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ABSTRACT: 

 

This paper presents a study on the potential of ultra-high accurate UAV-based 3D data capture by combining both imagery and LiDAR 

data. Our work is motivated by a project aiming at the monitoring of subsidence in an area of mixed use. Thus, it covers built-up 

regions in a village with a ship lock as the main object of interest as well as regions of agricultural use. In order to monitor potential 

subsidence in the order of 10 mm/year, we aim at sub-centimeter accuracies of the respective 3D point clouds. We show that hybrid 

georeferencing helps to increase the accuracy of the adjusted LiDAR point cloud by integrating results from photogrammetric block 

adjustment to improve the time-dependent trajectory corrections. As our main contribution, we demonstrate that joint orientation of 

laser scans and images in a hybrid adjustment framework significantly improves the relative and absolute height accuracies. By these 

means, accuracies corresponding to the GSD of the integrated imagery can be achieved. Image data can also help to enhance the LiDAR 

point clouds. As an example, integrating results from Multi-View Stereo potentially increases the point density from airborne LiDAR. 

Furthermore, image texture can support 3D point cloud classification. This semantic segmentation discussed in the final part of the 

paper is a prerequisite for further enhancement and analysis of the captured point cloud.  

 

1. INTRODUCTION 

The quality of area-covering 3D point clouds as captured by 

aerial and mobile mapping platforms still experiences a 

considerable boost due to the ongoing advancements in LiDAR 

technology and Multi-View-Stereo-Matching (MVS). One main 

advantage of MVS is that the resulting geometric accuracy 

directly corresponds to the Ground Sampling Distance (GSD) 

and thus the scale of the evaluated imagery. In contrast, the 

potential to measure multiple responses of the reflected signal 

using LiDAR sensors is advantageous, especially to collect data 

both on and below vegetation using airborne data acquisition. 

Airborne LiDAR and MVS were originally developed as 

competing approaches. Meanwhile considerable research efforts 

focus on systems for joint collection and evaluation of LiDAR 

and image data to further improve the accuracy, density and 

reliability of the generated point clouds. Furthermore, full use of 

the geometric information provided from these data sources 

additionally requires a semantic analysis of the respective point 

clouds. Also triggered by the astonishing improvements in the 

field of pattern recognition and machine learning, automatic 

interpretation of area-wide point clouds is moving to a mature 

state (Hackel et al., 2016). Resulting approaches can analyze 

airborne 3D point clouds for object detection and classification 

or can be used for further refinement of the point clouds for 

object-dependent filtering and smoothing (Bláha et al., 2017). 

Within our paper, we discuss and demonstrate the potential of 

combining LiDAR and image processing at different steps of the 

photogrammetric processing chain while aiming at the generation 

of ultra-high accurate 3D point clouds using a UAV platform. 

One main purpose of this research is the deformation monitoring 

of a ship lock and its surrounding area as depicted in Figure 1. 

The area of interest stretches over 570 m (east-west) × 780 m 
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(north-south) and includes the ship lock facilities, the river and 

the riparian area as well as vegetated areas, farmland, and 

residential areas of the surrounding village. 

In that test area subsidence of about 1-10 mm/a relative to the 

stable surroundings have been observed over the past few years 

(Kauther & Schulze, 2015). For area-covering monitoring of such 

changes, 3D point clouds at mm-accuracy have to be provided 

twice a year. Up to now, such accuracy demands presume 

terrestrial data collection using geodetic instruments, such as 

level instruments, total stations and differential GNSS. However, 

these engineering geodesy techniques are usually limited to 

specific parts of built structures or natural objects due to 

economic reasons. In contrast, area-covering 3D measurement 

calls for the use of airborne platforms. Photogrammetric data 

collection at mm-scale requires image acquisition at a similar 

resolution, which typically presumes the use of UAVs. If 

(signalized) ground control points are available with sufficient 

accuracy and distribution, in principle integrated georeferencing 

and subsequent dense image matching can provide 3D point 

clouds in the accuracy of some millimeters. However, our project 

aims on the measurement of subsidence of terrain surfaces, which 

are covered to a considerable part by vegetation like trees, bushes 

and shrubs. This requires the use of LiDAR, due to its ability to 

penetrate such vegetation, especially if multiple returns are 

measured and analysed, e.g. using full waveform recording. 

