specifically designed for the ship detection
task and different from the previous works (Law, Deng; Zhou
et al., 2019; Duan et al., 2019) in three aspects: (1) the key-
point definition, (2) the keypoint learning and (3) the clustering
algorithm.

The keypoint definition rules are different among the current
methods (Law, Deng; Duan et al., 2019; Zhou et al., 2019). Cor-
nerNet (Law, Deng) chooses the top-left corner and the bottom-
right corner of an object as the two keypoints. With these two
keypoints, the regular rectangular bounding box can be easily
induced (as can be seen in Figure 2(a)). However, these two
keypoints are usually located outside the object, which may fail
to represent the appearance features of the object and increase
the difficulty of the extraction of keypoints. To address this, a
novel corner pooling (Law, Deng) operator is proposed. Alter-
natively, ExtremeNet (Zhou et al., 2019) chooses four extreme
points as the keypoints (as can be seen in Figure 2(b)). How-
ever, both these two kinds of selected keypoints are aligned with
the image sides while the spatial positions of the keypoints rel-
ative to the objects are not fixed. Instead, we use five keypoints
whose positions are fixed relative to the ships and we consider
this way a better feature representaion for the ships. Specif-
ically, we define the five keypoints as one center point of the
ships and four other points located at the head, the tail, the mid-
point of the left side and the midpoint of the right side, respec-
tively (as can be seen in Figure 2(c)).

The definition of the keypoints determines the way how con-
volutional neural networks learn keypoints. An intuitive idea
is to assign one kind of keypoints to a heatmap (Law, Deng;
Duan et al., 2019; Zhou et al., 2019). For example, CornerNet
(Law, Deng) predicts the top-left corners of all instances of one
category in one heatmap and predicts the bottom-right corners
in another heatmap. In this work, we consider the symmetrical

geometry structure of ships and it would be difficult to distin-
guish between the midpoints of the left side and the right side
as presented in Figure 2(c). Therefore, we use one heatmap for
the prediction of the center point of the ship, one heatmap for
the two keypoints located at the ship head and at the tail, and
one heatmap for the two keypoints located at the midpoints of
the left side and the right side.

With the keypoints extracted from the network, the last step
towards to the ship instances is clustering the extracted key-
points into groups, where the keypoints in one group are sup-
posed to belong to the same instance. CornerNet (Law, Deng)
and CenterNet (Duan et al., 2019) predict a associative embed-
ding vector (Newell et al., 2017) for each keypoint and then
cluster keypoints based on the distance of the vectors. These
methods require the network to output the new association em-
bedding maps, which results in more learnable weights. Ex-
tremeNet (Zhou et al., 2019) uses a brute force manner to enu-
merate all the possible cases. Instead, we propose a simple ship-
customized clustering algorithm to derive the ship instances
from the learned keypoints just based on the geometrical char-
acteristics of the ships.

After briefly describing the related work in Section 2, we intro-
duce our methodology for the ship detection in detail in Sec-
tion 3. To demonstrate the performance of our method, a set
of experiments and corresponding analysis on two datasets are
prensented in Section 4. Finally, we provide the conclusions in
Section 5.

2. RELATED WORK

At present, the mainstream object detection methods can be cat-
egorized into the two-stage methods and the one-stage methods.
The two-stage methods first generate proposed regions, which
are assumed to contain objects, and then make the object detec-
tion task through a classification and regression process from
the proposed regions. Many reseaches focus on the first stage.
In the early days, the independent region proposal algorithms
are applied to generate regions (Girshick et al., 2014; Girshick,
2015). Later, the Region Proposal Network (RPN) (Ren et al.,
2015) takes the place of the independent region proposal algo-
rithms, which accelerates the speed through the feature sharing
between the region proposal task and the object detection task
and improves the accuracy via the altenative fine-tuning for the
two tasks. In order to have a good performance for the multi-
scale objects, the Feature Pyramid Network (FPN) (Lin et al.,
2017a) fuses the intermedia features, and makes the detection
based on the features of multiple scales instead of just based on
the last features. Instead, the one-stage methods combine the
region proposal task and the object detection task into one sin-
gle stage (Liu et al., 2016), resulting in a higher inference speed
but at the cost of reducing the accuracy.

