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ABSTRACT: 

 

The benefit of autonomous vehicles in hydrography is largely based on the ability of these platforms to carry out survey campaigns 

in a fully autonomous manner. One solution is to have real-time processing onboard the survey vessel. To meet this real-time 

processing goal, deep learning based-models are favored. Although Artificial Intelligence (AI) is booming, the main studies have 

been devoted to optical images and more recently, to LIDAR point clouds. However, little attention has been paid to the underwater 

environment. In this paper, we present an investigation into the adaptation of deep neural network to multi-beam echo-sounder 

(MBES) point cloud in order to classify sea-bottom morphology. More precisely, the paper investigates whether fully convolutional 

network can be trained while using the native 3D structure of the point cloud. A preprocessing approach is provided in order to 

overcome the lack of adequate training data. The results reported from the test data sets show the level of complexity related to 

natural, underwater terrain features where a classification accuracy no better than 65% can be reached when 2 micro topographic 

classes are used. Point density and resolution have a strong impact on the seabed morphology thereby affecting the classification 

scheme. 
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1. INTRODUCTION 

1.1 Introduction 

The exploration and use of ocean resources is one of the major 

challenges of the 21st century. Although 71% of the Earth's 

surface is covered with water, many areas are not yet mapped 

(e.g. Arctic), or the available cartographic representations are 

not sufficiently up-to-date or do not provide an adequate level 

of detail. One of the obstacles to the intensification of 

hydrographic data production is their very high cost, which in 

the vast majority of cases must be carried out from 

hydrographic vessels requiring significant logistics and 

qualified personnel that are often difficult to recruit. One of the 

ways envisioned to overcome these difficulties is the use of 

autonomous surface vehicles (ASV) (Desa et al., 2006). 

 

The benefit of autonomous vehicles in hydrography is largely 

based on the ability of these platforms to carry out survey 

campaigns in a fully autonomous manner. With the survey 

systems and processes currently available, the platform is 

programmed for a predefined mission during which 

hydrographic data are collected and recorded on board the 

vehicle for further post-processing (i.e. offline). Such an 

approach has two major disadvantages. The first concerns the 

bottleneck between the increasing volume of data acquired from 

these autonomous platforms and the processing capacity 

available to process quickly and efficiently the data. The second 

concerns the quality of the data acquired. Indeed, using ASV, 

the hydrographer has no way of verifying before receiving the 

data that the survey meets the expected specifications in terms 

of accuracy, conformity and uncertainty of the soundings. One 

of the solutions to overcome these disadvantages is to have real-

time processing onboard the ASV dedicated to denoising the 

data and computing error estimators in order to assess if the 

survey meets the required quality. Such estimators are generally 

applied on flat or slope sea-bottom. Therefore, conducting a 

morphological analysis of the seabed is often a prior to the error 

estimator computation. 

 

To meet the real-time processing goal, deep learning based-

models are favored. Although Artificial Intelligence (AI) is 

booming, particularly techniques based on deep neural 

networks, the main studies have been devoted to optical images 

(LeCun et al., 2015). More recently, research efforts have been 

turn to LiDAR (Light Detection And Ranging) point clouds, 

collected either from airborne or terrestrial platforms (Liu et al., 

2019). However, little attention has been paid to the underwater 

environment regarding the design and implementation of deep 

neural networks (DNN). 

 

In this paper, we present an investigation into the adaptation of 

deep neural network to multi-beam echo-sounder (MBES) point 

cloud in order to classify sea-bottom morphology. More 

precisely, the paper investigates whether fully convolutional 

network can be trained while using the native 3D structure of 

the point cloud. To our knowledge, this is the first attempt at 

applying deep neural network to native bathymetric point cloud 

for classification purpose. As such, this work aims at designing 

and conducting a series of experiments to better understand the 

behavior of deep neural network when applied to underwater 

natural terrain and the sea-bottom features that impact it. The 

remainder of this paper is organized as follows. Section 2 is 

devoted to related work and main issues when applying deep 

neural network to bathymetric data. Then Section 3 focuses on 

the methodology including the data preprocessing and the 

network architecture we propose to classify bathymetric data 

morphology. Experimental results are presented in Section 4. 
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Finally, Section 5 provides conclusions and perspectives of this 

work. 

