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ABSTRACT:

This paper proposes several methods for training a Convolutional Neural Network (CNN) for learning the similarity between
images of silk fabrics based on multiple semantic properties of the fabrics. In the context of the EU H2020 project SILKNOW
(http://silknow.eu/), two variants of training were developed, one based on a Siamese CNN and one based on a triplet architecture.
We propose different definitions of similarity and different loss functions for both training strategies, some of them also allowing
the use of incomplete information about the training data. We assess the quality of the trained model by using the learned image
features in a k-NN classification. We achieve overall accuracies of 93-95% and average F1-scores of 87-92%.

1. INTRODUCTION

The main goal of the EU H2020 project SILKNOW
(http://silknow.eu/) is to support art historians in improving
their understanding of European silk heritage, as well as mak-
ing this knowledge available to the public. Openly accessible
databases like (IMATEX, 2018) collect information about such
fabrics, but not in a standardized format. Thus, in the con-
text of the project, the information from different collections is
collected in a uniform database with standardized annotations.
Relevant properties of fabrics include the production time, place
or technique. One way to access this knowledge is to make
database queries, e.g. to get a list of records related to fab-
rics produced in the 19th century. The alternative investigated
in this paper is to query the records that are most similar to a
given image, a procedure known as image retrieval, e.g. (Zheng
et al., 2017). Given an image of a fabric with unknown ori-
gin, this would be a way to learn something about the fabric,
because the query results also give access to the properties of
the most similar images. However, this leads to the question
of how to define the similarity of silk fabrics. Existing meth-
ods for characterizing the similarity of images are often only
based on visual appearance, e.g. (Wang et al., 2016; Jamil et al.,
2006). Supervised learning of a model of similarity (Hadsell et
al., 2006; Schroff et al., 2015) requires training images such that
for each image pair we know whether the images are similar or
not. This information is not readily available in a database con-
taining records of fabrics, so that manual annotation would be
required, an expensive and very subjective task. An alternative,
explored in another context in (Zhao et al., 2015), is to define
similarity based on the similarity of properties of the depicted
fabrics. As information about these properties is available in
the database, training samples can be generated automatically
using this approach. It may also be more useful in the context
of the project SILKNOW, because the most similar images ac-
cording to this definition may be those from which a user may
learn most about the fabric depicted in the query image.

Consequently, this paper presents a method for training a Con-
∗Corresponding author

volutional Neural Network (CNN) (Krizhevsky et al., 2012) to
learn a model of the similarity between images of silk fabrics
based on multiple semantic properties of the fabrics, which al-
lows us to model different degrees of similarity. This is different
from most existing similarity definitions, which only consider
one such property, e.g. (Gordo et al., 2016). The network learns
to generate an image descriptor such that the distance of the de-
scriptors of similar images is small. We propose two training
strategies for that purpose, one based on a Siamese architec-
ture (Bromley et al., 1994) and another one considering image
triplets (Schroff et al., 2015). The training samples are gener-
ated automatically from a database of images with annotations.
However, existing databases of silk fabrics often contain many
samples with incomplete annotations, i.e. information about
some semantic properties may be missing. Consequently, for
both training scenarios, we will define loss functions that can
also cope with such samples, the main problem being that a
definition of similarity of image pairs based on annotations will
be affected by missing information. In our experiments, we
compare the different learning scenarios and we investigate the
impact of our new developments on the results. For a quantita-
tive evaluation, we assess the performance of a k-nearest neigh-
bour (k-NN) classifier (Bishop, 2006) based on the Euclidean
distance of the feature vectors.

The scientific contribution of this paper is three-fold. Firstly, we
define a model of the similarity of images of silk fabrics based
on semantic properties. To the best of our knowledge, this is
the first work considering multiple properties for that purpose.
Secondly, based on this definition of similarity, we develop two
strategies for learning a model of image similarity with auto-
matically generated training samples. Finally, for both training
strategies, we develop loss functions that can deal with incom-
pletely labelled samples, which gives access to a considerably
larger set of training data.

2. RELATED WORK

Learning the similarity of pairs of images is not an entirely new
problem in the fields of Photogrammetry and Computer Vision.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-641-2020 | © Authors 2020. CC BY 4.0 License.

 
641



It is often times faced in the context of feature-based image
matching, e.g. (Han et al., 2015), and image retrieval, e.g.
(Qi et al., 2016). Usually, the similarity of images is assessed
via image descriptors (feature vectors), the idea being that the
descriptors of similar images should have a small distance in
feature space. While originally hand-crafted descriptors were
used, in the meantime the focus of research has been shifted to
learning descriptors based on CNNs (Zheng et al., 2017).

In the context of image matching, one task is to find pairs of
images that show the same scene and, thus, overlap. Han et al.
(2015) train a Siamese CNN to correctly predict whether two
image patches are similar or not. They define similarity in a
binary way; images are only considered to be similar if they
show the same scene. They train their network by minimiz-
ing the cross-entropy error of the network’s binary predictions
of similarity. This training strategy does not use the informa-
tion that descriptors for similar feature vectors should have a
small distance in an explicit way. While the representation may
be optimal for binary classification, using the distance of fea-
ture vectors for assessing similarity may yield sub-optimal re-
sults. Furthermore, the CNN is trained from scratch, whereas
Babenko et al. (2014) have shown that image descriptors deliv-
ered by pre-trained networks are well suited for image retrieval
even if the networks were trained for classification. Using a pre-
trained network could improve the matching performance or at
least reduce the requirements with respect to training samples.