The keypoint extraction is widely applied in human pose es-
timation and object component recognition (Zhu et al., 2017;
Newell et al., 2016). These tasks estimate the pose of the ob-
ject by detecting the key parts like the joints of human bodies
or the corners of chairs. There are two main ways to implement
these tasks: the top-down methods and the bottom-up methods.
The top-down methods divide the task into two parts: object
detection and keypoint extraction (Guler et al., 2018). On the
contrary, the bottom-up method first extracts the keypoints and
then clusters the keypoints into groups so as to find the key-
points belonging to a single object (Cao et al., 2017). It can be

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-625-2020 | © Authors 2020. CC BY 4.0 License.

 
626



Clustering Method

Encoder-decoder

Keypoints Extraction

Figure 3. The complete flow of our method. The input image is first fed into an encoder-decoder network to extract keypoints. Then
the keypoints are clustered into groups, where each group represent a single ship instance. Finally, both the regular rectangular

bounding box and the rotated bounding box can be obtained by a simple transform method.

seen that keypoint extraction and object detection are inextrica-
bly linked.

In recent years, the keypoint extraction has been transferred to
the field of object detection (Law, Deng; Zhou et al., 2019). The
object detection task is divided into two steps: keypoint extrac-
tion and keypoint clustering. The keypoints, which can repre-
sent the position of an object, are extracted through networks.
CornerNet (Law, Deng) localizes the object by detecting the
top-left corner and the bottom-right corner and then clusters the
keypoints based on the associative embedding vector dereived
from the network. Instead, ExtremeNet (Zhou et al., 2019) ex-
tends the keypoints to the extreme points of the top side, the bot-
tom side, the left side and the right side of an object respectively
to get a more accurate object representation. The correspond-
ing clustering algorithm is based on the geometric relationship
of the relative position of the points.

Currently, ship detection methods are still dominated by the an-
chor mechanism (Yang et al., 2018; Zhang et al., 2016). To
fit the high aspect ratio of ships, a series of specifically de-
signed anchor boxes are preset (Yang et al., 2018). Further-
more, a Dense Feature Pyramid Network (DFPN) is put for-
ward to build the high-level semantic feature maps across all
scales and a rotated anchor box strategy is designed to achieve
the rotated bounding boxes (Yang et al., 2018). Besides, some
researches focus on the localization of the ship proposals by
the saliency detection methods (Zhang et al., 2016), which are
dedicated to matching the unique characteristics of ship. After-
wards, these proposals are fed into a trained CNN for a robust
and efficient detection. Some other improvements are made in
the classification stage by adding the inclined box regression
in the classifier branch, and using the inclined Non-Maximum
Suppression (NMS) algorithm to get the detection results in the
form of rotated bounding boxes (Jiang et al., 2017). Instead of
detecting ships based on anchors, we achieve the ship detection
task through extracting and clustering the keypoints of ships in
a diamond.

3. METHODS

In this section, the keypoint selection method is introduced in
Section 3.1. Then we present how to extract the keypoints from

the convolutional neural networks in Section 3.2 and the cor-
repoinding cluster algorithm is presented in Section 3.3. As it
is quite intuitive and easy to generate bounding boxes from the
keypoints, the method to derive the regular rectangular bound-
ing box and the rotated bounding box are not introduced in this
work. The complete flow of our method is shown in Figure 3.

3.1 Keypoint Selection

The selection of keypoints is essential for the ship detection
task. We define the ship keypoints out of the considerations in
two aspects. Firstly, the keypoints must best represent a ship. In
this regard, the keypoints should lie in a ship and be irrelevant
to the background. Therefore, the corners as described in Fig-
ure 2(a) do not meet with this condition. Secondly, the position
of the keypoints relative to the ships must be fixed and be inde-
pendent of the position and the pose of the ships in an image.
In this regard, the extreme points presented in Figure 2(b) do
not meet with the requirement. We define the keypoints as pre-
sented in Figure 2(c). There are five keypoints in our definition,
including one center point and four other points located at the
head, the tail, the midpoint of the left side and the midpiont of
the right side, respectively. All these keypoints lie in the ships
and the positions are fixed relative to the ships.

3.2 Keypoint Extraction

To achieve the keypoint extraction, we simply regard it as a
pixel-wise classification problem and categorize all the pixels
into four types. One type represents the center point, one type
represents the midpoints of the left side and the right side, one
type represents the head and the tail, and the rest type repre-
sents the non-keypoint pixels. The midpoints of the left side
and the right side are classified as the same type since in many
cases the ships have a symmetrical structure and thus it is diffi-
cult to distinguish between the left side and the right side. The
head and the tail are classified as the same type, despite they
are distinguishable in most cases. The qualitative experiments
in Section 4.3 reveal that this strategy is effective and derives a
better keypoint extraction result.