While originally, UAVs were limited to camera-based systems, 

meanwhile the use of even high-end LiDAR became state-of-the-

art (Cramer et al., 2018). Thus, subsidence measurement can be 

realized by collecting LiDAR as well as image data from UAV 

platforms at different epochs.  

The original set-up of our test area and preliminary results from 

joint image and LiDAR flights in March 2018 were already 

introduced in Cramer et al. (2018). Section 2 of our paper now 
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describes data collection for the subsequent epochs in November 

2018 and March 2019. Section 3 then discusses the required 

highly accurate georeferencing of the captured data, which is the 

most important prerequisite while aiming at the monitoring of 

subsidence based on these two epochs. In a nutshell, the flight 

trajectory of the LiDAR platform are required with sufficient 

accuracy to compute the respective 3D points from LiDAR range 

measurement. Therefore, IMU and GNSS measurements provide 

the required position and attitude of the platform, which allows 

3D point accuracies of some centimeters, especially if a suitable 

calibration of the sensor system is guaranteed. However, since 

our application aims at sub-centimeter accuracies, further 

improvement is required. As discussed in Section 3, we apply a 

hybrid orientation of airborne LiDAR point clouds and aerial 

images as proposed by Glira et al. (2019). This integration of 

aerial imagery not only increases the resulting accuracy of the 

LiDAR points during georeferencing, it also provides a precise 

co-registration of both data sources. As demonstrated in 

Section 4, this allows accurate alignment of LiDAR points to 3D 

points from dense image matching. By these means, further 

processing can benefit from the complimentary properties of 

LiDAR and MVS point clouds. In addition to a joint point cloud 

filtering, their semantic segmentation is indispensable for many 

applications. As discussed in Section 5, we use such a 

classification to eliminate points measured on objects like cars or 

vegetation. This finally leaves only points measured on plane, 

stable surfaces like building roofs or terrain, which are suitable 

for the aspired measurement of subsidence. 

 

2. TEST SET-UP 

Figure 1 depicts our test area in Hessigheim, Germany with a 

maximum site extension of 570 m (east-west) x 780 m (north-

south).  

 

 
Figure 1. Area of investigation (white box) with captured LiDAR 

strips (coloured individually), LiDAR control planes (dark 

yellow squares), checkerboard targets (orange rhombs) and 

height checkpoints (red dots). 

 

Data from a RIEGL VUX-1LR LiDAR sensor combined with 

two Sony Alpha 6000 oblique cameras were captured using the 

RIEGL RiCopter octocopter in November 2018 and March 2019. 

The LiDAR data acquisition comprises 17 longitudinal (i.e. 

north-south) strips, 4 diagonal strips to cover the steep wooded 

slope in the south-eastern corner of the investigation area, and 

some extra flight lines with diagonal and curved trajectories for 

further block stabilization (cf. Figure 1). With a flying speed of 

8 m/s, a nominal flying altitude of 50 m above ground level, a 

strip distance of 35 m, a pulse repetition rate of 820 kHz, a scan 

line rate of 133 Hz, and a used scanner Field-of-View (FoV) of 

70°, the resulting mean laser pulse density is 300-400 points/m² 

per strip and more than 800 points/m² for the entire flight block 

due to the nominal side overlap of 50%. These flight mission 

parameters guarantee a laser footprint diameter on the ground of 

less than 3 cm enabling a high planimetric resolution of 5 cm. 

The ranging accuracy, reported in the data sheet of the sensor is 

10 mm (Riegl 2018). The two Sony Alpha 6000 oblique cameras 

mounted on the RiCopter platform covered a FoV of 160° at a 

GSD of 1.5-3 cm.  

 

  
Figure 2. Ship lock and photogrammetric control point (PCP) on 

a pillar (left), LiDAR control plane (LCP) (right). 