 

2. CHALLENGE OF BATHYMETRIC DATA AND 

RELATED WORK  

2.1 Challenge of bathymetric data for deep neural network 

Multi-beam systems record measurements of water depth (i.e. 

bathymetry), from which a number of secondary layers that 

provide information of seafloor morphology can be generated 

(e.g. seafloor slope, terrain variability) (Brown et al., 2019). 

The closest analogous instrument used for terrestrial surveying 

is an airborne laser scanner (ALS). MBES is based on the same 

principle as LiDAR namely it measures the angle and two way 

travel time of a transmitted pulse. In both cases, the returned 

signals are stored as raw, ungridded point clouds. The two 

systems have significant geometric differences. One noteworthy 

is the ratio of the beam footprint fluctuations with relation to the 

surface elevation. For the ALS, these fluctuations are in the 

order of 3-4% while for the MBES they are in the order of 40% 

(Hughes Clark, 2018). As a result, variations in the effective 

resolution are going to be much more pronounced across a 

multi-beam swath than an ALS swath. This will impact the 

achievable terrain discrimination using geomorphic techniques. 

 

Echo-sounder uses acoustic wave while LiDAR uses 

electromagnetic wave. The significantly slower speed of the 

acoustic wave (ex. average speed 1500m/s compare to 3.108 m/s 

for the light) makes it more sensitive to the sensor platform 

movements. In addition, the sound celerity varies through the 

water column according to the temperature, salinity and 

pressure of the environment, which generates a refraction of the 

wave. The combination of such effects is the source of many 

spurious soundings and inconsistencies in the point cloud. 

 

As the MBES platform does not follow a straight line path and 

rotates on three axes (roll, pitch, yaw), the point cloud density is 

uneven. In addition, the ensonified area is not of uniform size 

and the incidence angle of acoustic energy is highly variable. As 

a result, both the point cloud density and resolution vary 

strongly with both elevation and resolution across a single 

swath. These factors will impact the resolved terrain roughness 

thereby affecting any classification scheme based on surface 

characteristics (Hughes Clark, 2018).  

 

Although progress is being made in applying DNN to object 

detection and semantic classification, most current efforts center 

on extracting man-made features such as buildings, roads, cars 

(Cheng et al., 2017, Deng et al., 2017; Yao et al., 2017, Roh, 

Lee, 2017). Three major challenges prevent advancement in 

natural, underwater terrain feature classification. The first 

challenge is the lack of a properly labelled seafloor database for 

training the DNN models adapted to bathymetric point clouds. 

Many existing open data sets exist in computer vision (ex. 

Imagenet (Deng et al., 2009)) and even in LiDAR (ex. KITTI 

(Geiger et al., 2013), Semantic3D (Heickel et al., 2017)). 

Similar data sets related to MBES point cloud classification are 

still missing. Although the performance of DNN has been 

promising, achieving high accuracy requires good-quality 

labeled data. To overcome this issue it requires creating in-

house seafloor database and applying various data augmentation 

techniques. The second challenge is the vague boundary or 

ambiguous edge of seafloor terrain features such as slope, 

dunes. The third challenge is the lack of a thorough 

understanding of the DNN model’s performance and the factors 

that impact that performance, such as capability of the 

convolution modules and the hyper-parameter settings. 

 

2.2 Related work 

In the literature, there is seldom research study about DNN 

applied to bathymetric point cloud. Seafloor classification is 

usually done using machine learning or statistical methods. The 

methods that use MBES data for seafloor classification are 

primarily based on SVM, random forest, learning vector 

quantization (LVQ), self-organizing feature map (SOM) 

classifiers, and cluster analysis methods (Kaski, 1998, Li et al., 

2011). These techniques often require parameters to be tuned 

for different areas, and offer limited scalability. In addition, 

automated tools often cannot provide consistent level of 

accuracy and analyst revert to more semi-manual processing 

(Stephens et al., 2020). 

 

Most of the current deep learning solutions applied to 

underwater data concern sonar images (Denos et al., 2017). 

Even if there are challenges when processing such images (e.g. 

noisy underwater environment, lack of geometric features, …), 

the network structure remains similar to conventional computer 

vision problems given the similarity of the image structure. 