To generate the heatmaps for keypoints, our DiamondNet uses a
fully convolutional encoder-decorder structure as the most key-
point extraction researches (Zhou et al., 2019; Newell et al.,
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2016). We use ResNet-34 (He et al., 2016) as the encoder to ex-
tract the features of input images, whose output stride is 32. In
the decoder, we choose three groups of transposed convolution
with a stride of 2, and each transposed convolution is followed
by a deformable convolution (Dai et al., 2017) to have a more
flexible feature recovery. After that, the feature maps derived
from the encoder are increased by 8 times, resulting in the final
feature maps with an output stride of 4.

Suppose that the input image I ∈ NW×H×3, and the output
keypoint heatmaps are categoried into three groups P̂c, P̂w, and
P̂l, where P̂c refers to the heatmap predicting the center of a
ship, P̂w refers to the heatmap predicting the midpoint of the
left and right side of a ship, and P̂l refers to the heatmap pre-
dicting the head and tail of a ship. Each heatmap has the shape
of H

S
× W

S
pixels, where S refers to the output stride (S = 4

in our network). Each pixel value in heatmaps represents the
confidence of being a keypoint in that position.

For each ground truth map, we first resize it to the shape of
H
S
× W

S
pixels for an accurate match with the network output.

Then we partition the keypoints into three groups and com-
pute the blurred heatmaps Pxy ∈ [0, 1] with a Gaussion filter
K(x, y) = exp(−x

2+y2

2σ2 ), where σ is the standard deviation
adapted according to the object size (Law, Deng). The training
objective of the keypoint extraction is the sum of three adapted
focal loss (Lin et al., 2017b):

Lkp = γ1Lw + γ2Ll + Lc, (1)

where Lc, Lw and Ll represent the keypoint extraction objec-
tives of P̂c, P̂w, and P̂l, respectively. We set γ1 = γ2 = 2
to ensure the equivalent learning effect of these five keypoints.
The definitions of Lc, Lw and Ll are the same as presented as
follows,

L =− 1

N

∑
x,y

[Pxy(1− P̂xy)α log P̂xy

+ (1− Pxy)β(P̂xy)α log(1− P̂xy)],
(2)

where α and β are hyper-parameters of the focal loss (we set
α = 2 and β = 4), and N is the number of ships per image.

3.3 Clustering Algorithm

Based on the derived heatmaps from the network, we first
choose the keypoints whose confidences are greater than or
equal to the 3 × 3 neighbors. Then we pick up the top 100
keypoints for each heatmap with the highest confidences from
the selected keypoints. We use three sets Sc, Sw and Sl to
represent the collection of the selected keypoints in the three
heatmaps P̂c, P̂w, and P̂l, respectively. Each keypoint in the
sets is represented by a triplet (x, y, f), where (x, y) refers to
the keypoint coordinate in the image and f refers to the confi-
dence. The coordinate (x, y) can be mapped to the input image
through multiplying x and y by the output stride S. For the
set Sc, we remove the keypoints whose confidences are under
a specific threshold T (T = 0.56 in this paper, which is tuned
through experiments). The rest keypoints in Sc are regarded as
the center points of the ship candidates. Then we design Algo-
rithm 1 Side Keypoint Clustering Algorithm to cluster the points
in Sc and Sw into groups. In our experiments, we use T = 0.3
and δ = 8 in the algorithms.

The triplets representing the center keypoint, the left-side key-
point and the right-side keypoint of a ship can be derived from

Algorithm 1 Side Keypoint Clustering Algorithm.
Require: the selected keypoint sets Sc and Sw
Require: candidates = []
Require: distance deviation δ
Require: confidence threshold T

1: remove the points in Sw whose confidences are under T
2: for each point pci ∈ Sc do
3: for each point pwj ∈ Sw do
4: compute the distance dij =‖ pwj − pci ‖2
5: end for
6: rank the elements in Sw according to the distance dij in

an increasing order
7: define the jth element in Sw as pwj
8: for j = 2 to count(Sw) do
9: if ‖ pw1 + pwj − 2pci ‖2< δ then

