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ABSTRACT: 

The alpine snow cover exhibits a high spatial variability in the horizontal and vertical directions even on a very small scale, mainly 
caused by the high variability of alpine terrain. To quantify the annual and inter-annual snow dynamics continuously reliable 
measurements of the temporal and spatial variability are required. While remote sensing from satellite and aerial platforms have been 
successfully used to estimate snow cover at larger scales, especially in mountain areas spatial and temporal resolution are too low to 
capture local changes. In the alpine region, webcam images are freely available for touristic purposes capturing images at high 
frequency intervals. Within the WebSnow project the feasibility of using such images for the detection of snow was investigated. 
With the developed workflow, processing times could be reduced and satisfactory results obtained. Our results show, that webcam 
networks have the potential for monitoring snow at high spatial and temporal resolution.  

1. MOTIVATION

In the Alpine region, snow cover variability is a high socio-
economic aspect not only as local water resource and storage, 
but also as climate-related hazard and winter tourism. 
Especially winter tourism dominates the economy of many 
mountain settlements, and it directly depends on the presence of 
winter snow cover and snow depth. 

The seasonal snow on the ground can be characterized by 
various metrics, including the snow covered area, the snow 
depth, the snow density, and the snow equivalent in water 
(SWE) (Fierz et al., 2009). For monitoring snow cover 
variability, the most important parameters are the amount and 
duration of seasonal snow cover and snow depth from where the 
SWE can be derived. To quantify the annual and inter-annual 
snow dynamics continuously reliable measurements of the 
temporal and spatial variability are required. 

Various techniques exist to determine the spatial distribution 
and temporal evolution of snow. In the Alpine region, remote 
sensing from satellite and aerial platforms quantifies snow cover 
extent at large scales. To monitor the extent of melting (wet) 
snow areas Synthetic Aperture Radar (SAR) satellite data can 
be used (Nagler et al. 2000). While the wet snow mapping 
approach is very useful during the melting season, the snow 
cover extent at dry snow conditions can be retrieved from 
optical satellite imagery. Despite the capability of optical 
remote sensing there are several limitations to be considered 
especially in the Alpine environment. The main limitation of 
optical satellite data is cloud cover which limits the number of 
useful snow observations reducing data availability and spatial-
temporal resolution. 
______________________________ 
* Corresponding author 

Recent advances in snow depth quantification in mountain areas 
have been achieved with airborne LiDAR campaigns (Deems et 
al., 2013). Subtracting a DEM of a snow-free surface from a 
DEM of a snow-covered surface estimates snow depth, 
assuming snow ablation is the only process changing the surface 
elevations between observation times (Harder et al, 2016). In 
mountainous areas, LiDAR provides an accurate measurement 
of the snow depth (Grünewald et al., 2013) but LiDAR surveys 
are still costly, preventing large and frequent coverage. 

Terrestrial photography is a favourable alternative to remote 
sensing not only due to its low costs, but especially when scale 
issues arise (e.g. snow evolution) since its spatio-temporal 
resolution can be adapted to the scale of the process (Pimentel 
et al., 2012). In the last decade, terrestrial photography has been 
used increasingly for snow cover mapping in mountain 
environments (Bernard et al., 2013; Härer et al., 2013; Pimentel 
et al., 2012, Arslan et al 2017, Portenier et al 2019). More 
recently, webcam networks are emerging as useful resources for 
large-scale environmental monitoring and estimating local 
weather conditions due to their widespread use and up-to-date 
imagery (Abrams and Pless, 2013, Arslan et al 2019). In 
mountain areas, webcam images collected at daily or even 
hourly intervals are available for touristic purposes like ski 
resorts to judge snow coverage. Therefore, those images, 
properly processed, can be considered useful sources to follow 
in detail the seasonal evolution of snow cover. Furthermore and 
in contrast to point-wise station measurements, they provide 
area-wide snow information that allows small-scale processes to 
be monitored (Dizerens, 2015). Beyond the investigation done 
by Dizerens (2015) and Fedorov et al. (2016), current 
approaches rely on one or more cameras being designed and 
positioned ad hoc by researchers (e.g. Arsnal et al., 2017; 
Salvatori et al., 2011; Härer, et al., 2016; Giuliani et al., 2016).  
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1.1 Aim of the work 

Within the WebSnow project the feasibility of using webcam 
images distributed over the Alps for continuously monitoring 
and detecting snow cover was investigated. Based on two 
webcams whose images are freely accessible a workflow for the 
georeferencing of webcam images has been developed and a 
threshold based approach for the detection of snow developed 
and evaluated.  
 
 

2. DATA ACQUISITION 

2.1 Study Areas 

Two different study areas located in Tyrol (Austria) close to 
Innsbruck have been selected based on the availability of 
webcam images and reference data. Both test sites represent 
challenging Alpine environments regarding the surrounding 
topography, land cover and viewing geometry. 
 