Regarding MBES point cloud, only one DNN solution has been 

found in the literature (Stephens et al., 2020). In this paper, the 

authors present a first attempt at applying 3D Convolutional 

Neural Network (CNN) to the problem of denoising bathymetric 

point cloud. The results reported from the test sets show a 

promising performance with kappa scores of 0.94 and accuracy 

of 0.977. The data is structured as voxels before being fed to the 

network. Such voxelisation would not be appropriate in all 

circumstances. As underlined in Section 2.1, strong variations 

are expected in both point density and resolution across a multi-

beam swath and according to the elevation. Thus, the voxel size 

may impact strongly the solution performance. In addition, in 

Stephens et al.’s approach, the sounding densities are scaled 

inside the voxels, which may not be a reasonable choices given 

the expected point density variation across a data set. 

 

Given LiDAR and LiDAR point cloud similarity with MBES 

system and bathymetric point cloud respectively, we conducted 

a literature review in this field. Currently, there are few survey 

and review papers providing state-of-the-art deep learning 

models directly addressing point clouds (Liu et al., 2019, 

Griffiths, Boehm, 2019). LiDAR point cloud labeling methods 

can generally be grouped into two main categories: direct 

methods that operate immediately on the point clouds; indirect 

methods, which transform the input point cloud into an image 

or a volume as a preconditioning step. Given the discontinuous 

nature of point clouds, 3D Point cloud to 2D image conversion 

has the consequence of rendering adjacent in the 2D 

representation characteristics that are not necessarily close in 

3D space. A straightforward volume representation of the point 

cloud is voxels. However, voxelized data imply many 

underlying challenges (ex. setting the voxel size; memory 

occupancy). Designing an efficient conversion of the point 

cloud into a dense voxel structure is doable as described in 

(Zhou, Tuzel, 2018). In order to directly operate on point 

clouds and avoid transforming the data to a different 

representation, Qi and al. proposed Point Net++, which 

achieved satisfactory results while enabling the network to learn 

local structures at different scales (Qi et al., 2017). The input of 

the network is an N X M array of unordered data points where 

N is the number of points and M is the number of features of 

each points, i.e. the spatial coordinates of the sounding (X, Y, 
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Z). Point Net++ demonstrates that unlike in 2D CNNs where 

small kernels are preferred, when point density is sparse, larger 

point samples are required for robust pattern extraction. Several 

extensions of Point Net++ have been proposed to achieve 

increased performances (Engelmann et al., 2018). Other 

significant works aim to incorporate a spatial convolution 

operator within the network. SplatNet (Su et al., 2018) is an 

example of such research effort.  

 

The previous references concern methods that directly process 

unordered point clouds. A variety of literature is focused on 

ordering point cloud for processing for classification and 

segmentation. In some studies, the point cloud data is 

represented and indexed as shallow octrees (Riegler et al., 

2017) or using kd-tree structure (Klokov, Lempitsky, 2017). 

New data structures can also be introduced as the superpoint 

graph (SPG) (Landrieu, Simonovsky, 2017). SPGs are derived 

by partitioning the point cloud into geometrically homogeneous 

elements. 

 

A prominent issue with point cloud remains the lack of 

adequate quality training data. Even if labelled point cloud data 

sets are available, their size does not compared with the size of 

2D image data sets. 

 

3. METHODLOGY 

3.1 Building the training data sets 

As underlined, a key issue when applying deep neural network 

to bathymetric point cloud is the availability of relevant quality 

training data, and the amount of such training data required by 

DNN. To overcome this issue, two steps have been designed in 

the proposed methodology. The first step (cf. section 3.1.1) 

focuses on labelling bathymetric point cloud using 

morphological classes. The second step (cf. section 3.1.2) 

focuses on augmenting the training labelled data sets. The 

partitioning of the point cloud in order to structure the training 

data into batches is also addressed in this second step. 

 

3.1.1 Data classification using geomorphons: To meet the 

DNN quality requirement, a dedicated morphological 

classification algorithm has been selected, namely the 

geomorphon algorithm (Jasiewicz, Stepinski, 2013). The 

geomorphon method is an efficient solution to process 

dedicated seafloor. However, like machine learning techniques, 

it presents limited scalability and variable accuracy according to 

the point cloud density and terrain topography. Furthermore, its 

processing time may prevent such solution from real-time 

usage. For all these reasons, geomorphon is a relevant 

classification method to built a quality training data set for 

DNN, but not a feasible solution to be embedded onboard ASV. 