10: add a triplet (pci , pw1 , pwj ) to candidates
11: break
12: end if
13: end for
14: end for

Algorithm 2 End Keypoint Clustering Algorithm.
Require: the candidates
Require: the selected keypoint sets Sl
Require: ships = []
Require: distance deviation δ
Require: confidence threshold T

1: remove the points in Sl whose confidences are under T
2: for each triplet (pci , pw1

i , pw2
i ) in the candidates do

3: for each point plj ∈ Sl do
4: compute the distance dw1

ij =‖ plj − pw1
i ‖2

5: compute the distance dw2
ij =‖ plj − pw2

i ‖2
6: compute the new distance dwlij = λ1(d

w1
ij + dw2

ij ) +

λ2|dw1
ij − dw2

ij |
7: end for
8: rank the elements in Sl according to the distance dwlij in

an increasing order
9: define the jth element in Sl as plj

10: for j = 2 to count(Sl) do
11: if ‖ pl1 + plj − 2pci ‖2< δ then
12: add a quintuplet (pci , pw1

i , pw2
i , pl1, p

l
j) to ships

13: break
14: end if
15: end for
16: end for

our Side Keypoint Clustering Algorithm. The following step is
the determination of the head keypoints and the tail keypoints
from the set Sl. Correspondingly, we come up with Algorithm
2 End Keypoint Clustering Algorithm to cluster the keypoints
in Sl into the ship instance candidates. In this algorithm, we
replace the Euclidean distance with a new distance (Line 6 in
the algorithm). The first part ensures the distance between the
candidate point and the two keypoints on the sides as small
as possible. The second part is used to maximally guarantee
the candidate points located at the vertical bisector of the two
points on the two sides. Considering the different contribution
of these two parts, we introduce two weighted factors λ1 and
λ2 to balance the contribution of these two parts (λ1 + λ2 = 1
for normalization). The determination of the values of λ1 and
λ2 will be discussed through experiments in Section 4.3.
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4. EXPERIMENTS

4.1 Datasets

We evaluate the performance of our method on two ship de-
tection datasets, whose images are collected from the Google
Earth. The scenes cover ports and sea surfaces. We name
the two datasets as Dataset A and Dataset B for convenience.
Dataset A contains 1010 images of 600 × 600 pixels and
900 × 900 pixels and 1124 ship instances. Dataset B contains
2938 images of 900× 900 pixels and 5430 ship instances. The
distributions of the length and the width of the ships on the two
datasets are prensented in Figure 4. We note that Dataset A have
a higher aspect ratio (the ratio of height and width) and a lower
aspect ratio variance than Dataset B in average. We partition
the two datasets into a training set and a test set by a ratio of
4 : 1, respectively.

Figure 4. The distributions of the ship length and width on
Dataset A and Dataset B, respectively. The horizontal axises

represent the length and the height of the ships and the vertical
axises represent the number of ship instances.

4.2 Experiments and Results

Our implementations are based on the PyTorch (Paszke et al.,
2017) deep learning framework. The networks are trained on a
computer equipped with a NVIDIA Geforce 1050Ti GPU.

In the training phase, we resize the images in the training set
to 512 × 512 pixels and therefore the output heatmaps are
128 × 128 pixels. In order to alleviate overfitting, we add the
data argumentation methods including the random horizontal
flip and the color jitter. We use Adam (Kingma, Ba) as the opti-
mizer for 70 epoches. The initial learning rate is 1.25e− 4, and
decays by a half at the 30th and 45th epoch, respectively. Dur-
ing the test phase, we use the original images from the datasets
without resizing. The Average Precision (AP) proposed in Pas-
cal VOC challenge (Everingham et al., 2010) are adopted as the
evaluation metric of our experiments.

We perform our method on the two ship detection datasets and
derive the results in the forms of both the regular rectangular

(a) (b)

(c) (d)

Figure 5. Qualitative ship detection results of our method in the
forms of the rotated bounding boxes (a and c) and the regular

rectangular bounding boxes (b and d). The scenes include ports
(a and b) and sea surfaces (c and d). We note that the small ships

are not taken into consideration on the two datasets.

bounding boxes and the rotated bounding boxes. The quan-
titative results are presented in Table 1. The AP metrics in the
form of the regular bounding box reach 90.9% on Dataset A and
89.7% on Dataset B respectively, outperforming the other state-
of-the-art methods. The AP metrics in the form of the rotated
bounding box reach 90.6% on Dataset A and 89.2% on Dataset
B respectively. Our method outpforms RSCNN (Jiang et al.,
2017) on Dataset A by a margin of 1.4% and performs com-
petitively on Dataset B (a 0.1% gap). We note that our method
has the least number of learnable parameters (281.6 MB) and
computation cost (27.19 GFLOPs). In addition, it runs at 9.62
frames per second on a NVIDIA GeForce 1050Ti GPU, which
is faster than the other methods.