 

Georeferencing of the acquired UAV LiDAR data is directly 

accomplished since the trajectory of the platform is measured by 

the GNSS/IMU system. However, accuracy of this standard 

approach is limited to up to a few centimeters. Thus, as further 

discussed in Section 3, we additionally apply signalized ground 

control information and finally realize a hybrid orientation of 

LiDAR and image data. Figure 1 shows the distribution of these 

signals within our test area. Checkerboard signals scattered 

within the test area serve as photogrammetric control points 

(PCPs) during Automatic Aerial Triangulation (AAT) of the 

imagery. These checkerboards are partly mounted on pillars (see 

Figure 2 left), tripods, and on ground. They feature a diameter of 

27 cm which allows automatic measurement of image points. For 

absolute georeferencing of the LiDAR data, distinct planar 

geometries with known position and orientation in space need to 

be provided as well. For our experiments we used LiDAR control 

planes (LCPs) constructed by two roof-like oriented planes as 

depicted in the right of Figure 2. Each roof plane features a size 

of 40 cm x 80 cm. Point coordinates for ground control were 

provided by geodetic survey, i.e. either GNSS or tachymetric 

measurement. The accuracy of these reference points is in the 

range of 1-3 mm. As demonstrated by Cramer et al. (2018), 

providing such quality for a considerable number of points 

scattered in a larger test area causes great effort.  

 

3. JOINT GEOREFERENCING OF IMAGE AND LIDAR 

DATA  

For direct georeferencing of the VUX1-LR scanner data, the 

RIEGL RiCopter platform integrates an APX-20 UAV. In 

Section 3.1. we show that the estimated trajectory is further 

improved by a suitable correction model during LiDAR strip 
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adjustment. Further improvement is possible by additional aerial 

image information, which in our experiments is provided from 

the Sony Alpha cameras also mounted on the RIEGL RiCopter. 

This so-called hybrid orientation is discussed in Section 3.2. 

 

3.1 LiDAR Strip Adjustment  

During acquisition of LiDAR data, the measurements of the 

inertial navigation system and the laser scanner are time-

stamped. In post-processing, the IMU and GNSS measurements 

are combined in a Kalman filter to a trajectory providing the 

position and attitude of the platform over time. The polar 

elements, i.e. range and angles, are determined for each laser shot 

during data acquisition. For full-waveform scanners, the range of 

each laser echo is calculated either offline in post-processing 

(Mallet and Bretar 2009) or onboard during data acquisition 

(Pfennigbauer et al. 2014). Based on i) the trajectory, ii) the 

scanner's mounting calibration (i.e. position and orientation 

offset between the estimated trajectory and the scanner’s own 

coordinate system), and iii) the polar measurements of the laser 

scanner, the 3D coordinates of each detected laser echo can be 

calculated by direct georeferencing. Any error in the estimated 

trajectory, the mounting calibration, or the scanner’s 

measurements will cause an offset between point clouds of 

different flight strips in overlapping areas. Respective 

discrepancies are detected within standard quality control 

procedures (Ressl et al., 2008). If the deviations exceed 

acceptable limits, a typical LiDAR workflow also includes a strip 

adjustment to minimize the offsets between the strips (Shan & 

Toth 2018). 

Since strip-to-strip differences without trajectory correction 

exceed the desired accuracy by far (see Figure 3a), a LiDAR strip 

adjustment was carried out applying the method presented in 

Glira et al. (2016). Within a sophisticated calibration procedure, 

the six parameters of the mounting calibration (lever arm and 

boresight misalignment), a global datum shift, as well as 

trajectory corrections were estimated to minimize the 

discrepancies (defined as point-to-plane distances within the 

overlap area of flight strip pairs). For absolute orientation, the 

LCPs are considered. Two different solutions of the LiDAR strip 

adjustment have been investigated. The bias correction model 

(see Figure 3b) considers a constant offset (Δx, Δy, Δz, Δroll, 

Δpitch, Δyaw) applied to the original trajectory solution of each 

individual strip. With the spline model (Figure 3c), time-

dependent corrections are modelled for each of the six above 

mentioned parameters by cubic spline curves with equidistant 

time intervals of 8 s. This adds much more flexibility to further 

minimize the discrepancies between overlapping strips (Glira et 

al. 2016).  