 
Figure 1. Tuxertal summer reference image. 
 

 Tuxertal Seefeld 
Orientation south-west west 

Elevation [m] 2420 2045 

FoV [°] ~62 ~270 

Resolution 4272 x 2848 13463 x 2048 

Intervall [min] 15 10 

Provider foto-webcam.eu Pannomax 
Table 1. Available webcam information. 
 
The webcam located in Tuxertal (Figure 1) is oriented to the 
southwest to view the whole valley. Besides forest and 
buildings at lower elevations, high altitudes covered by rocks 
and grassland are captured. Especially the regions in the far 
range in combination with the oblique viewing geometry are 
strongly affected by haze and fog.  
 
While the Tuxertal webcam has a limited field of view, the 
webcams provided by Pannomax are full panoramic 360° 
cameras.  
 

Due to the location of the camera, for Seefeld the image is 
cropped by the provider to approximately 270° (Figure 2). 
Similar to the Tuxertal webcam this camera captures regions in 
the close range and the open valley mainly covered by forest. 
Due to the larger field of view and the surrounding environment 
stronger variations in illumination occur within this image. 
 
In total 11 images have been processed (8 for Tuxertal and 3 for 
Seefeld) covering a time span of four months (January 2018 – 
April 2018) with one additional image in February 2019 for 
Tuxertal. 
 
 

3. GEOREFERENCING OF WEBCAM IMAGES 

3.1 Image orientation 

For the georeferencing of the webcam images a manual 
workflow was developed. A reference image (free of snow) for 
each webcam position is selected (e.g. Figure 1). The exterior 
orientation (only known approximately) and interior orientation 
(partly unknown) are computed using ground control points 
(GCPs). These GCPs are selected and digitized in an existing 
aerial orthophoto (X and Y of GCPs), the Z coordinate is 
interpolated from an existing digital elevation model (DEM). 
 

Webcam #GCP Mean accuracy [px] 
Tuxertal 21 2.5 
Seefeld 58 1.1 

Table 2: Image measurement accuracy of the GCP’s for the 
reference image of both test sites after camera orientation and 
calibration. 
 
3.2 Monoplotting 

 
Figure 3. Monoplotting principle. Adapted from (Kraus, 2012) 
 
After the estimation of both the exterior and interior orientation 
the corresponding object point of each pixel in a global 
coordinate system is calculated, resulting in a georeferenced 
orthorectified image. This can be achieved by monoplotting; i.e. 
intersecting the ray defined by the projection center of the 
camera and each pixel with an existing digital terrain model 
(Figure 3).  
 

 
Figure 2. Seefeld summer reference image. 
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Figure 4. Distance of each pixel from the projection center as a 
result of the monoplotting for the Tuxertal webcam image 
shown in Figure 1. 
 
To reduce processing times and avoid monoplotting of each 
image individually, the webcams were assumed to be stable 
over time. Therefore, the image and object coordinates of each 
pixel don’t change, only its attributes (e.g. color, classification) 
change over time. Although the assumption of a webcam being 
stable seems reasonable, images from the same webcam 
separated in time showed small variations (Figure 5). Possible 
causes for these small variations include instable camera 
mounting inducing small movements of the camera, thermal 
expansion, refraction or other atmospheric effects e.g. humidity 
or temperature. 
 

 
Figure 5. Differences between reference and winter image for 
Tuxertal; Top: Mountain ridge. Bottom: Valley. 
 
Only small differences could be observed for our test sites. 
Assuming an unchanged projection center and small rotations 
(as observed; cf. Figure 5) these differences can be well 
modelled using a 2D affine transformation between the 
reference and snow images. Using an affine transformation 
derived from 120 Harris correspondences the misalignment 
between the reference and winter image of Figure 5 could be 
improved from original RMS (x: 1.6, y: 3.6 [px]) to RMS (x: 
0.48, y: 0.63 [px]).  
 
In both the reference and winter images feature points are 
extracted using Harris Corner Detection (Harris et al, 1988). 
Based on the observation that the differences between the 
reference and summer image are small, only feature points 
within 20 pixel distance are considered for matching. 

 
Figure 6. Workflow for estimating the 2D affine transformation 
between reference and winter image for Tuxertal. 
 
Due to the strong visual change caused by the changing 
phenology in summer and winter only a small part of the feature 
points are identified as corresponding pairs including false 
matches. Therefore, to estimate an initial set of transformation 
parameters from this noisy data RANSAC (Fischler et al., 1981) 
is used. In a final step, based on the transformation parameters 
obtained by RANSAC, the refined image coordinates are used 
with ICP (Glira et al, 2015) to calculate the final transformation 
parameters. 
 