The geomorphon is a raster-based algorithm. It analyses terrain 

surface (i.e. DTM) in order to detect and extract the 10 most 

relevant micro topographic structures such as flat, peak, spur, 

slope and so on. The technique uses texture analysis tools from 

the field of computer vision adapted to topographic forms rather 

than differential geometry tools.  

 

When running, the geomorphon algorithm analyzes each cell of 

the DTM. For each of them, it looks in the direction of its 8 

neighbours and evaluates whether the surface is going up, down 

or stays at the same height using the principle of line of sight. 

From a maximum search distance S, it looks in the direction of 

the 8 neighbours and calculates the zenith  and nadir  angles 

between the analyzed cell and the intercepted surface. A flatness 

threshold F is applied to the zenith and nadir angle difference in 

order to assess if the neighbouring direction is descending (-1), 

ascending (1) or if it is at the same level (0) with respect to the 

analysed cell. Each group of 8 direction values can be classified 

as a dedicated micro topographic structures using a lookup 

table. The geomorphon algorithm provides bounding polygons 

as output of the terrain classification, where the raster cells 

inside a polygon have the same micro topography label. These 

polygons are then used to classify the MBES point cloud. The 

polygon label is transferred to all the points inside the polygon 

convex hull. 

 

In order to assess the sensitivity of the approach to the sea-

bottom topography and morphology, experiments have been 

conducted with various datasets using different values for the 

algorithm main parameters, namely the DTM resolution, the 

search radius S and the flatness threshold F. The relevance of 

the result has been, first, visually assessed. Then, the 

appropriateness of the classification was assessed by 

comparison with the result of a region growing method based 

on this classification. In (Dupont et al., 2019), authors described 

in more details the region growing approach. Figure 1 provides 

two classified sea-bottoms, a steep slope on one hand, a dune 

field on the other hand, for which the same geomorphon 

parameters have been used, namely: DTM resolution = twice 

the Canadian Hydrographic Services requirement (Canadian 

Hydrographic Services, 2020); S = 10 pixels; F = 1°. These 

experiments confirmed the quality of the classification results 

met the expectation for the DNN training data sets. 

 

 

Figure 1. Sea-bottom classification using geomorphon 

approach: a) steep slope river bed with boulders; b) field of 

dunes on a flat seabed 

 

3.1.2 Data partitioning and augmentation: similarly as 

PointNet++ (Qi et al., 2017), the bathymetric point clouds used 

as training data sets are partitioned in blocks of 8192 points. A 

sampling of each data set is carried out in order to regularly 

distribute positions that will constitute the centres of a 

predefined neighbourhood of points. All points in the MBES 

point cloud located within a radius R of the centre will be 

selected. The radius R has been determined as a function of the 

point density, namely 6.0 m. The centres are spaced at a 

distance equal to 4R/3, which ensures complete coverage of the 

area by point blocks (there is a partial overlap of the point 

blocks). The data partitioning step aims at selecting 8192 points 

per block. If the block does not contain enough points, some 

points are randomly duplicated. If the block contains too many 

points, the 8192 points are randomly drawn. 
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In order to take into account the representativeness of each class 

within the blocks of points, the weight of each point according 

to the class is calculated. The weight is equal to the number of 

points of the class out of the total number of points, ensuring 

that the sum of the weights equals 1. This weight will intervene 

during the training of the network so that the network is not 

biased towards the dominant class in the point cloud. 

 

While dividing the MBES point clouds into blocks of points 

increases the number of training samples, robustness to 

orientation is further improved by augmenting the training data 

with transformed versions of the original data. The 

transformation consists in randomly rotating points around the 

z-axis. 

 

3.2 Network architecture 

The proposed network architecture is based on recent works 

where 1D-fully convolutional networks are used to generate 

point-wise labeling of an airborne LiDAR point cloud 

(Yousefhusien et al., 2017). While PointNet-like networks are 

designed to deal with CAD-model or indoor point clouds, the 

proposed 1D-fully convolutional network was designed to 

overcome typical obstacles related to airborne LiDAR, namely 

noise, occlusions, scene clutter, and terrain variation. Since 

airborne laser scanner is the closest analogous instrument to 

MBES, bathymetric point cloud share significant similarities 

with ALS point cloud. However, as underlined in section 2.1, 

there are still dedicated issues with relation to the underwater 

environment the proposed network was not engineered to solve. 