The relative strip height differences after applying both 

approaches are plotted in Figure 3b and c. Compared to the raw 

measurements, the bias model improves strip fitting precision 

considerably. The residual height error decreases to 1.1 cm 

compared to 5.8 cm measured as robust standard deviation of 

absolute strip height differences (𝜎𝑀𝐴𝐷) in smooth and open 

surface areas. Locally, systematic effects are still perceivable due 

to insufficient correction of trajectory errors. Applying the more 

flexible spline correction model reduces 𝜎𝑀𝐴𝐷 to 0.4 cm. The 

absolute orientation of the LiDAR block is improved in the strip 

adjustment using the LCPs, while the checkerboard targets allow 

for an independent evaluation. The residual errors at these points 

are defined as the point-to-plane distances to the best fitting plane 

estimated from the neighbouring points of the LiDAR strips. 

Featuring a standard deviation (std) of the residual deviations of 

1.8 cm, the spline model performs worse compared to the bias 

model with a std of 1.0 cm. This clearly indicates that the spline 

model is to be preferred regarding relative adjustment, but can 

only be applied when sufficient stabilizing reference points are 

available to avoid global block deformation. However, since 

measuring ground control data is costly and therefore not 

economic, Glira et al. (2019) developed the idea of hybrid 

adjustment, where the flight trajectory is further stabilized by the 

integration of LiDAR and image measurements. 

(a) 

 

(b) 

 

(c) 

 

(a) 

 

(b) and (c) 

 

Figure 3. Relative strip differences of (a) raw data and after strip 

adjustment using trajectory corrections with (b) bias model and 

(c) spline model. 

 

3.2 Hybrid Orientation of Airborne LiDAR and Aerial 

Images  

The hybrid georeferencing of LiDAR and aerial images is an 

extension of the traditional LiDAR strip adjustment with 

additional observations from the bundle adjustment of image 

blocks (Glira et al. 2019). Usually, bundle block adjustment 

estimates the respective camera parameters from corresponding 

pixel coordinates of overlapping images, while the object 

coordinates of these tie points are a by-product.  Within the 

hybrid orientation approach, tie points' object coordinates are 

used to establish correspondences between the LiDAR and the 

image block, which are minimized within a global adjustment 

procedure. In this respect, hybrid orientation is an extension of 

LiDAR strip adjustments. In addition to the respective calibration 

parameters, both approaches estimate parameters of a spline 

model for time-dependent corrections of the flight trajectory. 

However, while the flexibility of this model can result in 

systematic deformations during LiDAR strip adjustment, the 

integration of tie points generated from stable 2D image frames 

as oriented during bundle block adjustment reliably avoids such 

negative effects. This is especially helpful if both sensors are 

flown on the same platform and thus share the same trajectory. 

Figure 4 shows that the idea of tightly coupled hybrid adjustment 

of concurrently captured LiDAR and image data significantly 
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stabilizes the measured trajectory, exemplary visualized for one 

longitudinal strip. This strip features a time range of about 90 s 

corresponding to 720 m at the speed of 8 m/s. It can clearly be 

observed that low frequency fluctuations can be reduced by 

introducing the tightly coupled images in the hybrid adjustment.  

While the estimated spline for the LiDAR-only adjustment shows 

significant low-fluctuations, in case of hybrid adjustment this 

effect is considerably reduced by tight coupling to imagery. 

 
Figure 4. Comparison of adjusted trajectory for one exemplary 

longitudinal strip when using spline trajectory correction by 

LiDAR strip adjustment (blue) and hybrid orientation (red).  

(GPS time reduced to first measurement). 

The accuracy of tiepoints, used as observations during hybrid 

orientation depends on the quality of the respective AAT, which 

is influenced by the geometry of the image block and the used 

camera. As discussed by Glira et al. (2019) and Mandlburger et 

al. (2017), problems in using correspondences between points 

from image matching and LiDAR can occur from their different 

properties, which are further discussed in Section 4. To avoid 

mismatches we used tie points observed in at least three images 

and rejected correspondences with a distance larger than ±3σ. In 

our current experiments, we apply two oblique looking Sony 

Alpha 6000 cameras mounted at the RIEGL RiCopter platform. 