 

4. DETECTION OF SNOW 

The appearance of snow varies strongly throughout the year as 
it is influenced by various environmental parameters. In Winter 
mountain areas are mainly covered with fresh snow appearing 
very bright. With the increasing temperatures during spring the 
appearance changes as snow is mixed with dirt particles. 
Depending on the acquisition geometry, slope exposition and 
the time of the day some snow covered areas might be directly 
illuminated by the sun, whereas other areas will be in the 
shadow of the surrounding mountains. Furthermore, through the 
oblique acquisition geometry of webcams other atmospheric 
effects like fog, haze and refraction additionally influence the 
visibility. Due to these strong variations and influences, the 
detection of snow in webcam images is a challenging task and 
various methods have been developed.  
 
The Gaussian Mixture Model approach proposed by Rüfenacht 
et al. (2014) is based on the idea, that the colour distribution of 
the pixels of an image follows two Gaussian normal 
distributions representing snow and not snow. Analysing our 
selected webcam images showed that in general the assumption 
of two normal distributions does not hold true.  
 
A similar problem occurs with the approach proposed by 
Pimentel et al, (2012). K-means is a very powerful and widely 
used clustering algorithm but the number of clusters must be 
known a priori. While for some webcams good results could be 
achieved using 4 clusters, due to the much more complex 
scenery captured for example by the Tuxertal webcam the 
appropriate selection of the number of clusters is challenging. 
As k-means itself is only a clustering approach, still a 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-695-2020 | © Authors 2020. CC BY 4.0 License.

 
697



 

subsequent classification step following the k-means clustering 
is necessary to derive the final snow cover maps.  
 
Hinkler et al. (2002) proposed an interesting method simulating 
the near infrared channel based on the available RGB 
information. Unfortunately, the proposed calculation of the 
RGBNDSI is vague and reimplementation requires some 
guessing. The results obtained using this empirically derived 
band from our implementation have not been satisfactory 
whereas we are not sure if it is related to our implementation or 
the discriminative power of the RGBNDSI.  
 
Giuliani et. al., (2016) and Federov et al. (2016) used a 
supervised classification. Besides incorporating the local 
neighborhood of each pixel they use a so called “daily median 
image” in order to reduce the influence of challenging 
illumination conditions.  
 
Analyzing the selected webcam images showed, that while the 
appearance of snow changes throughout the year, it always 
corresponds to the brightest regions within each image. Based 
on this observation a threshold based snow detection method 
similar to Härer et. al (2016) was further developed.  
 
By transforming the colour space from RGB to HSV it is 
possible to separate colour from lightness. Lightness is defined 
as the largest value among R, G or B and represented by the 
value channel. Manually selecting appropriate thresholds for V 
in each image, it is possible to separate bright snow from not 
snow. As two different thresholds for V are used for the 
classification of snow and not-snow, snow in shadow and 
lighter rocks without snow coverage in the far range remain 
unclassified (Figure 7 – middle). To further classify these 
pixels, additional thresholds based on all HSV channels have 
been empirically derived. Especially these thresholds vary 
strongly among the selected webcams and fine tuning is 
difficult. The final classification result for one webcam image 
from Tuxertal can be seen in Figure 7.  
 
Using the threshold based approach in total four different 
classes are distinguished: (bright) snow, snow in shadow, not 
snow and undefined (Figure 7). Especially the undefined class 
is the most heterogeneous one, depending on the captured 
scene, containing various different land cover types e.g. forest 
and buildings. 
 
4.1 Accuracy assessment 

Manually classified control points selected by a random area 
based stratified sampling strategy (Olofsson et al. 2014) were 
used for the evaluation of the classification results. This 
guarantees that the number of control points for each class is 
proportional to the number of pixels belonging to the class. In 
total approximately 500 points have been manually classified 
for each image.  
 
In Figure 7 (top) the points used for the evaluation of the 
Tuxertal webcam image of 29.01.2018 are shown: Green points 
indicate that the classification result is true, red points that the 
classification is wrong. Especially the undefined regions in the 
shadowed areas are mainly misclassified. The detailed accuracy 
metrics for each webcam image are shown in Table 3. 

 
Figure 7. Top: Tuxertal webcam image acquired 29.01.2018. 
Medium: Classification result using only the value channel 
Bottom: Final classification result. 
 
 

5. RESULTS 

5.1 Monoplotting 

The visible areas captured by both webcams are shown in 
Figure 8. In each case the influence of topography on the 
monoplotting result becomes obvious.  
 