Also, the fully convolutional network proposed by 

Yousefhusien et al. takes advantage of three spatial coordinates 

and three corresponding spectral values for each point. 

Bathymetric data consists only of three spatial coordinates 

limiting the features that can be learnt from the point cloud. 

 

The network architecture is structured in order to learn local 

and global features. The input of the network is an N X M array 

of unordered data points where N is the number of points and M 

is the number of features of each points, i.e. the spatial 

coordinates of the sounding (X, Y, Z). The feature learning part 

of the network aims at extracting both local features (at the 

point level) and global features (at the block-level stemming 

from the preprocessing step), while providing the required 

invariances for the labelling task. It consists of a Fully 

Connected Network (FCN) combining a series (five in total) of 

1x1 convolutional layer, batch normalization (BN) layer and a 

rectified linear unit (ReLU). The convolutional layers involve 

from 64 to 2048 output features. Global features can be 

extracted using a pooling layer, which simultaneously provides 

permutation-invariance. Local features are obtained from an 

intermediary convolutional layer. The second part of the 

network consists of a convolutional neural network used to 

label the points. The input consists of the global feature vector 

concatenated with the point level feature vector. The 

convolutional layers output 512 features. The final output is the 

point label provided by a softmax classifier present at the end of 

the network. Figure 2 provides a general overview of the 

network. 

 

 

Figure 2. Fully convolutional neural network for bathymetric 

point cloud labelling 

 

4. EXPERIMENTS 

4.1 Data set 

Two data sets were used in the experiments. The first data set is 

a control zone used for patch test purpose. It is a flat area 

located about 3km outside Rimouski’s harbor (Quebec, 

Canada). The bathymetric point cloud was recorded by CIDCO 

(Research and Development Center in coastal and ocean 

mapping) in September 2015 on board of the FJ Saucier vessel. 

The Reson Seabat T20P was used to record the data. The area is 

approximately 325m long by 200 m wide. The depth varies 

between 5 to 12m. The point cloud consists of about 4 millions 

points and the average point density is 73pts/m2. 

 

The second bathymetric point cloud was recorded during a 

survey carried out by Groupe Océan in 2016 on board of the 

Korok vessel. The study area is situated in the Saint-Lawrence 

river near the Chaudière river estuary (Quebec, Canada). It is 

approximately 200 metres long by 50 metres wide. The depth 

varies between few meters to 13m. The vessel carried out 8 

parallel survey lines and 2 additional perpendicular lines for 

validation purpose. The R2Sonic 2022 MBES was used to 

record the data. The point cloud consists of about 3 millions 

points and the point density is approximately 250pts/m2. Each 

study area is divided into two regions, one for training and one 

for testing. Figure 3 presents the two study sites represented as 

bathymetric surfaces.  

 

The geomorphon method enable the labelling of the bathymetric 

point cloud into 10 micro topographic structures. As explained 

in the paper introduction, to fully take advantage of 

hydrographic survey using ASV, onboard processing dedicated 

to computing error estimators to assess if the survey meets the 

required quality is required. Since such estimators are generally 

applied on flat or slope sea-bottom, the 10 classes provided by 

the geomorphon algorithm have been merged into two classes 

as follows: classes Flat and Slope have been merged into a 

single class; the rest of the 10 classes have been merged into a 

second class. 
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Figure 3. Sea-bottom surface representation of the two study 

sites: a) Rimouski control zone; b) Chaudière rive estuary 

 

4.2 Training parameters 

We used the Adam optimizer (Kingma , Ba, 2014) with an 

initial learning rate 0.001, a momemtum of 0.9 and a batch size 

of 16. The learning rate is iteratively lowered as the learning 

progresses. An exponential decay function is applied to the 

initial learning rate. The network has been implemented using 

Keras (Chollet, 2015) with the Tensorflow backend. The 

training proceeds for a total of 60 epochs using a Tesla V100 

GPU. We monitor the loss and overall accuracy progress during 

training and validation. 

 

4.3 Labelling results 

Several experiments have been conducted in order to increase 

the understanding of the fully connected network architecture 

when applied to bathymetric data related to natural sea-bottom. 