In the context of image retrieval, Qi et al. (2016) proposed a
method to retrieve photos from a database when only a free-
hand drawn sketch is available. The authors propose a Siamese
CNN architecture consisting of two CNN branches with shared
parameters. In training, an image and a sketch are processed
by the two branches, respectively, and the loss function tries
to minimize the distance of the resultant image descriptors for
pairs that are labelled as being similar, and vice versa. Similar-
ity is defined in a binary way: both the photos and the sketches
are manually labelled into various shape classes; a photo and
a sketch are considered to be similar if their labels are iden-
tical. A binary definition of similarity might be disadvanta-
geous because photos and sketches could belong to multiple
shape classes. A non-binary definition of similarity could cap-
ture different degrees of similarity, e.g. the number of matching
shapes, which could increase the retrieval performance.

Gordo et al. (2016) as well as Wang et al. (2014) retrieve pho-
tos from a database that are similar to queried photos. Both
papers use a network architecture similar to a Siamese one, but
extend it by a third network branch also sharing its weights with
the other ones. This three-stream architecture is trained using a
triplet ranking loss requiring descriptors from similar images to
be closer to each other than descriptors from dissimilar images.
For training, the authors use a large public dataset of images
of famous landmark sites. Again, the similarity is defined in a
binary way; pairs of images are considered to be similar if they
show the same site. Such a definition would not be directly ap-
plicable to the problem considered in this paper, because hardly
any pair of images in a database would show the same fabric.

Zhao et al. (2015) propose a method for learning binary im-
age descriptors for multi-label image retrieval. They use CNNs
to jointly learn feature representations and their mappings to
binary hash codes. Although their research regarding binary
descriptors is rather unrelated to our own research, their ap-
proach to consider multiple labels for learning image similarity
is of great importance for us. In contrast to (Qi et al., 2016)

and (Gordo et al., 2016), where similarity between two images
is a binary variable, Zhao et al. (2015) model similarity in a
non-binary way. Working with images with labels for multiple
properties, similarity is defined based on the number of match-
ing labels of two images; the higher the number of matching
labels, the higher the similarity. While the authors claim that
the images used for training can have a varying number of la-
bels, which would be relevant for our problem of having to deal
with incomplete samples, we argue that their approach, being
based on absolute numbers, might deliver counter-intuitive re-
sults if there are large variations in the number of labels per
sample. We tackle the problem of having differing numbers of
variables by introducing a concept of uncertainty of similarity.

The classification of works of art using Deep Learning has been
tackled for some years, too. Whereas some papers deal with the
prediction of single properties such as the epoch of a painting
(Hentschel et al., 2016), others try to predict multiple proper-
ties at once based on the assumption that there are interdepen-
dencies between the properties (Long et al., 2017). However,
image retrieval for works of art using Deep Learning seems to
be a much less investigated field, one example being the match-
ing of papyrus fragments (Pirrone et al., 2019). Interestingly,
another work in this field is mostly related to ours in terms of
the application and also has the goal of retrieving images of silk
fabrics (Jamil et al., 2006). The authors argue that the similarity
between those fabrics can be assessed by means of visual ap-
pearance, more precisely by the motifs depicted in the fabrics.
They focus on the shape of the motifs rather than the colour
and chose a set of hand-crafted features to define an image de-
scriptor. Similarly to the assessment of (Zheng et al., 2017), we
expect descriptors learned from training data to lead to better re-
sults than hand-crafted ones. Furthermore, modelling the sim-
ilarity of silk fabrics purely based on the motifs’ shapes might
not capture all aspects of similarity of such silk fabrics.

To the best of our knowledge, there is no publication focussing
on image retrieval based on the similarity of multiple properties
of works of art. Also, there seems to be hardly any work that
deals with missing labels when multiple labels are considered
for the similarity of images; we believe that the exception (Zhao
et al., 2015) gives counter-intuitive results when there is a large
variability of the number of categories to compare in the dataset.

3. METHODOLOGY

It is the goal of our method to train a CNN to deliver similar
features for similar input images and dissimilar features for dis-
similar ones, so that the Euclidean distance of feature vectors
can be used to measure similarity between pairs of images. We
assume a database of images with annotations for a series of se-
mantic variables to be available. These annotations are used to
define a measure of similarity between pairs of images, so that
the training samples, consisting of image pairs with known sim-
ilarity values, can be generated automatically from the database
contents. Having trained the CNN, a feature vector can be de-
rived for every sample of the database by passing the corre-
sponding image through the CNN. The resultant feature vectors
are used to build a k-d tree (Pedregosa et al., 2011). Given a
query image, the most similar images from the database can be
retrieved by applying the CNN to that image and retrieving the
k nearest neighbours of the resultant feature vectors from the
k-d tree. The results can be presented to a user; optionally, the
properties of the query image can be predicted by a majority
vote of the nearest neighbours. While this classification is not

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-641-2020 | © Authors 2020. CC BY 4.0 License.