The qualitative results are presented in Figure 5. It can be seen
that the rotated bounding box can better represent a ship than
the regular rectangular bounding box as the rotated bounding
boxes can bound the ships tighter and contain less background.
Specifically, when the ships are lying closely, the bounding
boxes of the neighbouring ships are highly overlapped and one
bounding box would contain the other ships nearby. More qual-
itative results in the form of the roated bounding box derived
from our method can be seen in Figure 6.

4.3 Ablation Studies

Keypoint learning and heatmap assignment: We define the
keypoints as the center of the ship, the tail, the head, the mid-
point of the left side and the midpoint of the right side as pre-
sented in Figure 1. The tail and the head are classified as the
same type of keypoints and therefore one heatmap is assigned
to extract the two keypoints. In the same way, the midpoints of
the left side and right side are classified as the same type and
therefore they are assigned with the same heatmap. The cen-
ter point of the ship is assigned with a separate heatmap. We
make this decision out of the consideration of the symmetrical
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Models Parameters(MB) FPS GFLOPs APA APB

Regular Rectangular Bounding Box
Two-stage detectors

Faster R-CNN+FPN (Ren et al., 2015; Lin et al., 2017a) 330.2 3.56 34.51 89.8% 87.2%
One-stage detectors

RetinaNet (Lin et al., 2017b) 290.0 3.88 28.84 81.8% 81.8%
ExtremeNet (Zhou et al., 2019) 794.8 1.33 83.45 78.3% 77.2%

ours 281.6 9.35 27.19 90.9% 89.7%

Rotated Bounding Box
R2CNN (Jiang et al., 2017) 330.1 3.60 35.77 89.2% 89.3%

ours 281.6 9.62 27.19 90.6% 89.2%

Table 1. Numerical ship detection results on Dataset A and Dataset B. We derive the ship instances both in the forms of the regular
rectangular bounding boxes and the rotated bounding boxes from the extracted keypoints with our method. We compare our method

with some other methods in Average Precision (AP). FPS is short for Frames Per Second and the results are tested on a NVIDIA
GeForce 1050Ti GPU.

Figure 6. Examples of the ship detection results by our method in the form of the rotated bounding boxes. We note that the small ships
are not taken into consideration on our two datasets.

appearance of the most ships, which may result in that it would
be difficult to distinguish between the midpoints of the left side
and the right side.

We demonstrate the advisability of our decision through exper-
iments as presented in Figure 7 and Table 2. The definition of
the keypoints and the assignment of the heatmaps of our method
are presented in Figure 7(a). We use different colors to repre-
sent the assignments of the heatmaps. For simplicity, the center
point is not visualized. The extracted keypoints of our method
are presented in Figure 7(d). It can be found that the network
can learn the keypoints correctly in this way. However, when
the keypoints are assigned with separate heatmaps (as shown
in Figure 7(b)), some failure cases occur as presented within
the white circle area in Figure 7(e). The numerical results in
Table 2 further demonstrate the reasonability of our decision.
In Table 2, we use the MS COCO Average Precision (AP) and
Average Recall (AR) as the evaluation metrics for the keypoint
similarity measurement (Lin et al., 2014). It can be found that
both the AP and the AR drop when assigning the keypoints with

separate heatmaps.

Methods AP AR

keypoints defined in Figure 7(a) 33.7% 40.8%
keypoints defined in Figure 7(b) 31.2% 39.1%
keypoints defined in Figure 7(c) 17.7% 22.4%

Table 2. The performance of the keypoint extraction results on
Dataset A using different keypoint defintions and keypoint

learning methods.