Such network has already demonstrated significant performance 

when applied to airborne LiDAR data represented as a native 

3D point cloud (Yousefhusien et al., 2017). The impact of the 

terrain complexity as well as the number of classes used to label 

the point cloud were assessed through the experiments. The first 

experiment concerned the labelling of the control zone near 

Rimouski using 2 classes namely Flat seabed / Other. The goal 

was to verify the ability of the network to classify a sea-bottom 

with an obvious and explicit topography. The second 

experiment concerned the Chaudière river estuary were the 

global topography is a steep slope but the local topography 

includes various micro topographic structures. As such, the 

seabed display some geometrical features that could be learnt by 

the network. The network has been trained in order to label the 

point cloud using, first, the 10 micro topographic structures 

provided by the geomorphon, and second, two classes namely 

Flat/Slope and Other. Table 1 provides the percentage of points 

in the two most represented classes of the training data set. For 

each experiment, the following performance measures have 

been computed: the training accuracy per epoch; the test 

accuracy per epoch. The class omission and commission were 

computed only for the labelling into 2 classes. Table 2 provides 

an overview of theses measures for each experiment. 

 

 Rimouski 

seabed (2 

classes 

labelling) 

Chaudière 

river seabed 

(10 classes 

labelling) 

Chaudière 

river seabed 

(2 classes 

labelling) 

Main class 99,88% 37,51% 62,48 

Second class 0,12% 19,71% 37,52% 

Table 1. Percentage of points in the two main classes of the data 

sets used in the experiments 

 

 Rimouski 

seabed (2 

classes 

labelling) 

Chaudière 

river seabed 

(10 classes 

labelling) 

Chaudière 

river seabed 

(2 classes 

labelling) 

Max Accuracy 

Training 
99,96% 40% 61% 

Max Accuracy 

Test 
99,87% 37% 65% 

% omission 0% NA 0% 

% commission 0,13% NA 36% 

Table 2. Performance measures provided by the three 

experiments (NA: not applicable) 

 

For the first experiment, the convergence of the network is 

reached after few epochs. The training accuracy starts already at 

93% and is equal to 99,9% after convergence. The test accuracy 

is not progressing during the training phase. It remains equal to 

99,8%. This is due to the large number of points labelled as 

flat/slope sea-bottom in comparison to the other class. Labelling 

all the points as flat seabed without any learning, the chance to 

mistake is less than 1% given the class proportion in the 

training data set (cf. Table 1). 

 

To assess the network capacity to label different seabed 

morphology, it is trained using the second data set where the 10 

classes from the geomorphon approach have been retrieved. 

After 60 epochs, the best training accuracy is about 40% and the 

test accuracy reached 37%. This is in the order of the main class 

proportion in the training data set (cf. Table 2). As a result, 

there is no learning in the network. There may be several 

reasons to explain such a result. First, there may be a lack of 

data to learn features that will discriminate up to 10 classes. In 

machine learning, the more classes to discriminate, the more 

data samples required. Furthermore, even if the network 

architecture involves feature learning at the local and global 

level, the point cloud is analyzed using a single neighborhood 

size. Identifying different micro topographic structures may 

require different neighborhood sizes. When dealing with 

airborne LiDAR data, it is usual to have network fed with block 

of points extracted using various sizes in order to be able to 

extract objects at different scale like buildings and trees versus 

cars. In addition, one can notice the various shapes displayed by 

micro topographic structures belonging to the same class. 

Unlike the urban environment, the classification of the natural 

terrain involves forms that are not very repeatable for groups of 

points associated with similar morphologies. 

 

Given the lack of data to discriminate 10 classes, the same data 

set is used to train the network but using only 2 classes. The 
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training accuracy is about 61% and the final test accuracy is 

about 65%. These results are again in the order of the class 

distribution in the training data set. The slight increase in 

training accuracy tends to indicate that the network is learning. 

However, when looking at the data set labelled in two classes, 

one can notice the lack of spatial patterns allowing 

discriminating the two classes. Again, there is a lack of 

repeatable features in the point cloud. Areas related to the same 

class will have different point distribution. 