 
642



the main goal of the proposed method, it will be the basis of the
quantitative evaluation in section 4. The details of our method
are presented in the subsequent sections.

3.1 Network Architecture

Our CNN architecture based on ResNet-152 (He et al., 2016)
is presented in figure 1. The input consists of an RGB image
x scaled to 224 x 224 pixels. This image is presented to the
ResNet-152, which generates a 2048-dimensional feature vec-
tor. This is followed by a fully connected (FC) layer of dimen-
sion 1024 with ReLU (Rectified Linear Unit) activations (Nair
& Hinton, 2010). The last layer is another FC layer which de-
livers a 128-dimensional vector. In order to restrict the extents
of the feature space, this vector is normalized to unit length,
which results in the feature vector f(x) which is the main out-
put of the CNN and which should characterize the input image.
As a consequence of normalization, the maximum Euclidean
distance of two feature vectors is 2, which will be useful to tune
some of the parameters of the loss functions described in sec-
tion 3.3. Both the choice of the ResNet-152 as a backbone and
the architecture of the remaining parts of the network was based
on preliminary experiments not reported here for lack of space.

Figure 1. CNN architecture. An image x is passed through a
ResNet-152 and two FC layers with 1024 and 128 dimensions,

respectively. Normalization (Norm.) of the output of the last FC
layer delivers a 128-dimensional feature vector f(x).

3.2 Semantic Similarity

There is no unique definition of the term similarity of images,
let alone of images of silk fabrics. For reasons already pointed
out in section 1, we prefer a definition of similarity based on se-
mantic properties over a definition based on visual appearance.
Such a definition allows us to automatically generate training
samples from a database of images with semantic annotations,
while a definition based on visual similarity would require man-
ual labelling of pairs of images as being similar or not. Manual
labelling is highly subjective and might lead to inconsistent an-
notations, so that we consider a definition based on semantic
properties also to be more objective than the other option.

Our definition of similarity requires the availability of a set of
images x with annotations for a set of semantic properties such
as their production timespan or production place. Further, let
li(x) be the class label of the ith property for image x. Then,
for a pair of images x1, x2, we can define a similarity function
Y (x1, x2) which returns a value of 1 if the images are similar
and 0 otherwise. This function can be defined in a straight-
forward way if only a single property l is considered:

Y (x1, x2) = δ(l(x1) = l(x2)). (1)

In eq. 1, δ(·) is the Kronecker delta function, which returns 1 if
the argument is true and zero otherwise. Thus, Y (x1, x2) = 1 if
the class labels for property l are indentical and Y (x1, x2) = 0
otherwise. A naı̈ve way of considering multiple properties at
once would be to check whether all property labels are equal.
Similarly to the definition in eq. 1, this would lead to a binary-
valued similarity function Y (x1, x2) ∈ {0, 1}. However, we

prefer to be able to model different degrees of similarity. We
argue that a pair of images with identical annotations in all but
a few properties should be considered to be more similar than a
pair without any identical annotations. Consequently, we define
a real-valued similarity function Y (x1, x2) ∈ [0, 1] whose value
is proportional to the number of identical annotations:

Y (x1, x2) =
1

I

I∑
i=1

δ(li(x1) = li(x2)), (2)

where I is the number of semantic properties. Note that this is
equivalent to eq. 1 for I = 1.

Eq. 2 is the basic definition of similarity which will be used for
training our CNN. However, it requires annotations to be avail-
able for all properties, which is not necessarily the case. We
could apply this function to incomplete samples, i.e., pairs of
images for which a part of the properties under consideration is
unknown, by just considering the properties for which annota-
tions are available for both images and setting I to the number
of such properties. However, under these circumstances, a pair
of images for which only one property is annotated would be
considered to be similar with Y (x1, x2) = 1, although in fact
they might differ in all the other (unknown) properties. Ob-
viously, the fact that some properties are unknown introduces
some uncertainty into our definition of similarity. The more
properties are unknown, the larger this uncertainty is. Thus, in
order to be able to include incomplete samples in the training
process, we expand our similarity function in order to incorpo-
rate this uncertainty. For that purpose, we note that the similar-
ity function Y (x1, x2) can serve as an indicator Yp for positive
similarity, i.e., Yp(x1, x2) ≡ Y (x1, x2). Similarly, we can de-
fine an indicator Yn for negative similarity. If x1 and x2 are
complete samples, i.e., if all properties are known for these im-
ages, we can define Yn(x1, x2) = 1 − Y (x1, x2). Under these
circumstances, we have Yp + Yn = 1, and there is no uncer-
tainty. In order to expand our notion of similarity to incomplete
samples, we use a new definition of Yp(x1, x2) and Yn(x1, x2):

Yp(x1, x2) =
1

I

I∑
i

δ(li(x1) = li(x2)) · π1
i · π2

i

Yn(x1, x2) =
1

I

I∑
i

δ(li(x1) 6= li(x2)) · π1
i · π2

i , (3)

where

πn
i =

{
0 li(xn) is not known
1 li(xn) is known

(4)

indicates whether an annotation for property i exists for image
xn or not. This definition is equivalent to eq. 2 for pairs of
complete samples. For incomplete samples, the relative sizes
of Yp and Yn still express whether two images are more or less
similar, but in this case, eq. 3 results in Yp + Yn < 1. We can
interpret 1 − (Yp + Yn) as a measure of the uncertainty of our
knowledge about the similarity of an image pair. The definition
of similarity according to eq. 3 is used for training the CNN in
the presence of incomplete samples.