In the original concept of the platform, these cameras were 

intended to just provide RGB color values for the respective 

LiDAR points. Bundle block adjustment results in differences at 

independent check points between 5.2 cm (max.) and 1.2 cm 

(min.). The mean RMS is 2.5 cm which is within the range of the 

GSD of 1.5-3 cm. While this 3D object point quality does not 

meet the project requirements of millimeter accuracy, the 

cameras are tightly coupled to the laser scanner. Both sensors 

share a common trajectory and, in this case, the images directly 

support the estimation of the trajectory correction.  

We demonstrate the benefits of hybrid adjustment compared to 

LiDAR strip adjustment for the subset depicted in Figure 5. In 

both cases, the relative height differences of the respective 

LiDAR strips reaches an accuracy 𝜎𝑀𝐴𝐷 of 4 mm. However, clear 

distinctions between both approaches become visible from the 

color-coded elevation differences of LiDAR point cloud to 

signalized targets. The red circles indicate control points, 

whereas the remaining signals were used as check points.  

Method 
Ground 

Control 

Ground 

Check 
min max mean std 

LiDAR-

only 
3 LCPs 

42 PCPs -1.3 2.7 0.9 0.9 

2 LCPs -2.8 4.7 1.0 3.4 

Hybrid 9 PCPs 
33 PCPs -0.8 0.6 -0.2 0.3 

5 LCPs -1.0 1.5 0.1 0.8 

Table 1: Elevation differences of LiDAR point cloud to 

signalized targets. All measures are given in cm.  

The top row of Table 1 as well as Figure 5(a) give the results for 

the LiDAR strip adjustment. Overall, 5 LCPs were available, 3 

LCPs were used as ground control (red circles), the remaining 2 

LCPs (blue circles) served as check points similar to the 42 PCPs. 

To compute the standard deviation of 0.9 cm, Point-to-plane 

distances between the LiDAR point cloud and the horizontal 

photogrammetric targets were used. Thus, horizontal errors in the 

(a) 

 

 

(b) 

 
Figure 5. Point-to-plane distances of LiDAR point cloud to signalized targets. Top: Results from LiDAR strip adjustment, Bottom: 

Results from hybrid orientation. Control information in terms of LCPs (top) and PCP (bottom) is highlighted by red circles.  LCPs 

used as check points are indicated by blue circles and denote differences to both roof planes. 
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adjusted LiDAR point cloud are not taken into account. However, 

a potential horizontal error influences the elevation difference of 

the inclined planes at LCPs. This is the reason for the larger 

standard deviation of 3.4 cm. 

The bottom row of Table 1 as well as Figure 5(b) give the results 

for the hybrid orientation. Again, the red circles indicate points 

used as ground control. In contrast to LiDAR strip adjustment, 

which requires LCP as ground control, georeferencing by hybrid 

adjustment no longer needs dedicated LiDAR control planes. 

Instead, all control point information is integrated from the 

standard photogrammetric targets applied during AAT. This 

dispensation with LCPs considerably reduces the effort for 

maintaining the test area and thus is of high practical relevance. 

As indicated, 9 PCPs (red circles) were used as control points. 

Elevation differences at the remaining 33 PCPs result in a 

standard deviation of 0.3 cm. Differences to the LiDAR strip 

adjustment are even more obvious for the 5 LCPs (blue circles) 

with a standard deviation of 0.8 cm. 

 

3.3 Comparison of Elevation Models from Different Epochs 

As discussed by Kauther & Schulze (2015) our test area is subject 

to potential subsidence in the order of 10 mm/year. Thus, for the 

time frame between our measurement epochs in November 2018 

and March 2019, changes in height in the order of 3 mm are 

expected, which are still beyond detectability while using our 

current sensor setup. 

 

 

 

  

Figure 6. Exemplary elevation differences of LiDAR campaigns 

2016 and 2019 (bottom) compared to corresponding orthophoto 

(top).  