 

These results demonstrate the network difficulty to learn from 

the proposed data sets. As explained in section 2, the point 

cloud density and resolution vary strongly with both elevation 

and resolution across a single swath. There is a lack of 

repeatability of the seabed morphology appearance all along the 

point cloud, which could make it difficult for the network to 

identify pattern of points to associate to a dedicated class. Fully 

connected network learning approach relies on a certain form of 

logic in the training data sets. Such consistency tends to be 

lacking in underwater terrain.  

 

5. CONCLUSIONS AND PERSPECTIVES 

This paper has introduced a first investigation of applying deep 

neural network to MBES point cloud. There is currently a gap 

in deep neural network applications and natural terrain analysis. 

This gap is even larger when it comes to underwater 

environment. We addressed the challenges of such a context 

and of MBES point cloud. We proposed an approach to 

overcome the lack of relevant labelled data sets to train deep 

neural network. We implemented a fully connected network 

adapted from an architecture displaying significant 

performances with airborne LiDAR data recorded in an urban 

context. The proposed network provided accuracy results no 

better than 65% when classifying a steep seabed into two 

classes. The classification rate was slightly better than the class 

distribution in the point clouds. Results underlined the network 

difficulty to learn from the geometric features in the point 

cloud. Point density and resolution have a strong impact on the 

seabed morphology thereby affecting the classification scheme. 

 

Further investigation is required to better adapt the network to 

the sea-bottom features and bathymetric point distribution. 

Multiple block size may be required to adapt to the various 

coverages of the micro topographic structures. Additional 

information, like the acoustic backscattered signal, could be 

used to help the labelling process. Indeed, works on airborne 

LiDAR data show the performances of deep neural network 

significantly increase when multispectral images are used 

jointly with the LiDAR point cloud. Also, further efforts need to 

be invested in designing a network architecture specifically 

dedicated to point cloud. 

 

ACKNOWLEDGEMENTS 

This work is funded in part by the Discovery Program of the 

Natural Sciences and Engineering Research Council of Canada 

(NSERC) and in part by the Fonds de Recherche du Québec –

Nature et Technologie, Team program. The authors would like 

to thank CIDCO and Groupe Océan for the study data sets. 

 

REFERENCES 

Brown, C. J., Beaudoin, J., Brissette, M., & Gazzola, V., 2019. 

Multispectral multibeam echo sounder backscatter as a tool for 

improved seafloor characterization. Geosciences, 9(3), 126. 

Canadian Hydrographic Services, 2012. Recommended base 

surface resolution, Fisheries and Oceans Canada - Canadian 

Hydrographic Service (CHS). www.charts.gc.ca/data-

gestion/bathymetric-traitement/index-fra.html (28 January 

2020). 

 

Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., & Pan, C., 

2017. Automatic road detection and centerline extraction via 

cascaded end-to-end convolutional neural network. IEEE 

Transactions on Geoscience and Remote Sensing, 55 (6), 3322–

3337. 

 

Chollet, F. et al. 2015. Keras github.com/fchollet/keras (28 

January 2020). 

 

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L., 

2009. Imagenet: A large-scale hierarchical image database. In 

2009 IEEE conference on computer vision and pattern 

recognition (pp. 248-255). Ieee. 

 

Deng, Z., Sun, H., Zhou, S., Zhao, J., & Zou, H., 2017. Toward 

fast and accurate vehicle detection in aerial images using 

coupled region-based convolutional neural networks. IEEE 

Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 10 (8), 3652–3664. 

 

Denos, K., Ravaut, M., Fagette, A., & Lim, H. S. (2017, June). 

Deep learning applied to underwater mine warfare. In OCEANS 

2017-Aberdeen (pp. 1-7). IEEE. 

 

Desa, E., Madhan, R., & Maurya, P., 2006. Potential of 

autonomous underwater vehicles as new generation ocean data 

platforms. Indian Academy of Sciences. 

 

Dupont, V., Daniel, S., & Larouche, C., 2019. A region 

growing algorithm adapted to bathymetric point clouds. In 

OCEANS 2019 MTS/IEEE SEATTLE (pp. 1-6). IEEE. 

 

Engelmann, F., Kontogianni, T., Schult, J., & Leibe, B., 2018. 

Know what your neighbors do: 3D semantic segmentation of 

point clouds. In Proceedings of the European Conference on 

Computer Vision (ECCV) (pp. 0-0). 