3.3 Training

We initialize the parameters of ResNet-152 using the model
pre-trained on the ImageNet data set (Deng et al., 2009). The
weights of the FC layers are initialized using Variance Scal-
ing (He et al., 2015). In training, we freeze all parameters of
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ResNet-152 except those of the last layer. We argue that by
using this pre-trained network a good generic feature represen-
tation for the images can be obtained (Razavian et al., 2014).
The parameters of the last layer of ResNet-152 and the two FC
layers of our CNN (cf. fig. 1) are determined in the training pro-
cedure. For this purpose, we propose two different strategies,
one based on a two-stream Siamese architecture (Bromley et
al., 1994) and another one based on a triplet architecture, e.g.
(Gordo et al., 2016). For both presented strategies, the training
of a neural network consists of minimizing an objective loss
function that measures the network’s ability for producing sim-
ilar features for similar input images and dissimilar features for
dissimilar input images. We present different loss functions for
both training strategies and compare them in our experiments.
In all cases, training is based on stochastic minibatch gradi-
ent descent with momentum (SGD), using backpropagation for
computing the gradients. More details about SGD are given in
section 4. The training strategies and the related loss functions
are presented in sections 3.3.1 and 3.3.2.

3.3.1 Siamese Training: Our first strategy uses the two-
stream Siamese architecture depicted in fig. 2. The training pro-
cedure requires pairs of input images x1, x2 with known simi-
larity value Y (x1, x2). The network takes the two input images
and propagates them through two identical copies of our basic
CNN architecture to deliver two feature vectors f(x1), f(x2)
for x1 and x2, respectively. Both CNN branches share the same
network weights w. The network calculates the L2 distance
∆(f(x1), f(x2)) between the two feature vectors, which forms
the basis for calculating the loss L. It is the goal of the training
procedure to make this distance small for similar image pairs
and large for dissimilar image pairs. To achieve this goal, the
contrastive loss can be used (Hadsell et al., 2006):

L(x1, x2) = Y (x1, x2)·max(0,∆(f(x1), f(x2))−Mp)

+(1− Y (x1, x2))·max(0,Mn −∆(f(x1), f(x2)).
(5)

In eq. 5, Y (x1, x2) is one of the similarity functions described
earlier. Mp is the positive distance margin, i.e. the maximum
allowed distance of feature vectors of similar inputs, while Mn

is the negative distance margin, i.e. the minimum allowed dis-
tance of feature vectors of dissimilar inputs. The goal of min-
imising the loss in eq. 5 is to produce feature vectors having a
distance smaller than Mp for samples with Y = 1 and larger
than Mn for samples with Y = 0. In the standard case of the
contrastive loss, the function Y is binary, which is also the case
for the similarity function in eq. 1; it can be used to train a
model based on the similarity of a single property. As we want
all of our training samples to always contribute to the training
procedure, unless otherwise noted we always pull the distance
of features between similar inputs towards the minimum pos-
sible distance of 0 and always pushing the distance of features
between dissimilar inputs towards the maximum possible dis-
tance of 2; this corresponds to choosing Mp = 0 and Mn = 2.
The normalization of the feature vectors helps to define Mn.

The contrastive loss according to eq. 5 also works for a defi-
nition of similarity based on multiple properties. In this case,
we have to use the similarity function from eq. 2. In the case
of a binary similarity function, every training sample will ei-
ther pull the distance towards Mp or outside of Mn; here, for
each image pair, we consider the loss to be a trade-off of two
competing forces. One force, weighted by Y , pulls the distance
towards Mp, while the other force, weighted by (1 − Y ) tries
to make the distance larger than Mn. The similarity defines the

Figure 2. Siamese architecture. Two images are propagated
through the same CNN architecture. Both CNNs share their

weights w. The L2 distance ∆ of the resulting feature vectors
f(x1), f(x2) is used to calculate the training loss.

weights and, thus, the relative size of Y and (1− Y ) will indi-
cate an equilibrium distance that minimizes the loss. The larger
the similarity, the closer this distance will be to Mp. Conse-
quently, we expect the CNN to learn to produce feature vectors
whose distances will correspond to the degree of similarity of
image pairs according to eq. 2.