 

Thus, Figure 6 gives elevation differences between our measure 

in 2019 and data from an airborne LiDAR campaign from the 

year 2016. That data set, provided from the State Office for 

Spatial Information and Land Development Baden-

Wuerttemberg (Landesamt für Geoinformation und 

Landentwicklung Baden-Württemberg, LGL), does not meet our 

requirements on point density and accuracy. Still, if subtracted 

from our UAV measure for demonstration purposes, we can see 

a red spot close to the river, which indicates a subsidence already 

reported by Krauther & Schulze (2015). As it is also visible in 

the corresponding orthophoto on top of Figure 6, differences also 

occur at and in the vicinity of the sports field. In that area, 

maintenance took place between both measures. Precisely, sinks 

were refilled causing terrain rise, depicted in Figure 6 in dark 

blue. In between the sports field and the nearby street a new 

paved path was created, which required ablation of the slope. 

This deformation is highlighted in dark red. Further differences 

also occur at vegetated areas. This requires further semantic 

interpretation of the data as a prerequisite to the analysis of 

occurring differences. For this purpose, Section 4 first discusses 

the integration of point clouds from LiDAR with results from 

Multi-View-Stereo image matching, while Section 5 aims on the 

semantic segmentation of the collected point clouds.   

 

4. POINT CLOUDS FROM LIDAR AND MULTI-VIEW-

STEREO 

The integrated orientation of laser scans and images as described 

in Section 3 ensures optimal alignment of both data sources. This 

also holds for the 3D point clouds derived from LiDAR or via 

Multi-View-Stereo Image Matching. For this purpose, 

commercial software tools e.g. described by Rothermel et al. 

(2012) provide 3D information basically for each image pixel at 

considerable quality if sufficient image overlap is available.  

 
Figure 7. Comparison of 3D points from MVS (RGB) and 

LiDAR measurement (height coded). Yellow line defines profile 

depicted in Figure 8. 

 

 

 
Figure 8. Extracted profile with 3D points from LiDAR (blue) 

and MVS (red).  

 

Figure 7 and Figure 8 demonstrate the complementary 

characteristics of LiDAR and MVS for a sample from our test 

area. Figure 7 depicts the RGB coloured points generated by 

MVS. For this purpose, the nadir images from the PhaseOne 

camera captured at a GSD of 3.7 mm and an 80/60 overlap were 

used. While MVS directly provides the respective RGB colour 

values for the visualization of these points, the overlaid LiDAR 

data is colour coded according to the respective elevation. 

Finally, the yellow line represents the profile used to extract the 
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points depicted in Figure 8. The discrepancies between the point 

clouds from MVS (red) and LiDAR (blue) are especially evident 

at trees. In general, the polar measurement principle of LiDAR 

allows the detection of one or multiple returns along a single laser 

ray path. At twigs and branches, but also at power lines, multiple 

returns are captured for a single laser pulse since the laser beam 

cone hits targets smaller than the laser footprint in different 

distances along the ray path. MVS point cloud generation 

presumes that the same surface patch is seen from at least two 

camera positions. This can result into problems especially if the 

object appearance changes rapidly when seen from different 

positions. This holds true for semi-transparent objects like trees 

and bushes. Problems can also occur for objects in motion like 

vehicles, pedestrians, etc., or in very narrow urban canyons due 

to occlusions. Differences between LiDAR and MVS also occur 

at grass, which is penetrated by the laser signal to a certain extent. 

Thus, these heights are measured somewhere between the top 

surface and the ground depending on the vegetation density, 

while multi-view stereo matching, in turn, always returns the 

topmost surface and does not penetrate the vegetation layer 

(Mandlburger et al. 2017).   

While in the past, LiDAR and image matching were considered 

as competing techniques, the closer integration of both 

techniques is the logical next step. As a simple example, colour 

information can be mapped to the LiDAR point cloud. The top 

image of Figure 9 shows a section of the LiDAR point cloud 

coloured by the reflectance of the measured objects. In the 

bottom image, texture provided from the integrated cameras was 

added to the meshed point cloud.  

 

 
 

 
Figure 9. LiDAR point cloud with corresponding colour coded 

reflectance (top) and 3D mesh with corresponding image texture 

(bottom). 