 

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R., 2013. Vision 

meets robotics: The kitti dataset. The International Journal of 

Robotics Research, 32(11), 1231-1237. 

 

Griffiths, D., & Boehm, J., 2019. A Review on deep learning 

techniques for 3D sensed data classification. Remote Sensing, 

11(12), 1499. 

 

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, 

K., & Pollefeys, M., 2017. Semantic3d. net: A new large-scale 

point cloud classification benchmark. arXiv preprint 

arXiv:1704.03847. 

 

Hughes Clarke, J. E., 2018. The Impact of acoustic imaging 

geometry on the fidelity of seabed bathymetric models. 

Geosciences, 8(4), 109. 

 

Jasiewicz, J., & Stepinski, T. F., 2013. Geomorphons—a pattern 

recognition approach to classification and mapping of 

landforms. Geomorphology, 182, 147-156. 

 

Kaski, S., 1998. Dimensionality reduction by random mapping: 

Fast similarity computation for clustering; Proceedings of the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-657-2020 | © Authors 2020. CC BY 4.0 License.

 
662



 

1998 IEEE International Joint Conference on Neural Networks, 

IEEE World Congress on Computational Intelligence; 

Anchorage, AK, USA. 4–9 May 1998; pp. 413–418. 

 

Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic 

optimization. CoRR abs/1412.6980. 

 

Klokov, R. and Lempitsky, V., 2017. Escape from cells: Deep 

kdnetworks for the recognition of 3D point cloud models, in 

ICCV, 2017, pp. 863–872. 

 

Landrieu, L., & Simonovsky, M., 2018. Large-scale point cloud 

semantic segmentation with superpoint graphs. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern 

Recognition (pp. 4558-4567). 

 

LeCun, Y., Bengio, Y., & Hinton, G., 2015. Deep learning. 

Nature, 521(7553), 436. 

 

Li J., Heap A.D., Potter A., Huang Z., Daniel J.J., 2011. Can we 

improve the spatial predictions of seabed sediments? A case 

study of spatial interpolation of mud content across the 

southwest Australian margin. Cont. Shelf Res. 2011;31:1365–

1376. doi: 10.1016/j.csr.2011.05.015. 

 

Liu, W., Sun, J., Li, W., Hu, T., & Wang, P., 2019. Deep 

learning on point clouds and its application: A survey. Sensors, 

19(19), 4188. 

 

Qi, C. R., Su, H., Mo, K., & Guibas, L. J., 2017. Pointnet: Deep 

learning on point sets for 3d classification and segmentation. In 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (pp. 652-660). 

 

Riegler, G., Osman Ulusoy, A. and Geiger, A., 2017. OctNet: 

Learning deep 3D representations at high resolutions, in CVPR, 

2017, pp. 3577–3586. 

 

Roh, M. C. and Lee, J. Y., 2017. Refining faster-RCNN for 

accurate object detection. In Machine Vision Applications 

(MVA), 2017 Fifteenth IAPR International Conference on 

IEEE, Hamar, Norway, 514-517. 

 

Stephens, D., Smith, A., Redfern, T., Talbot, A., Lessnoff, A., 

& Dempsey, K., 2020. Using three dimensional convolutional 

neural networks for denoising echosounder point cloud data. 

Applied Computing and Geosciences, 5, 100016. 

 

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, 

M. H., & Kautz, J. (2018). Splatnet: Sparse lattice networks for 

point cloud processing. In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition (pp. 2530-2539). 

 

Yao, Y., Jiang, Z., Zhang, H., Cai, B., Meng, G., & Zuo, D., 

2017. Chimney and condensing tower detection based on faster 

R-CNN in high resolution remote sensing images. Geoscience 

and Remote Sensing Symposium, IEEE, Fort Worth, Texas, 

3329–3332 

 

Yousefhussien, M., Kelbe, D. J., Ientilucci, E. J., & Salvaggio, 

C., 2018. A multi-scale fully convolutional network for 

semantic labeling of 3D point clouds. ISPRS journal of 

photogrammetry and remote sensing, 143, 191-204. 

 

Zhou, Y., & Tuzel, O., 2018. Voxelnet: End-to-end learning for 

point cloud based 3d object detection. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition 

(pp. 4490-4499). 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-657-2020 | © Authors 2020. CC BY 4.0 License.

 
663