The contrastive loss in eq. 5 assumes the values of the similarity
function Y to be certain, which is only the case for complete
samples (cf. section 3.2). To be able to use incomplete training
samples as well, we have to adapt that loss function to consider
the uncertainty of the similarity:

L(x1, x2) = Yp·max(0,∆(f(x1), f(x2))−Mp)

+Yn·max(0,Mn −∆(f(x1), f(x2)).
(6)

The only difference between eqs. 5 and 6 is that in the latter, we
use the indicators for positive (Yp) and negative (Yn) similarity
according to eq. 3 instead of Y and (1 − Y ) as weights for the
two terms in the loss function. Again, the relative size of the
weights will determine the point of equilibrium for minimizing
the loss, but as the sum of the weights, (Yp+Yn), is smaller than
1 (cf. section 3.2), the total impact of a sample on the gradients
will be smaller, which means that more uncertain samples have
a smaller influence on the training process, which is rather intu-
itive. We push this thought further by also adapting the margins
Mp and Mn from eq. 6, also making them dependent on the
degree of uncertainty of the similarity of a sample:

Mp(x1, x2) =
1

I

I∑
i

(1− π1
i · π2

i )

Mn(x1, x2) = 2− 1

I

I∑
i

(1− π1
i · π2

i ), (7)

where π1
i and π2

i are defined according to eq. 4. For complete
samples, this results in Mp = 0 and Mp = 2, as in the earlier
case. For incomplete samples, Mp and Mn will be placed sym-
metrically around 1, becauseMn = 2−Mp(x1, x2). The larger
the number of properties without annotations, the largerMp and
the smaller Mn. The force pulling the distance towards 0 will
only act if the distance is larger than Mp, and the one push-
ing the distance away from 0 only acts as long as it is smaller
than Mn. The larger Mp and, thus, the smaller Mn, the smaller
the impact of a sample on the minimization process. Thus, by
adapting the two radii according to eq. 4, the uncertainty of the
similarity information is again used to modulate the impact of
a training sample on the resultant parameters.

3.3.2 Triplet Training: Our second training strategy uses
the triplet architecture depicted in fig. 3. The network takes
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three input images xa, xp, xn and propagates each of them
through a CNN branch. Again, all branches share their weights
w. Consequently, this approach requires triplets of train-
ing samples, but like the first strategy, it only requires sim-
ilarity information for image pairs. In this context, xa is
the anchor sample, xp is a ’positive’ sample, meaning that
Y (xa, xp) = 1, and xn is a ’negative’ sample, meaning
that Y (xa, xn) = 0. The CNN branches deliver three fea-
ture vectors f(xa), f(xp), f(xn), from which the L2 distances
∆(f(xa), f(xp)) and ∆(f(xa), f(xn)) are calculated. For de-
termining the parameters of the network, the triplet loss func-
tion (Schroff et al., 2015) can be applied:

L(xa, xp, xn) =

max(0,M + ∆(f(xa), f(xp))−∆(f(xa), f(xn))),
(8)

where L(xa, xp, xn) is the loss and M is the margin, which
can in principle be chosen freely; during training, the dif-
ference of feature distances between ∆(f(xa), f(xp)) and
∆(f(xa), f(xn)) is pushed to be at least M . In other words,
a network should learn to deliver feature vectors f(xa), f(xp)
that are more similar to each other than the feature vectors
f(xa), f(xn), meaning that the feature vectors for similar im-
age pairs only need to be more similar than the features for a
pair being not similar. Note that this loss function only works
for a binary definition of similarity according to eq. 1. In other
words, it can only be applied when a single property is consid-
ered for defining similarity.

Figure 3. Triplet architecture. Three input images are propagated
through the same CNN architecture. The CNN branches share

their weights w. The L2 distances ∆(f(xa), f(xp)) and
∆(f(xa), f(xn)) of the resulting feature vectors are the basis

for calculating the loss to be minimized in training.

In order to consider multiple properties per sample, we have to
adapt the selection of the samples xp and xn and the definition
of the margin M . This can be expressed by defining M to be a
function of the input samples, thus M = M(xa, xp, xn):

M(xa, xp, xn) = Y (xa, xp)− Y (xa, xn)
!
> 0. (9)

In eq. 9, the function Y (·) is the similarity function defined in

eq. 2. The restriction M
!
> 0, meaning that M must be larger

than 0, is important for a triplet of input samples to be a valid
triplet, i.e. the anchor and positive samples have to be more
similar to each other than the anchor and negative samples. The
margin ensures that the distance between descriptors of similar
images is smaller than that of descriptors of dissimilar images.
We can use the triplet loss function defined by eqs. 8 and 9 only

with samples for which all labels are known. In order to also
use incomplete samples, we have to redefine the margin M :

M(xa, xp, xn) = min(Yp(xa, xp), Yn(xa, xn))
!
> 0, (10)

using the definitions from eq. 3 for Yp and Yn. In this case, the
margin M also represents the uncertainty for the similarity; the
larger the uncertainty (i.e. the more labels are unknown), the
smaller the margin. This means that the descriptors for pairs of
similar and dissimilar images are allowed to be close to each
other if the number of available annotations is small.