Due to the horizontal acquisition geometry large void areas 
shadowed by mountain slopes can be observed. The changing 
ground sampling distance (GSD), which is dependent not only 
on the distance to the camera but also on the slope and 
exposition of the underlying topography poses another 
limitation. For the Seefeld webcam, flat areas in the far range 
(Figure 8 – top – blue rectangle) are only sparsely covered due 
to the larger ground sampling distance. In contrast, for Tuxertal 
(Figure 8 – bottom) mainly slopes facing towards the camera 
are captured resulting in a more dense uniform coverage.  
 
These are the main limitation for the detection of snow from 
webcam images compared to images acquired using aerial or 
satellite platforms. One way to overcome these limitations in the 
future, is the combination of multiple webcams capturing the 
same area from different directions.  
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Figure 8. Visible area in red for the Seefeld (top) and Tuxertal 
(bottom) webcam. Webcam positions are indicated by the 
yellow cross.  
 

5.2 Snow Detection 

 

Overall accuracies for the webcam located in Tuxertal are above 
0.84, whereas for Seefeld results are slightly worse, especially 
for 22.04.2018 with an overall accuracy of only 0.57. 
 
The precision for snow and not-snow are the highest across all 
images. This approves our basic finding, that snow always 
corresponds to the brightest region in each image and can be 
classified using the value channel alone. 
 

 
Figure 9. Two problematic areas enlarged for Tuxertal on 
28.02.2018. Green points indicate that the classification result is 
true, red points that the classification is wrong.  
 
As the detection of snow in shadow is dependent on multiple 
thresholds using all HSV channels, not only the tuning of 
parameters is difficult, also classification results are worse. This 
clearly shows the limitation of our approach regarding the 
detection of snow.  
 

Webcam Date Time Snow Not-Snow Snow-Shadow Undefined Overall accuracy 
Tuxertal 29.01.18 11:10 0.99 0.96 0.48 - 0.89 

Tuxertal 28.02.18 11:10 0.99 0.79 0.38 1.00 0.84 

Tuxertal 25.03.18 11:10 0.99 0.91 0.46 0.11 0.88 

Tuxertal 07.04.18 12:20 0.98 0.97 0.27 0.17 0.92 

Tuxertal 14.04.18 12:10 1.00 0.89 0.45 0.75 0.91 

Tuxertal 19.04.18 12:10 1.00 0.95 - 0.17 0.92 

Tuxertal 22.04.18 12:20 1.00 0.91 0.83 - 0.93 

Tuxertal 08.02.19 12:00 1.00 0.88 0.63 - 0.89 

Seefeld 27.01.18 11:20 0.79 0.38 0.63 1.00 0.76 

Seefeld 07.04.18 12:20 0.82 0.79 0.00 0.5 0.78 

Seefeld 22.04.18 12:20 0.95 0.70 0.00 - 0.57 
Table 3. Precision for each class and overall accuracy achieved using the threshold based snow detection approach. 
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In Figure 9 two representative problematic areas occurring in 
the Tuxertal are enlarged. Using our threshold based approach 
both highlighted regions are mainly classified as undefined 
while most points actually belong to the not snow class. While 
in general the not snow class is quite well classified, due to the 
bright snow present on the dark forest and the influence of haze 
(averaging the dark and bright regions) both regions are 
classified as undefined.  
 
The results for the undefined class are strongly varying. This is 
related to the fact, that the control points used for evaluation 
can almost entirely be assigned to one of the other classes. Only 
in seldom cases e.g. border region of rocks, shadowed regions 
the true class was difficult to identify. Therefore only a few 
control points represent the undefined class. 
 
The orthorectified snow maps for both webcams and all 
acquisition dates are shown in the Appendix. Especially for the 
Tuxertal webcam the temporal variation of snow cover can be 
observed from our time series. While for 29.01.2018 snow is 
also present in lower altitudes, towards spring snow retreats to 
higher altitudes and the not snow class becomes dominant. 
 
 

6. CONCLUSION 

Within the WebSnow project a workflow for the georeferencing 
of freely available webcam images and the detection of snow 
was developed. While the georeferencing for the selected 
images worked well, the process currently involves manual 
interaction. To employ such a workflow to a whole webcam 
network in order to combine multiple webcams to fill void 
areas, an automatic solution similar to the work of Baboud et. al 
(2011) is necessary. Besides manual input, processing times 
could be reduced by avoiding the monoplotting step for each 
image individually by modelling the observed differences with 
an affine transformation. 
 
The main limitation of our proposed workflow currently is the 
simple thresholding approach used for detecting snow as the 
thresholds are manually defined. While the results for bright 
snow are very good, all the other classes are problematic 
showing the limitations of our approach. Again the manual 
input and hand tuning of the thresholds for each image is the 
main limitation with respect to processing images from a 
complete webcam network.  
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APPENDIX 

 

 
Appendix 1. Orthorectified snow cover maps for each webcam image in Seefeld (top row) and Tuxertal (bottom rows). 
Same colour legend as in Figure 7.  
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