 

The integrated capture and evaluation of images and LiDAR 

from a UAV platform can generate 3D point clouds at a very high 

quality. In principle, a suitable combination of both LiDAR and 

MVS can further increase the robustness, accuracy and reliability 

of the resulting 3D point clouds. Since this is beyond scope of 

our paper, processing is limited to the LiDAR point cloud for the 

time being. Still, a number of follow-up applications require 

further enhancement by adding semantic information. As an 

example, the aspired monitoring of subsidence requires the 

delineation of adequate surfaces like bare soil, paved roads, and 

roof surfaces. In contrast, points at vegetation like trees, shrub or 

grass as well as points on moving objects like cars have to be 

discarded. To filter out such points, we aim at a semantic 

segmentation discussed in the following section. 

 

5. SEMANTIC SEGMENTATION OF POINT CLOUDS 

In principle, we could use a binary classification to eliminate 3D 

points measured at objects not suitable for subsidence analysis. 

However, as a matter of generality, we aim on a more demanding 

classification task distinguishing between 11 different object 

classes, which are inspired by the ISPRS 3D semantic labeling 

contest (Niemeyer et al., 2014): Powerline, Low Vegetation, 

Impervious Surface, Car, Urban Furniture, Roof, Façade, 

Shrub/Hedge, Tree, Bare Soil and Vertical Surface. In the first 

step, we compute a feature vector for each point, which describes 

the characteristic point distribution in the vicinity at different 

levels of abstraction. Precisely, features are computed within 

different radii of 𝑟 = 1, 2, 3  and 5 m both for a spherical and 

unbound cylindrical neighbourhood where 𝑟 defines the radius of 

the sphere and the cylinder respectively. To reduce the 

computational effort for querying neighbours in our high-

resolution point clouds, with increasing search radius these points 

are selected from a gradually  more subsampled point cloud as 

proposed by Hackel et al. (2016).  

The most common features for classification of 3D point clouds 

are based on the structural tensor (Becker et al., 2018). If 

Eigenvalues and -vectors are extracted from this covariance 

matrix, characteristics of the point distribution within a local 

neighborhood can be obtained. Relevant features are then derived 

by utilizing the ratio of Eigenvalues (Weinmann et al., 2018). 

Furthermore, estimating Eigenvalues and –vectors of the 

structural tensor equals fitting a plane in the vicinity of each 

point. Therefore, features describing the local orientation of this 

plane and the distance of individual points to this plane can be 

computed. As a significant feature for delimiting vegetation we 

observed the robustly determined standard deviation 𝜎𝑀𝐴𝐷 of all 

derived distances to this plane within the respective 

neighbourhood. Another group of relevant features consider 

height information. Thus, maximum height difference in a 

neighbourhood, variance of height differences and height above 

ground (Chehata et al., 2009) are extracted. In order to add 

radiometric properties, colour information was mapped from the 

synchronously acquired oblique images to the respective LiDAR 

point cloud. Visualizations as e.g. depicted at the bottom of 

Figure 9 typically apply RGB values. However, these RGB 

values were transformed to the HSV colour space for 

classification. To enable a better generalization, these values are 

additionally averaged within each neighbourhood (Becker et al., 

2018). To further benefit from the high resolution imagery, we 

generate an orthophoto and perform a semantic segmentation 

using SegNet (Badrinarayanan et al. 2017). The resulting labels 

of the orthophoto are then mapped to the 3D points to provide a 

priori labels. Further features are also provided from LiDAR-

inherent measures like reflectance and echo ratio. Finally our 

feature vector consists of 167 elements. We then use these 

features to train a Random Forest (RF) classifier (Breiman, 

2001). Figure 11 exemplarily depicts a comparison of ground 

truth data (top) and predicted classes (bottom).  As it is visible 

from the confusion matrix depicted in Figure 10. By this, we 

achieve an Overall Accuracy (OA) of 86.8%. Hyperparameters 
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were tuned based on a validation dataset, resulting in an ensemble 

of 300 binary decision trees having a maximum depth of 18. 