An important aspect of the training procedure is the definition
of the image triplets. Given a minibatch of size B, we cal-
culate the margin M(xi, xj , xk) for every triplet of samples
{xi, xj , xk}with i, j, k ∈ {1, ..., B} using either eq. 10 or eq. 9,
depending on whether incomplete samples are used or not. In
this process, we make sure that all images of a triplet are dif-
ferent. Of the remaining triplets, we retain those fullfilling the

restriction M
!
> 0 and use them for training.

4. EXPERIMENTS

4.1 Dataset and test setup

4.1.1 Dataset: To evaluate our proposed methods we use
data extracted from the publicly available database of the Cen-
tre de Documentació i Museu Tèxtil in Terrassa (Spain) (IMA-
TEX, 2018). This database consists of thousands of RGB im-
ages of silk fabrics with annotations about their semantic prop-
erties; we exemplarily consider the three variables production
place, production technique and production timespan. The an-
notations for these properties are incomplete, so that there is a
considerable number of incomplete samples. The dataset used
in this paper is identical to the one used by Dorozynski et al.
(2019). It was generated automatically from the online collec-
tion (IMATEX, 2018); in this process, the raw annotations were
mapped to a standardized class structure. For details of the pro-
cedure the reader is referred to (Dorozynski et al., 2019). The
dataset consists of 8192 images for which at least one property
is known. We call it the comprehensive set, because it con-
tains both the 5071 incomplete and 3121 complete samples (for
which all properties are known). All images are scaled such that
the larger dimension (height or width) is exactly 400 pixels; the
other, possibly smaller, dimension varies between 25 and 400
pixels. The class structure as well as the number of samples
that are available for the individual classes are shown in tab. 1.

Class name Complete Comprehensive

PL Catalonia (C) 2727 4322
Spain (Rest) (S) 394 2671

TE
drawing (D) 1386 3854
embroidery (E) 336 359
jacquard (J) 1160 1276
weaving (W ) 239 307

TS
2nd 19th 1022 1160
1st 20th 1611 2258
2nd 20th 488 1201

Table 1. Overview of the class distributions for all properties.
TS: production timespan. PL: production place. TE: technique.
The classes for TS refer to half-centuries, e.g. 2nd 19th means
second half of the 19th century. The characters in parenthesis

are abbreviations used in the tables below.
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4.1.2 Test setup and evaluation strategy: We evaluate the
method in two ways. First, we apply a quantitative evaluation
based on a k-NN classification. For that purpose, after training
we build a k-d tree from the descriptors of all training samples
and query the descriptors of all test samples to the tree; we re-
trieve the k = 5 nearest neighbours and predict the properties
of the queried samples by taking the majority vote of the prop-
erties of the nearest neighbours. We evaluate this classification
by comparing the predicted labels to the reference labels. We
report the overall accuracy (i.e., the percentage of correct pre-
dictions) and the F1-score for every class, i.e. the harmonic
mean of precision and recall. Precision is defined as TP / (TP
+ FP) and recall as TP / (TP + FN), where TP is the number of
samples of a class that was classified correctly (true positives),
FP is the number of samples that was assigned to that class but
belongs to another one in the reference (false positives), and FN
is the number of samples assigned to another class than the one
it belongs to in the reference (false negatives). As our definition
of similarity is based on similarity of properties, in this way we
can assess if for a test sample the nearest neighbours among the
training samples in feature space really have the same proper-
ties, and the results can also be compared to those of Dorozyn-
ski et al. (2019).

Secondly, we compute the distances between the feature vectors
of all test samples and compare them to the similarity values.
Due to the normalization of the feature vectors, this cannot be
done directly, but in the way of a regression analysis. Here, for
lack of space we only report the correlation coefficient, which
gives us the degree of linear dependency between the feature
distance and the similarity according to our definition.

In all experiments we split the data into training, validation and
test sets consisting 60%, 20% and 20% of the data, respectively.
The evaluation is based on a five-fold cross validation. In each
cross validation iteration, a different set of images is used for
testing, so that over the course of all iterations each sample is
used for testing once. We initialize the CNN as described in 3.3.
All images are scaled to the required input size of 224 × 224
pixels before being propagated through the network. We train
our proposed networks for 300 iterations with a batchsize of
100. Training is based on stochastic gradient descent using
Adaptive Moments (Kingma & Ba, 2014) and the standard pa-
rameters (β1 = 0.9, β2 = 0.999 and ε̂ = 1 · 10−8), except for
the learning rate of 1 · 10−4. During training, we also fine-tune
the last layer of the ResNet-152 network. For regularization
purposes, we apply early stopping based on the validation loss.

For the k-NN analysis, we carried out six different experiments
to compare different network variants and different definitions
of similarity. First, we investigate a single-property scenario.
Thus, in experiment I, we trained three individual networks
(one per property) using the Siamese architecture and the stan-
dard contrastive loss (eq. 5) based on the similarity according to
eq. 1; in experiment II we also trained three such networks, but
using the triplet architecture and the triplet loss (eq. 8) based on
the definition of the margin from eq. 9. Both experiments are
carried out using the comprehensive set of samples, for each
property using all samples with a annotation for that property.