Keypoint definition: For the definition of the keypoints, we
argue that the keypoints should be located inside the ships. To
demonstrate this point of view, we further conduct the exper-
iments with the keypoints defined as the four corners of the
bounding box plus the center point as presented in Figure 7(c).
The corresponding keypoint extraction results are presented in
Figure 7(f). It can be seen that some failure cases also occur.
In addition, the numerical results in Table 4 (the method rep-
resented as c) further reveal that the keypoints located inside
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(a) (b) (c)

(d) (e) (f)

Figure 7. The results of different keypoint definitions and
keypoint learning methods. The same color of the keypoints

represents that the keypoints are assigned to the same heatmap
for learning. For simplicity, the center points are not visualized.

objects can better represent a ship.

Clustering method: We further evaluate our clustering al-
gorithm on the two datasets simultaneously. Based on our
encoder-decoder network, we compare the performance of our
clustering algorithm with the popular clustering algorithms, in-
cluding the Associative Embedding (AE) (Newell et al., 2017)
and the Brute Force Enumeration (BFE) (Zhou et al., 2019).
The numerical results preseted in Table 3 verify the effective-
ness and superiority of our method in the ship detection task.

Methods APA APB

AE 73.74% 68.28%
BFE 75.43% 70.81%
ours 90.70% 89.72%

Table 3. The performance of the clustering algorithms. AE is
short for Associative Embedding and BFE is short for Brute

Force Enumeration algorithm.

Hyperparameters λ1 and λ2: We define a new distance in the
End keypoint Clustering Algorithm (Section 3.3). The new dis-
tance is divided into two parts, of which the first part is param-
eterized by λ1 and the second part is parameterized by λ2. The
first part ensures that the candidate point should have a smallest
distance to the two side keypoints (the midpoints of the left side
and the right side). The second part ensures that the position of
the candidate point should be close to the vertival bisector of the
two side keypoints. We evaluate the importance of the two parts
through extensive experiments on the two datasets by altering
the ratio of λ1 and λ2. The experimental results are presented
in Table 4.

The numerical results in Table 4 reveal that the performance of
the clustering algorithm is not sensitive to the ratio of λ1 and
λ2, which guarantees the robustness. Comparative results are
derived in the range of [3,7] with little performance gap (less
than 0.3% on both datasets).

The absence of any part of the distance will result in a poor
performace. The absence of the second part (λ2 = 0) results in
a drop of the AP by about 9% on Dataset B and the absence of

Figure 8. A special case that may fail to detect the ship instance
represented by the green keypoints with our clustering algorithm

if the ratio of λ1 and λ2 equals to 1.

the first part (λ1 = 0) results in a drop of the AP by about 9%
on Dataset A and by about 27% on Dataset B.

λ2/λ1 APA APB

0 (λ2 = 0) 90.370% 80.686%
1 90.583% 80.642%
3 90.434% 89.714%
5 90.583% 89.718%
7 90.700% 89.689%

20 90.583% 80.852%
+∞ (λ1 = 0) 81.333% 62.209%

Table 4. The evaluation of the importance of the two parts of the
new distance in the End Keypoint Clustering Algorithm on

Dataset A and Dataset B through altering the ratio of λ2 and λ1.

It is noteworthy that the best results are not derived when the
ratio of λ2 and λ1 equals to 1. We blame this on that the
first part is much larger than the second part if the candidate
keypoint is the tail keypoint or the head keypoint of the ship
instance. Therefore, the importance of the second part is not
fully strengthened if the ratio of λ2 and λ1 equals to 1. A spe-
cial case is presented in Figure 8 where the distance of the red
point is smaller than the green point if using the new distance
(λ2/λ2 = 1) mentioned in the End Keypoint Clustering Algo-
rithm. This can be alleviated through increasing the importance
of the second part. Experimental results in Table 4 show that
the best results are derived when the ratio of λ2 and λ1 is 5 or 7
and therefore it indirectly witness this point of view.

5. CONCLUSION

In this paper, we come up with a ship detection framework
through extracting and clustering the ship keypoints in a dia-
mond. An encoder-decoder network is used to extract the key-
points, followed by a clustering algorithm to cluster the key-
point into ship instances. The definition of the keypoints and
the assignment of the heatmaps for the keypoint extraction are
carefully considered to ease the network learning difficulty. We
evaluate our method on two ship detection datasets using the
popular Average Precision metric. Experimental results reveal
that our method reaches the state-of-the-art results, outperform-
ing other popular object detection algorithms. Further ablation
studies are conducted to demonstrate the reasonability of our
keypoint defition and the superiority of the clustering algorithm
in the ship detection task.
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