As mentioned before, this classification is motivated by 

extracting surfaces suitable for deformation monitoring. Thus, 

confusion between Impervious Surface, Roof and Bare Soil and 

on the other hand classes inappropriate for monitoring especially 

having inherent dynamic properties needs to be minimized. In 

this context, the highest confusion (40%, see Figure 10) of the 

predicted result can be observed between Bare Soil and Low 

Vegetation, which is due to similar height above ground and 

similar geometrical features.  

 
Figure 10. Normalized confusion matrix including Producer´s 

Accuracy (PA), User´s Accuracy (UA) and Overall Accuracy 

(bottom right) for our RF prediction. 

Integration of colour information did not improve the separation 

of both classes. The flights had to be carried out in the leave-off 

season, in our experiments in November and March, respectively. 

In that periods, vegetation areas are not characterized by their 

typical green colour, rather both areas of open soil and thin grass 

are of brownish colour. Furthermore, 15% of the points which 

actually represent Bare Soil are misinterpreted as Impervious 

Surface. This is mainly caused by very similar geometric 

features, since in our test region, areas of bare soil are primarily 

represented by very small domestic agricultural fields featuring 

very smooth surfaces, especially in our flight period in winter. 

However, both classes are to be used for deformation 

measurements in the context of binary separation. Therefore this 

confusion will not impact our monitoring result. As our ultimate 

goal is to measure vertical subsidence, we further need to exclude 

façades. Only a very small extent of façades are mistaken as 

roofs, often caused by roof dormers, which are difficult to 

delimit.  

The visual comparison between ground truth and predicted 

classes (see Figure 11) verifies these findings and outlines broad 

agreement. Deviations are particularly noticeable in the upper left 

area at the construction site, where the classification result differs 

partly from the correct class Bare Soil. Further confusion due to 

similar geometries and colouring occurs, as expected, for Façade 

vs. Vertical Surface, Shrub/Hedge vs. Tree and Urban Furniture 

vs. Car. These misclassifications are not further discussed here, 

since all these classes can be merged and excluded for our 

monitoring purposes. 

 

6. CONCLUSION AND FURTHER WORK 

This paper presents a workflow for hybrid georeferencing, 

enhancement and classification of ultra-high resolution UAV 

LiDAR and image point clouds for monitoring applications. We 

clearly demonstrated the feasibility of the hybrid orientation of 

airborne LiDAR and aerial images. By these means the elevation 

accuracy of UAV-based LiDAR point clouds could be improved 

to a standard devisation of 0.8 cm. To the best of our knowledge, 

such accuracies were not feasible so far. We expect a further 

improvement by replacing the Sony Alpha cameras currently 

mounted on the RIEGL RiCopter by high quality cameras. A 

previous flight campaign already demonstrated promising AAT 

results for high quality nadir images captured by a PhaseOne 

iXM 100-RS camera with 35mm lens mounted on a 

CopterSystems CS-SQ8 copter (Cramer et al. 2018). This will 

improve the GSD of the imagery integrated during hybrid 

georeferencing from 2cm to approximately 4 mm. 

Similar to the georeferencing of LiDAR and image data, point 

cloud generation from Multi-View-Stereo image matching and 

LiDAR were considered as competing techniques with research 

efforts focussing on the individual improvement of sensors and 

algorithms. In our future work, we will also aim on the suitable 

combination of both data sources to further increase robustness, 

accuracy and reliability of 3D point clouds while aiming at ultra-

high accuracy applications from UAV-based data capture. The 

same holds true for semantic information extraction. Combining 

very high resolution texture mapped, meshed 3D point clouds 

from image matching with information from multiple laser 

returns occurring for example at twigs and branches opens new 

opportunities for the following point cloud analysis. In addition 

to the further improvement of point cloud geometry, integrated 

processing will facilitate the subsequent semantic analysis during 

 
 

 
Figure 11. Comparison of ground truth data (top) and 

predicted classes by RF classifier (bottom). Differences 

especially occur within white ellipses. 
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point cloud classification or object detection. Similarly, adaptive 

filtering and smoothing of meshed 3D points will benefit from 

integrating knowledge on different semantic classes. In this 

context, a prior assumptions on the shape of the captured surface 

patches are frequently applied. Integration of active laser and 

passive image sensors is thus beneficial for traditional airborne 

scenarios like topographic data capture.  
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