In experiments III and IV, we evaluate the performance of k-
NN classification when considering all properties at once and
using only complete samples. In both cases, only one CNN
is trained. In experiment III, we use the Siamese architecture
and the standard contrastive loss (eq. 5) based on the similarity

according to eq. 2, while experiment IV is based on the triplet
architecture and the triplet loss using the margin from eq. 9.

Finally, in experiments V and VI, we want to assess the impact
of using incomplete samples. Thus, in experiment V, we train
a CNN using the Siamese architecture with the variant of the
contrastive loss according to eq. 6, using the definition of sim-
ilary according to eq. 7; in experiment VI, we use the triplet
architecture and the triplet loss based on the definition of the
margin according to eq. 10. In both cases, the comprehensive
set of samples is used for training. Nevertheless, the evaluation
is based on the complete samples only so that the comparison
to experiments III and IV is based on the same data.

4.2 Results and Discussion

4.2.1 K-NN Classification: The overall accuracies for all
semantic properties of the six experiments are shown in tab. 2;
the highest values are highlighted in bold font. These results
show that considering multiple semantic properties at once (ex-
periments III-VI) generally performs better than just consider-
ing one property at a time (experiments I, II); the improvement
is in the order of 5%-10%. However, they also show that con-
sidering incomplete samples in the training procedure (experi-
ments V, VI) leads to a drop in performance compared to using
only complete samples (experiments III, IV). This drop is more
prominent when comparing the results obtained when using the
triplet loss (cf. experiment IV vs. VI): in this case, considering
also incomplete samples leads to a drop of 4.9% in the mean
overall accuracy. It is less prominent (1.1% in mean overall
accuracy) when comparing the results obtained when using the
Siamese architecture (cf. experiment III vs. V). The results thus
show that when using multiple properties for defining similar-
ity, the triplet loss performs better than the contrastive loss, but
only when exclusively complete samples are used for training.
This indicates that the training procedure based on the triplet
loss is less robust to incomplete information than the procedure
based on the Siamese architecture and the contrastive loss. A
possible explanation is that for incomplete samples, the margin
between a positive and a negative pair is larger when the con-
trastive loss is used than when the triplet loss is used. Conse-
quently, descriptors of dissimilar images may be closer to each
other in feature space, leading to a worse performance of the
k-NN classification when the triplet loss is used.

Independently from the specific problems of the triplet loss with
incomplete samples, there might be another reason why the re-
sults achieved when only considering complete samples are bet-
ter than those achieved when including incomplete ones. In the
training procedures of experiments V and VI, only about 38%
of the samples are complete, which means that 62% are incom-
pletely labelled and, thus, dominate the training process. As
those incomplete samples do not reflect the interdependencies
between the properties as complete samples arguably do, this
learning procedure might lead to a loss of generality for the
learned features, thus resulting in decreased quality measures.

Property I II III IV V VI
PL 85.8 83.8 94.1 95.0 93.2 93.2
TE 91.5 89.2 92.8 94.1 92.0 87.6
TS 84.6 85.2 91.8 93.0 90.1 86.6
Average 87.3 86.1 92.9 94.0 91.8 89.1

Table 2. Overall accuracies [%] of the six experiments for the
properties production place (PL), production technique (TE) and

production timespan (TS) and average values.
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Tab. 3 presents the F1-scores for the individual properties and
their classes. As we have already observed when analyzing the
overall accuracies in tab. 2, the approaches considering multiple
properties outperform the approaches considering only single
properties. We again observe that the triplet loss outperforms
the contrastive loss, but again only when no incomplete sam-
ples are used. Additionally, the F1-scores in tab. 3 indicate that
the triplet loss performs better at classifying classes with very
few training samples. For example, the F1-score for the pro-
duction place class Catalonia (C) (2727 complete samples) is
only 0.4% better for the triplet loss compared to the contrastive
loss, while the improvement of 4.4% for the class Spain (Rest)
(S) (only 394 complete samples) is considerably larger.

Class I II III IV V VI

PL

C 88.6 86.9 96.8 97.2 96.0 96.2
S 81.3 78.6 73.3 77.6 74.7 70.0
Average 84.9 82.8 85.0 87.4 85.4 83.1

T
E

D 96.0 93.8 95.7 96.3 95.5 90.7
E 83.2 80.5 87.6 91.8 86.6 78.6
J 83.3 79.7 96.9 93.5 91.7 87.3
W 75.8 78.2 84.4 86.2 79.5 80.6
Average 84.7 83.1 90.2 92.0 88.3 84.3

T
S

2nd 19th 80.4 91.2 92.9 93.5 92.0 85.2
1st 20th 90.8 81.2 94.8 95.6 93.7 91.3
2nd 20th 76.7 77.8 79.3 83.4 72.8 81.6
Average 82.6 83.4 89.0 90.8 86.2 82.7

Table 3. F1-scores [%] for the properties production place (PL),
production technique (TE) and production timespan (TS). For

the abbreviations of class names, cf. tab. 1.

We also compare our proposed approach to those achieved
by multi-task learning by Dorozynski et al. (2019), which are
based on the same dataset. We focus on the best variants in both
papers, thus comparing the results achieved for completely la-
belled samples, i.e. experiment IV in this paper and variant
MTL-C in (Dorozynski et al., 2019). The quality metrics for
the experiments of both approaches are shown in tab. 4. The
comparison shows that both approaches are on par with each
other. While multi-task learning performs better in predicting
the production place, our approach has a slightly better over-
all performance, reflected in an improvement of both the mean
overall accuracy (0.5%) and the mean F1-score (1.1%). We can
conclude that when using our approach to learn the semantic
similarity between images of silk fabrics, the k-NN analysis is
very likely to retrieve images having similar properties; if we
predict the properties from the k-NN, the quality is as good as
the one of a CNN trained to predict the semantic properties.

Figures 4 and 5 show two examples for k-NN analysis, i.e. two
query images and their respective five nearest neighbours.

4.2.2 Analysis of correlation: This analysis is only carried
out for our best learning strategy (experiment IV). For each it-
eration of five-fold cross correlation, we calculated the I · J
Euclidean distances ∆ij between all pairs (i, j) of I = 1872

Overall Accuracy F1-score
Property MTL-C IV MTL-C IV
PL 95.4 95.0 87.7 87.4
TE 92.9 94.1 90.4 92.0
TS 92.3 93.0 89.0 90.8
Average 93.5 94.0 89.0 90.1

Table 4. Comparison of (mean) overall accuracies [%] and
(mean) F1-scores [%] between our approach and the approach

presented in (Dorozynski et al., 2019).

Figure 4. Exemplary result for k-NN analysis. The top left
image is the query image, the other images are the five nearest
neighbours. All properties of the query image were predicted

correctly. Classes for all images: Catalonia, 2nd 19th, jacquard.
c© Centre de Documentació i Museu Tèxtil (IMATEX, 2018);

photographer: Quico Ortega.

Figure 5. Exemplary result for k-NN analysis. The top left
image is the query image, the other images are the five nearest
neighbours. Here, the k-NN classification predicted only the

production place (Catalonia) correctly. The majority vote from
the nearest neighbours for the production timespan (1st 20th)

and technique (drawing) lead to false predictions.
c© Centre de Documentació i Museu Tèxtil (IMATEX, 2018);

photographer: Quico Ortega.

training samples and J = 624 test samples. For every pair, we
also calculated the similarity indicator Yij based on the annota-
tions using eq. 2. Based on the resultant I · J tuples (∆ij , Yij)
of distances and similarity indicators, we calculated the corre-
lation coefficient ρ∆Y between the two variables. The average
correlation coefficient from all cross-validation iterations was
ρ∆Y = −0.90. This high negative correlation shows there is
a high degree of linear dependency between the two variables:
the larger the difference between two feature vectors ∆ij , the
smaller their respective similarity Yij (and vice versa). We take
this as an indicator that our proposed method can in fact be
used to train a CNN to produce feature vectors such that their
distances can be used to measure the similarity of images.

5. CONCLUSION

In this paper we have presented several approaches for CNN-
based learning the similarity of images of silk fabrics based on
semantic properties. The advantage of a definition of similar-
ity based on semantic properties is that the training data can
be generated automatically if a database with annotated images
is available. We proposed two methods for training a CNN,
based on a Siamese and on a triplet architecture, respectively.
We compared different variants of the loss function designed to
deal with different definitions of similarity based on semantic
annotations. We evaluated our methods using a k-NN classifi-
cation. Our experiments showed that considering multiple se-
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mantic properties simultaneously is beneficial for learning the
similarity between images, but only if completely labelled train-
ing samples are used. Our experiments also indicated that the
triplet loss is less robust against incomplete labels than the con-
trastive loss. In general, k-NN classification based on our def-
inition of similarity performed on par with a task-specific clas-
sifier (Dorozynski et al., 2019).

In future work we would like to include additional collections
of images of silk fabrics. This would give us additional training
samples and, possibly, a more balanced class distribution. How-
ever, introducing data from additional collections might pose a
problem regarding the transferability between these collections.
One way to solve this potential problem would be to use domain
adaptation (Wang & Deng, 2018). Apart from introducing new
data from additional collections, we would also like to consider
additional semantic properties, such as motif or production ma-
terial. As our results indicate that exploiting potential inter-
dependencies between the properties is beneficial for learning
the similarity, we assume that considering additional properties
could still improve the process. We would also like to inves-
tigate a combination of multi-task classification and similarity
learning, e.g. by combining our proposed network architecture
and its (similarity-based) loss functions with the (classification)
loss function of (Dorozynski et al., 2019). This approach could
be used in the context of multi-task classification, where the
network uses learned features for the prediction of multiple se-
mantic variables. We think that guiding the network to produc-
ing dissimilar features for dissimilar inputs will improve the
classification performance.

Another expansion could be to apply weights to the individual
properties in the similarity functions. This weighting can be
based on information provided by art historians in order to give
more importance to certain properties, as the domain experts
might consider them to be be of greater relevance for assessing
the similarity of fabrics. In this context, we would also like to
investigate whether those weights could instead be learned by
the network if domain experts can provide us with labelled pairs
of images of similar / dissimilar fabrics.
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